Files
super_ball/thrower_daemon/node_modules/nostr-wasm/dist/secp256k1.js
2025-09-29 07:21:46 -04:00

231 lines
9.1 KiB
JavaScript

const emsimp = (f_map_imports, s_tag) => {
s_tag += ': ';
let AB_HEAP;
let ATU8_HEAP;
let ATU32_HEAP;
// eslint-disable-next-line no-console
const console_out = (s_channel, s_out) => console[s_channel](s_tag + s_out.replace(/\0/g, '\n'));
let s_error = '';
// for converting bytes to text
const utf8 = new TextDecoder();
const h_fds = {
// stdout
1(s_out) {
console_out('debug', s_out);
},
// stderr
2(s_out) {
console_out('error', (s_error = s_out));
}
};
const g_imports = f_map_imports({
abort() {
throw Error(s_tag + (s_error || 'An unknown error occurred'));
},
memcpy: (ip_dst, ip_src, nb_size) => ATU8_HEAP.copyWithin(ip_dst, ip_src, ip_src + nb_size),
resize(_) {
throw Error(s_tag + 'Out of memory');
},
write(i_fd, ip_iov, nl_iovs, ip_written) {
// output string
let s_out = '';
// track number of bytes read from buffers
let cb_read = 0;
// each pending iov
for (let i_iov = 0; i_iov < nl_iovs; i_iov++) {
// start of buffer in memory
const ip_start = ATU32_HEAP[ip_iov >> 2];
// size of buffer
const nb_len = ATU32_HEAP[(ip_iov + 4) >> 2];
ip_iov += 8;
// extract text from buffer
s_out += utf8.decode(ATU8_HEAP.subarray(ip_start, ip_start + nb_len));
// update number of bytes read
cb_read += nb_len;
}
// route to fd
if (h_fds[i_fd]) {
h_fds[i_fd](s_out);
}
else {
// no fd found
throw new Error(`libsecp256k1 tried writing to non-open file descriptor: ${i_fd}\n${s_out}`);
}
// write bytes read
ATU32_HEAP[ip_written >> 2] = cb_read;
// no error
return 0;
}
});
return [
g_imports,
(d_memory) => [
(AB_HEAP = d_memory.buffer),
(ATU8_HEAP = new Uint8Array(AB_HEAP)),
(ATU32_HEAP = new Uint32Array(AB_HEAP))
]
];
};
/*
* ================================
* GENERATED FILE WARNING
* Do not edit this file manually.
* ================================
*/
const map_wasm_imports = (g_imports) => ({
a: {
a: g_imports.abort,
f: g_imports.memcpy,
d: g_imports.resize,
e: () => 52, // _fd_close,
c: () => 70, // _fd_seek,
b: g_imports.write,
},
});
const map_wasm_exports = (g_exports) => ({
malloc: g_exports['i'],
free: g_exports['j'],
sha256_initialize: g_exports['l'],
sha256_write: g_exports['m'],
sha256_finalize: g_exports['n'],
context_create: g_exports['o'],
xonly_pubkey_parse: g_exports['p'],
xonly_pubkey_serialize: g_exports['q'],
keypair_create: g_exports['r'],
keypair_xonly_pub: g_exports['s'],
schnorrsig_sign32: g_exports['t'],
schnorrsig_verify: g_exports['u'],
sbrk: g_exports['sbrk'],
memory: g_exports['g'],
init: () => g_exports['h'](),
});
const S_TAG_BIP340_VERIFY = 'BIP340 verify: ';
const S_REASON_INVALID_SK = 'Invalid private key';
const S_REASON_INVALID_PK = 'Invalid public key';
/**
* Creates a new instance of the secp256k1 WASM and returns its ES wrapper
* @param z_src - a Response containing the WASM binary, a Promise that resolves to one,
* or the raw bytes to the WASM binary as a {@link BufferSource}
* @returns the wrapper API
*/
const WasmSecp256k1 = async (z_src) => {
// prepare the runtime
const [g_imports, f_bind_heap] = emsimp(map_wasm_imports, 'wasm-secp256k1');
// prep the wasm module
let d_wasm;
// instantiate wasm binary by streaming the response bytes
if (z_src instanceof Response || z_src instanceof Promise) {
d_wasm = await WebAssembly.instantiateStreaming(z_src, g_imports);
}
else {
// instantiate using raw binary
d_wasm = await WebAssembly.instantiate(z_src, g_imports);
}
// create the libsecp256k1 exports struct
const g_wasm = map_wasm_exports(d_wasm.instance.exports);
// bind the heap and ref its view(s)
const [, ATU8_HEAP] = f_bind_heap(g_wasm.memory);
// call into the wasm module's init method
g_wasm.init();
const ip_sk = g_wasm.malloc(32 /* ByteLens.PRIVATE_KEY */);
const ip_ent = g_wasm.malloc(32 /* ByteLens.NONCE_ENTROPY */);
const ip_msg_hash = g_wasm.malloc(32 /* ByteLens.MSG_HASH */);
// scratch spaces
const ip_pubkey_scratch = g_wasm.malloc(32 /* ByteLens.XONLY_PUBKEY */);
const ip_sig_scratch = g_wasm.malloc(64 /* ByteLens.BIP340_SIG */);
// library handle: secp256k1_keypair;
const ip_keypair = g_wasm.malloc(96 /* ByteLens.KEYPAIR_LIB */);
// library handle: secp256k1_xonly_pubkey;
const ip_xonly_pubkey = g_wasm.malloc(64 /* ByteLens.XONLY_KEY_LIB */);
// library handle: secp256k1_sha256;
const ip_sha256 = g_wasm.malloc(104 /* ByteLens.SHA256_LIB */);
// create a reusable context
const ip_ctx = g_wasm.context_create(513 /* Flags.CONTEXT_SIGN */ | 257 /* Flags.CONTEXT_VERIFY */);
// an encoder for hashing strings
const utf8 = new TextEncoder();
/**
* Puts the given private key into program memory, runs the given callback, then zeroes out the key
* @param atu8_sk - the private key
* @param f_use - callback to use the key
* @returns whatever the callback returns
*/
const with_keypair = (atu8_sk, f_use) => {
// prep callback return
let w_return;
// in case of any exception..
try {
// copy input bytes into place
ATU8_HEAP.set(atu8_sk, ip_sk);
// instantiate keypair
g_wasm.keypair_create(ip_ctx, ip_keypair, ip_sk);
// use private key
w_return = f_use();
}
finally {
// zero-out private key and keypair
ATU8_HEAP.fill(1, ip_sk, ip_sk + 32 /* ByteLens.PRIVATE_KEY */);
ATU8_HEAP.fill(2, ip_keypair, ip_keypair + 96 /* ByteLens.KEYPAIR_LIB */);
}
// forward result
return w_return;
};
return {
gen_secret_key: () => crypto.getRandomValues(new Uint8Array(32 /* ByteLens.PRIVATE_KEY */)),
get_public_key(atu8_sk) {
// while using the private key, compute its corresponding public key; from the docs:
if (1 /* BinaryResult.SUCCESS */ !==
with_keypair(atu8_sk, () => g_wasm.keypair_xonly_pub(ip_ctx, ip_xonly_pubkey, null, ip_keypair))) {
throw Error('sk_to_pk: ' + S_REASON_INVALID_SK);
}
// serialize the public key
g_wasm.xonly_pubkey_serialize(ip_ctx, ip_pubkey_scratch, ip_xonly_pubkey);
// extract result
return ATU8_HEAP.slice(ip_pubkey_scratch, ip_pubkey_scratch + 32 /* ByteLens.XONLY_PUBKEY */);
},
sign(atu8_sk, atu8_hash, atu8_ent) {
// copy message hash bytes into place
ATU8_HEAP.set(atu8_hash, ip_msg_hash);
// copy entropy bytes into place
if (!atu8_ent && crypto.getRandomValues) {
ATU8_HEAP.set(crypto.getRandomValues(new Uint8Array(32)), ip_ent);
}
// while using the private key, sign the given message hash
if (1 /* BinaryResult.SUCCESS */ !==
with_keypair(atu8_sk, () => g_wasm.schnorrsig_sign32(ip_ctx, ip_sig_scratch, ip_msg_hash, ip_keypair, ip_ent))) {
throw Error('BIP-340 sign: ' + S_REASON_INVALID_SK);
}
// return serialized signature
return ATU8_HEAP.slice(ip_sig_scratch, ip_sig_scratch + 64 /* ByteLens.BIP340_SIG */);
},
verify(atu8_signature, atu8_hash, atu8_pk) {
// copy signature bytes into place
ATU8_HEAP.set(atu8_signature, ip_sig_scratch);
// copy message hash bytes into place
ATU8_HEAP.set(atu8_hash, ip_msg_hash);
// copy pubkey bytes into place
ATU8_HEAP.set(atu8_pk, ip_pubkey_scratch);
// parse the public key
if (1 /* BinaryResult.SUCCESS */ !==
g_wasm.xonly_pubkey_parse(ip_ctx, ip_xonly_pubkey, ip_pubkey_scratch)) {
throw Error(S_TAG_BIP340_VERIFY + S_REASON_INVALID_PK);
}
// verify the signature
return (1 /* BinaryResult.SUCCESS */ ===
g_wasm.schnorrsig_verify(ip_ctx, ip_sig_scratch, ip_msg_hash, 32 /* ByteLens.MSG_HASH */, ip_xonly_pubkey));
},
sha256(message) {
const ip_message = g_wasm.malloc(message.length);
const data = utf8.encode(message);
ATU8_HEAP.set(data, ip_message);
g_wasm.sha256_initialize(ip_sha256);
g_wasm.sha256_write(ip_sha256, ip_message, message.length);
g_wasm.sha256_finalize(ip_sha256, ip_msg_hash);
return ATU8_HEAP.slice(ip_msg_hash, ip_msg_hash + 32 /* ByteLens.MSG_HASH */);
}
};
};
export { WasmSecp256k1 as W };