This commit is contained in:
Matias Furszyfer 2025-10-08 21:37:47 +00:00 committed by GitHub
commit 59d518b084
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
14 changed files with 1020 additions and 146 deletions

View File

@ -13,6 +13,7 @@
#include <node/context.h>
#include <node/database_args.h>
#include <node/interface_ui.h>
#include <util/threadpool.h>
#include <tinyformat.h>
#include <undo.h>
#include <util/string.h>
@ -20,6 +21,7 @@
#include <util/translation.h>
#include <validation.h>
#include <algorithm>
#include <chrono>
#include <memory>
#include <optional>
@ -149,7 +151,7 @@ static const CBlockIndex* NextSyncBlock(const CBlockIndex* pindex_prev, CChain&
return chain.Next(chain.FindFork(pindex_prev));
}
bool BaseIndex::ProcessBlock(const CBlockIndex* pindex, const CBlock* block_data)
std::any BaseIndex::ProcessBlock(const CBlockIndex* pindex, const CBlock* block_data)
{
interfaces::BlockInfo block_info = kernel::MakeBlockInfo(pindex, block_data);
@ -158,7 +160,7 @@ bool BaseIndex::ProcessBlock(const CBlockIndex* pindex, const CBlock* block_data
if (!m_chainstate->m_blockman.ReadBlock(block, *pindex)) {
FatalErrorf("Failed to read block %s from disk",
pindex->GetBlockHash().ToString());
return false;
return {};
}
block_info.data = &block;
}
@ -168,87 +170,292 @@ bool BaseIndex::ProcessBlock(const CBlockIndex* pindex, const CBlock* block_data
if (pindex->nHeight > 0 && !m_chainstate->m_blockman.ReadBlockUndo(block_undo, *pindex)) {
FatalErrorf("Failed to read undo block data %s from disk",
pindex->GetBlockHash().ToString());
return false;
return {};
}
block_info.undo_data = &block_undo;
}
if (!CustomAppend(block_info)) {
FatalErrorf("Failed to write block %s to index database",
pindex->GetBlockHash().ToString());
return false;
const auto& any_obj = CustomProcessBlock(block_info);
if (!any_obj.has_value()) {
FatalErrorf("Failed to process block %s for index %s",
pindex->GetBlockHash().GetHex(), GetName());
return {};
}
return true;
return any_obj;
}
std::vector<std::any> BaseIndex::ProcessBlocks(bool process_in_order, const CBlockIndex* start, const CBlockIndex* end)
{
std::vector<std::any> results;
if (process_in_order) {
// When ordering is required, collect all block indexes from [end..start] in order
std::vector<const CBlockIndex*> ordered_blocks;
for (const CBlockIndex* block = end; block && start->pprev != block; block = block->pprev) {
ordered_blocks.emplace_back(block);
}
// And process blocks in forward order: from start to end
for (auto it = ordered_blocks.rbegin(); it != ordered_blocks.rend(); ++it) {
auto op_res = ProcessBlock(*it);
if (!op_res.has_value()) return {};
results.emplace_back(std::move(op_res));
}
return results;
}
// If ordering is not required, process blocks directly from end to start
for (const CBlockIndex* block = end; block && start->pprev != block; block = block->pprev) {
auto op_res = ProcessBlock(block);
if (!op_res.has_value()) return {};
results.emplace_back(std::move(op_res));
}
return results;
}
struct Task {
int id;
const CBlockIndex* start_index;
const CBlockIndex* end_index;
std::vector<std::any> result;
Task(int task_id, const CBlockIndex* start, const CBlockIndex* end)
: id(task_id), start_index(start), end_index(end) {}
// Disallow copy
Task(const Task&) = delete;
Task& operator=(const Task&) = delete;
Task(Task&&) noexcept = default;
};
// Context shared across the initial sync workers
struct SyncContext {
Mutex mutex_pending_tasks;
std::queue<Task> pending_tasks GUARDED_BY(mutex_pending_tasks);
Mutex mutex_processed_tasks;
std::map<int, Task> processed_tasks GUARDED_BY(mutex_processed_tasks);
std::atomic<int> next_id_to_process{0};
};
// Synchronizes the index with the active chain.
//
// If parallel sync is enabled, this method uses WorkersCount()+1 threads (including the current thread)
// to process block ranges concurrently. Each worker handles up to 'm_blocks_per_worker' blocks each time
// (this is called a "task"), which are processed via CustomProcessBlock calls. Results are stored in the
// SyncContext's 'processed_tasks' map so they can be sequentially post-processed later.
//
// After completing a task, workers opportunistically post-process completed tasks *in order* using
// CustomPostProcessBlocks. This continues until all blocks have been fully processed and committed.
//
// Reorgs are detected and handled before syncing begins, ensuring the index starts aligned with the active chain.
void BaseIndex::Sync()
{
if (m_synced) return; // we are synced, nothing to do
// Before anything, verify we are in the active chain
const CBlockIndex* pindex = m_best_block_index.load();
if (!m_synced) {
auto last_log_time{NodeClock::now()};
auto last_locator_write_time{last_log_time};
while (true) {
if (m_interrupt) {
LogInfo("%s: m_interrupt set; exiting ThreadSync", GetName());
const int tip_height = WITH_LOCK(cs_main, return m_chainstate->m_chain.Height());
// Note: be careful, could return null if there is no more work to do or if pindex is not found (erased blocks dir).
const CBlockIndex* pindex_next = WITH_LOCK(cs_main, return NextSyncBlock(pindex, m_chainstate->m_chain));
if (!pindex_next) {
m_synced = true;
return;
}
SetBestBlockIndex(pindex);
// No need to handle errors in Commit. If it fails, the error will be already be
// logged. The best way to recover is to continue, as index cannot be corrupted by
// a missed commit to disk for an advanced index state.
Commit();
return;
}
// Handle potential reorgs; if the next block's parent doesn't match our current tip,
// rewind our index state to match the chain and resume from there.
if (pindex_next->pprev != pindex && !Rewind(pindex, pindex_next->pprev)) {
FatalErrorf("Failed to rewind index %s to a previous chain tip", GetName());
return;
}
const CBlockIndex* pindex_next = WITH_LOCK(cs_main, return NextSyncBlock(pindex, m_chainstate->m_chain));
// If pindex_next is null, it means pindex is the chain tip, so
// commit data indexed so far.
if (!pindex_next) {
SetBestBlockIndex(pindex);
// No need to handle errors in Commit. See rationale above.
Commit();
// Compute tasks ranges
const int blocks_to_sync = tip_height - pindex_next->nHeight;
const int num_tasks = blocks_to_sync / m_blocks_per_worker;
const int remaining_blocks = blocks_to_sync % m_blocks_per_worker;
const bool process_in_order = !AllowParallelSync();
// If pindex is still the chain tip after committing, exit the
// sync loop. It is important for cs_main to be locked while
// setting m_synced = true, otherwise a new block could be
// attached while m_synced is still false, and it would not be
// indexed.
LOCK(::cs_main);
pindex_next = NextSyncBlock(pindex, m_chainstate->m_chain);
if (!pindex_next) {
m_synced = true;
break;
}
}
if (pindex_next->pprev != pindex && !Rewind(pindex, pindex_next->pprev)) {
FatalErrorf("Failed to rewind %s to a previous chain tip", GetName());
return;
}
pindex = pindex_next;
std::shared_ptr<SyncContext> ctx = std::make_shared<SyncContext>();
{
LOCK2(ctx->mutex_pending_tasks, ::cs_main);
// Create fixed-size tasks
const CBlockIndex* it_start = pindex;
const CBlockIndex* it_end;
for (int id = 0; id < num_tasks; ++id) {
it_start = Assert(NextSyncBlock(it_start, m_chainstate->m_chain));
it_end = m_chainstate->m_chain[it_start->nHeight + m_blocks_per_worker - 1];
ctx->pending_tasks.emplace(id, it_start, it_end);
it_start = it_end;
}
if (!ProcessBlock(pindex)) return; // error logged internally
auto current_time{NodeClock::now()};
if (current_time - last_log_time >= SYNC_LOG_INTERVAL) {
LogInfo("Syncing %s with block chain from height %d", GetName(), pindex->nHeight);
last_log_time = current_time;
}
if (current_time - last_locator_write_time >= SYNC_LOCATOR_WRITE_INTERVAL) {
SetBestBlockIndex(pindex);
last_locator_write_time = current_time;
// No need to handle errors in Commit. See rationale above.
Commit();
}
// Add final task with the remaining blocks, if any
if (remaining_blocks > 0) {
it_start = Assert(NextSyncBlock(it_start, m_chainstate->m_chain));
it_end = m_chainstate->m_chain[it_start->nHeight + remaining_blocks];
ctx->pending_tasks.emplace(/*task_id=*/num_tasks, it_start, it_end);
}
}
if (pindex) {
LogInfo("%s is enabled at height %d", GetName(), pindex->nHeight);
} else {
LogInfo("%s is enabled", GetName());
// Returns nullopt only when there are no pending tasks
const auto& try_get_task = [](auto& ctx) -> std::optional<Task> {
LOCK(ctx->mutex_pending_tasks);
if (ctx->pending_tasks.empty()) return std::nullopt;
Task t = std::move(ctx->pending_tasks.front());
ctx->pending_tasks.pop();
return t;
};
enum class WorkerStatus { ABORT, PROCESSING, FINISHED };
const auto& func_worker = [this, try_get_task, process_in_order](auto& ctx) -> WorkerStatus {
if (m_interrupt) return WorkerStatus::FINISHED;
// Try to obtain a task and process it
if (std::optional<Task> maybe_task = try_get_task(ctx)) {
Task task = std::move(*maybe_task);
task.result = ProcessBlocks(process_in_order, task.start_index, task.end_index);
if (task.result.empty()) {
// Empty result indicates an internal error (logged internally).
m_interrupt(); // notify other workers and abort.
return WorkerStatus::ABORT;
}
LOCK(ctx->mutex_processed_tasks);
ctx->processed_tasks.emplace(task.id, std::move(task));
} else {
// No pending tasks — might be finished
// If we still have processed task to consume, proceed to finalize them.
LOCK(ctx->mutex_processed_tasks);
if (ctx->processed_tasks.empty()) return WorkerStatus::FINISHED;
}
// Post-process completed tasks opportunistically
std::vector<Task> to_process;
{
TRY_LOCK(ctx->mutex_processed_tasks, locked);
if (!locked) return WorkerStatus::PROCESSING;
// Collect ready-to-process tasks in order
int next_id = ctx->next_id_to_process.load();
while (true) {
auto it = ctx->processed_tasks.find(next_id);
if (it == ctx->processed_tasks.end()) break;
to_process.push_back(std::move(it->second));
ctx->processed_tasks.erase(it);
++next_id;
}
// Nothing to process right now, keep processing
if (to_process.empty()) return WorkerStatus::PROCESSING;
}
// Post-Process tasks
for (const Task& task : to_process) {
for (auto it = task.result.rbegin(); it != task.result.rend(); ++it) {
if (!CustomPostProcessBlocks(*it)) { // error logged internally
m_interrupt();
FatalErrorf("Index %s: Failed to post process blocks", GetName());
return WorkerStatus::ABORT;
}
}
// Update progress
SetBestBlockIndex(task.end_index);
ctx->next_id_to_process.store(task.id + 1);
}
// Check if there's anything left to do
LOCK2(ctx->mutex_pending_tasks, ctx->mutex_processed_tasks);
if (ctx->pending_tasks.empty() && ctx->processed_tasks.empty()) {
return WorkerStatus::FINISHED;
}
return WorkerStatus::PROCESSING;
};
// Process task in parallel if enabled
std::vector<std::future<void>> workers_job;
if (m_thread_pool) {
for (size_t i = 0; i < m_thread_pool->WorkersCount(); ++i) {
workers_job.emplace_back(m_thread_pool->Submit([this, ctx, func_worker]() {
WorkerStatus status{WorkerStatus::PROCESSING};
while (!m_synced && status == WorkerStatus::PROCESSING) {
status = func_worker(ctx);
if (m_interrupt) return;
}
}));
}
}
// Main index thread
// Active-wait: we process blocks in this thread too.
auto last_log_time{NodeClock::now()};
auto last_locator_write_time{last_log_time};
while (!m_synced) {
const WorkerStatus status{func_worker(ctx)};
if (m_interrupt || status == WorkerStatus::ABORT) {
m_interrupt();
// Ensure all workers are interrupted before returning.
// This avoids accessing any local variable post-destruction.
for (const auto& job : workers_job) job.wait();
return;
}
if (status == WorkerStatus::FINISHED) {
// No more tasks to process; wait for all workers to finish their current tasks
for (const auto& job : workers_job) job.wait();
// No need to handle errors in Commit. If it fails, the error will be already be
// logged. The best way to recover is to continue, as index cannot be corrupted by
// a missed commit to disk for an advanced index state.
Commit();
// Before finishing, check if any new blocks were connected while we were syncing.
// If so, process them synchronously before exiting.
//
// Note: it is important for cs_main to be locked while setting m_synced = true,
// otherwise a new block could be attached while m_synced is still false, and
// it would not be indexed.
LOCK2(ctx->mutex_pending_tasks, ::cs_main);
const CBlockIndex* curr_tip{m_best_block_index.load()};
pindex_next = NextSyncBlock(curr_tip, m_chainstate->m_chain);
// If the next block is null, it means we are done!
if (!pindex_next) {
m_synced = true;
break;
}
// New blocks arrived during sync.
// Handle potential reorgs; if the next block's parent doesn't match our tip,
// rewind index state to the correct chain, then resume.
if (pindex_next->pprev != curr_tip && !Rewind(curr_tip, pindex_next->pprev)) {
FatalErrorf("Failed to rewind index %s to a previous chain tip", GetName());
return;
}
// Queue the final range of blocks to process.
ctx->pending_tasks.emplace(ctx->next_id_to_process.load(),
/*start_index=*/pindex_next,
/*end_index=*/m_chainstate->m_chain.Tip());
}
auto current_time{NodeClock::now()};
// Log progress every so often
if (current_time - last_log_time >= SYNC_LOG_INTERVAL) {
LogInfo("Syncing %s with block chain from height %d\n",
GetName(), m_best_block_index.load()->nHeight);
last_log_time = current_time;
}
// Commit changes every so often
if (current_time - last_locator_write_time >= SYNC_LOCATOR_WRITE_INTERVAL) {
Commit(); // No need to handle errors in Commit. See rationale above.
last_locator_write_time = current_time;
}
}
LogInfo("%s is enabled at height %d\n", GetName(), (m_best_block_index) ? m_best_block_index.load()->nHeight : 0);
}
bool BaseIndex::Commit()
@ -273,6 +480,7 @@ bool BaseIndex::Commit()
bool BaseIndex::Rewind(const CBlockIndex* current_tip, const CBlockIndex* new_tip)
{
assert(current_tip == m_best_block_index);
assert(current_tip->GetAncestor(new_tip->nHeight) == new_tip);
CBlock block;
@ -354,7 +562,7 @@ void BaseIndex::BlockConnected(ChainstateRole role, const std::shared_ptr<const
}
// Dispatch block to child class; errors are logged internally and abort the node.
if (ProcessBlock(pindex, block.get())) {
if (CustomPostProcessBlocks(ProcessBlock(pindex, block.get()))) {
// Setting the best block index is intentionally the last step of this
// function, so BlockUntilSyncedToCurrentChain callers waiting for the
// best block index to be updated can rely on the block being fully
@ -402,7 +610,7 @@ void BaseIndex::ChainStateFlushed(ChainstateRole role, const CBlockLocator& loca
return;
}
// No need to handle errors in Commit. If it fails, the error will be already be logged. The
// No need to handle errors in Commit. If it fails, the error will already be logged. The
// best way to recover is to continue, as index cannot be corrupted by a missed commit to disk
// for an advanced index state.
Commit();

View File

@ -12,16 +12,25 @@
#include <util/threadinterrupt.h>
#include <validationinterface.h>
#include <any>
#include <string>
class CBlock;
class CBlockIndex;
class Chainstate;
class ChainstateManager;
class ThreadPool;
namespace interfaces {
class Chain;
} // namespace interfaces
/** Maximum number of threads a single thread pool instance can have */
static constexpr int16_t MAX_INDEX_WORKERS_COUNT = 100;
/** Number of concurrent jobs during the initial sync process */
static constexpr int16_t INDEX_WORKERS_COUNT = 0;
/** Number of tasks processed by each worker */
static constexpr int16_t INDEX_WORK_PER_CHUNK = 1000;
struct IndexSummary {
std::string name;
bool synced{false};
@ -80,6 +89,9 @@ private:
std::thread m_thread_sync;
CThreadInterrupt m_interrupt;
ThreadPool* m_thread_pool{nullptr};
int m_blocks_per_worker{INDEX_WORK_PER_CHUNK};
/// Write the current index state (eg. chain block locator and subclass-specific items) to disk.
///
/// Recommendations for error handling:
@ -93,7 +105,8 @@ private:
/// Loop over disconnected blocks and call CustomRemove.
bool Rewind(const CBlockIndex* current_tip, const CBlockIndex* new_tip);
bool ProcessBlock(const CBlockIndex* pindex, const CBlock* block_data = nullptr);
std::any ProcessBlock(const CBlockIndex* pindex, const CBlock* block_data = nullptr);
std::vector<std::any> ProcessBlocks(bool process_in_order, const CBlockIndex* start, const CBlockIndex* end);
virtual bool AllowPrune() const = 0;
@ -130,6 +143,26 @@ protected:
/// Update the internal best block index as well as the prune lock.
void SetBestBlockIndex(const CBlockIndex* block);
/// If 'AllowParallelSync()' returns true, 'ProcessBlock()' will run concurrently in batches.
/// The 'std::any' result will be passed to 'CustomPostProcessBlocks()' so the index can process
/// async result batches in a synchronous fashion (if required).
[[nodiscard]] virtual std::any CustomProcessBlock(const interfaces::BlockInfo& block_info) {
// If parallel sync is enabled, the child class must implement this method.
if (AllowParallelSync()) return std::any();
// Default, synchronous write
if (!CustomAppend(block_info)) {
throw std::runtime_error(strprintf("%s: Failed to write block %s to index database",
__func__, block_info.hash.ToString()));
}
return true;
}
/// 'CustomPostProcessBlocks()' is called in a synchronous manner after a batch of async 'ProcessBlock()'
/// calls have completed.
/// Here the index usually links and dump information that cannot be processed in an asynchronous fashion.
[[nodiscard]] virtual bool CustomPostProcessBlocks(const std::any& obj) { return true; };
public:
BaseIndex(std::unique_ptr<interfaces::Chain> chain, std::string name);
/// Destructor interrupts sync thread if running and blocks until it exits.
@ -138,6 +171,8 @@ public:
/// Get the name of the index for display in logs.
const std::string& GetName() const LIFETIMEBOUND { return m_name; }
void SetThreadPool(ThreadPool& thread_pool) { m_thread_pool = &thread_pool; }
/// Blocks the current thread until the index is caught up to the current
/// state of the block chain. This only blocks if the index has gotten in
/// sync once and only needs to process blocks in the ValidationInterface
@ -164,6 +199,12 @@ public:
/// Stops the instance from staying in sync with blockchain updates.
void Stop();
/// Number of blocks each worker thread will process at a time
void SetBlocksPerWorker(int count) { m_blocks_per_worker = count; }
/// True if the child class allows concurrent sync.
virtual bool AllowParallelSync() { return false; }
/// Get a summary of the index and its state.
IndexSummary GetSummary() const;
};

View File

@ -299,6 +299,23 @@ bool BlockFilterIndex::Write(const BlockFilter& filter, uint32_t block_height, c
return true;
}
std::any BlockFilterIndex::CustomProcessBlock(const interfaces::BlockInfo& block_info)
{
return std::make_pair(BlockFilter(m_filter_type, *block_info.data, *block_info.undo_data), block_info.height);
}
bool BlockFilterIndex::CustomPostProcessBlocks(const std::any& obj)
{
const auto& [filter, height] = std::any_cast<std::pair<BlockFilter, int>>(obj);
const uint256& header = filter.ComputeHeader(m_last_header);
if (!Write(filter, height, header)) {
LogError("Error writing filters, shutting down block filters index\n");
return false;
}
m_last_header = header;
return true;
}
[[nodiscard]] static bool CopyHeightIndexToHashIndex(CDBIterator& db_it, CDBBatch& batch,
const std::string& index_name, int height)
{

View File

@ -64,6 +64,9 @@ protected:
BaseIndex::DB& GetDB() const LIFETIMEBOUND override { return *m_db; }
std::any CustomProcessBlock(const interfaces::BlockInfo& block) override;
bool CustomPostProcessBlocks(const std::any& obj) override;
public:
/** Constructs the index, which becomes available to be queried. */
explicit BlockFilterIndex(std::unique_ptr<interfaces::Chain> chain, BlockFilterType filter_type,
@ -71,6 +74,8 @@ public:
BlockFilterType GetFilterType() const { return m_filter_type; }
bool AllowParallelSync() override { return true; }
/** Get a single filter by block. */
bool LookupFilter(const CBlockIndex* block_index, BlockFilter& filter_out) const;

View File

@ -29,6 +29,10 @@ protected:
BaseIndex::DB& GetDB() const override;
std::any CustomProcessBlock(const interfaces::BlockInfo& block) override {
return CustomAppend(block);
}
public:
/// Constructs the index, which becomes available to be queried.
explicit TxIndex(std::unique_ptr<interfaces::Chain> chain, size_t n_cache_size, bool f_memory = false, bool f_wipe = false);
@ -36,6 +40,8 @@ public:
// Destructor is declared because this class contains a unique_ptr to an incomplete type.
virtual ~TxIndex() override;
bool AllowParallelSync() override { return true; }
/// Look up a transaction by hash.
///
/// @param[in] tx_hash The hash of the transaction to be returned.

View File

@ -87,6 +87,7 @@
#include <util/syserror.h>
#include <util/thread.h>
#include <util/threadnames.h>
#include <util/threadpool.h>
#include <util/time.h>
#include <util/translation.h>
#include <validation.h>
@ -359,10 +360,12 @@ void Shutdown(NodeContext& node)
// Stop and delete all indexes only after flushing background callbacks.
for (auto* index : node.indexes) index->Stop();
if (node.m_index_threads) node.m_index_threads->Stop();
if (g_txindex) g_txindex.reset();
if (g_coin_stats_index) g_coin_stats_index.reset();
DestroyAllBlockFilterIndexes();
node.indexes.clear(); // all instances are nullptr now
if (node.m_index_threads) node.m_index_threads.reset();
// Any future callbacks will be dropped. This should absolutely be safe - if
// missing a callback results in an unrecoverable situation, unclean shutdown
@ -530,6 +533,8 @@ void SetupServerArgs(ArgsManager& argsman, bool can_listen_ipc)
strprintf("Maintain an index of compact filters by block (default: %s, values: %s).", DEFAULT_BLOCKFILTERINDEX, ListBlockFilterTypes()) +
" If <type> is not supplied or if <type> = 1, indexes for all known types are enabled.",
ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
argsman.AddArg("-indexworkers=<n>", strprintf("Number of worker threads spawned for the initial index synchronization (default: %d). These threads are shared across all indexes. "
"Improves indexing speed on fast storage but may slow indexing on HDDs due to additional disk seeks.", INDEX_WORKERS_COUNT), ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
argsman.AddArg("-addnode=<ip>", strprintf("Add a node to connect to and attempt to keep the connection open (see the addnode RPC help for more info). This option can be specified multiple times to add multiple nodes; connections are limited to %u at a time and are counted separately from the -maxconnections limit.", MAX_ADDNODE_CONNECTIONS), ArgsManager::ALLOW_ANY | ArgsManager::NETWORK_ONLY, OptionsCategory::CONNECTION);
argsman.AddArg("-asmap=<file>", strprintf("Specify asn mapping used for bucketing of the peers (default: %s). Relative paths will be prefixed by the net-specific datadir location.", DEFAULT_ASMAP_FILENAME), ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
@ -2214,6 +2219,8 @@ bool AppInitMain(NodeContext& node, interfaces::BlockAndHeaderTipInfo* tip_info)
bool StartIndexBackgroundSync(NodeContext& node)
{
if (node.indexes.empty()) return true;
// Find the oldest block among all indexes.
// This block is used to verify that we have the required blocks' data stored on disk,
// starting from that point up to the current tip.
@ -2252,7 +2259,19 @@ bool StartIndexBackgroundSync(NodeContext& node)
}
}
if (node.args->IsArgSet("-indexworkers")) {
int index_workers = node.args->GetIntArg("-indexworkers", INDEX_WORKERS_COUNT);
if (index_workers < 0 || index_workers > MAX_INDEX_WORKERS_COUNT) return InitError(Untranslated(strprintf("Invalid -indexworkers arg. Must be a number between 0 and %d", MAX_INDEX_WORKERS_COUNT)));
node.m_index_threads = std::make_unique<ThreadPool>("indexes");
node.m_index_threads->Start(index_workers);
}
// Start threads
for (auto index : node.indexes) if (!index->StartBackgroundSync()) return false;
for (auto index : node.indexes) {
// Provide thread pool to indexes
if (node.m_index_threads && index->AllowParallelSync()) index->SetThreadPool(*node.m_index_threads);
if (!index->StartBackgroundSync()) return false;
}
return true;
}

View File

@ -5,6 +5,8 @@
#ifndef BITCOIN_NODE_CONTEXT_H
#define BITCOIN_NODE_CONTEXT_H
#include <util/threadpool.h>
#include <atomic>
#include <cstdlib>
#include <functional>
@ -90,6 +92,7 @@ struct NodeContext {
//! Manages all the node warnings
std::unique_ptr<node::Warnings> warnings;
std::thread background_init_thread;
std::unique_ptr<ThreadPool> m_index_threads;
//! Declare default constructor and destructor that are not inline, so code
//! instantiating the NodeContext struct doesn't need to #include class

View File

@ -106,6 +106,7 @@ add_executable(test_bitcoin
system_ram_tests.cpp
system_tests.cpp
testnet4_miner_tests.cpp
threadpool_tests.cpp
timeoffsets_tests.cpp
torcontrol_tests.cpp
transaction_tests.cpp

View File

@ -13,6 +13,7 @@
#include <pow.h>
#include <test/util/blockfilter.h>
#include <test/util/setup_common.h>
#include <util/threadpool.h>
#include <validation.h>
#include <boost/test/unit_test.hpp>
@ -269,6 +270,50 @@ BOOST_FIXTURE_TEST_CASE(blockfilter_index_initial_sync, BuildChainTestingSetup)
filter_index.Stop();
}
BOOST_FIXTURE_TEST_CASE(blockfilter_index_parallel_initial_sync, BuildChainTestingSetup)
{
int tip_height = 100; // pre-mined blocks
const uint16_t MINE_BLOCKS = 650;
for (int round = 0; round < 2; round++) { // two rounds to test sync from genesis and from a higher block
// Generate blocks
mineBlocks(MINE_BLOCKS);
const CBlockIndex* tip = WITH_LOCK(::cs_main, return m_node.chainman->ActiveChain().Tip());
BOOST_REQUIRE(tip->nHeight == MINE_BLOCKS + tip_height);
tip_height = tip->nHeight;
// Init index
BlockFilterIndex filter_index(interfaces::MakeChain(m_node), BlockFilterType::BASIC, 1 << 20, /*f_memory=*/false);
BOOST_REQUIRE(filter_index.Init());
ThreadPool thread_pool("blockfilter");
thread_pool.Start(2);
filter_index.SetThreadPool(thread_pool);
filter_index.SetBlocksPerWorker(200);
// Start sync
BOOST_CHECK(!filter_index.BlockUntilSyncedToCurrentChain());
filter_index.Sync();
const auto& summary{filter_index.GetSummary()};
BOOST_CHECK(summary.synced);
BOOST_CHECK_EQUAL(summary.best_block_height, tip_height);
// Check that filter index has all blocks that were in the chain before it started.
{
uint256 last_header;
LOCK(cs_main);
const CBlockIndex* block_index;
for (block_index = m_node.chainman->ActiveChain().Genesis();
block_index != nullptr;
block_index = m_node.chainman->ActiveChain().Next(block_index)) {
CheckFilterLookups(filter_index, block_index, last_header, m_node.chainman->m_blockman);
}
}
filter_index.Interrupt();
filter_index.Stop();
}
}
BOOST_FIXTURE_TEST_CASE(blockfilter_index_init_destroy, BasicTestingSetup)
{
BlockFilterIndex* filter_index;
@ -306,81 +351,4 @@ BOOST_FIXTURE_TEST_CASE(blockfilter_index_init_destroy, BasicTestingSetup)
BOOST_CHECK(filter_index == nullptr);
}
class IndexReorgCrash : public BaseIndex
{
private:
std::unique_ptr<BaseIndex::DB> m_db;
std::shared_future<void> m_blocker;
int m_blocking_height;
public:
explicit IndexReorgCrash(std::unique_ptr<interfaces::Chain> chain, std::shared_future<void> blocker,
int blocking_height) : BaseIndex(std::move(chain), "test index"), m_blocker(blocker),
m_blocking_height(blocking_height)
{
const fs::path path = gArgs.GetDataDirNet() / "index";
fs::create_directories(path);
m_db = std::make_unique<BaseIndex::DB>(path / "db", /*n_cache_size=*/0, /*f_memory=*/true, /*f_wipe=*/false);
}
bool AllowPrune() const override { return false; }
BaseIndex::DB& GetDB() const override { return *m_db; }
bool CustomAppend(const interfaces::BlockInfo& block) override
{
// Simulate a delay so new blocks can get connected during the initial sync
if (block.height == m_blocking_height) m_blocker.wait();
// Move mock time forward so the best index gets updated only when we are not at the blocking height
if (block.height == m_blocking_height - 1 || block.height > m_blocking_height) {
SetMockTime(GetTime<std::chrono::seconds>() + 31s);
}
return true;
}
};
BOOST_FIXTURE_TEST_CASE(index_reorg_crash, BuildChainTestingSetup)
{
// Enable mock time
SetMockTime(GetTime<std::chrono::minutes>());
std::promise<void> promise;
std::shared_future<void> blocker(promise.get_future());
int blocking_height = WITH_LOCK(cs_main, return m_node.chainman->ActiveChain().Tip()->nHeight);
IndexReorgCrash index(interfaces::MakeChain(m_node), blocker, blocking_height);
BOOST_REQUIRE(index.Init());
BOOST_REQUIRE(index.StartBackgroundSync());
auto func_wait_until = [&](int height, std::chrono::milliseconds timeout) {
auto deadline = std::chrono::steady_clock::now() + timeout;
while (index.GetSummary().best_block_height < height) {
if (std::chrono::steady_clock::now() > deadline) {
BOOST_FAIL(strprintf("Timeout waiting for index height %d (current: %d)", height, index.GetSummary().best_block_height));
return;
}
std::this_thread::sleep_for(100ms);
}
};
// Wait until the index is one block before the fork point
func_wait_until(blocking_height - 1, /*timeout=*/5s);
// Create a fork to trigger the reorg
std::vector<std::shared_ptr<CBlock>> fork;
const CBlockIndex* prev_tip = WITH_LOCK(cs_main, return m_node.chainman->ActiveChain().Tip()->pprev);
BOOST_REQUIRE(BuildChain(prev_tip, GetScriptForDestination(PKHash(GenerateRandomKey().GetPubKey())), 3, fork));
for (const auto& block : fork) {
BOOST_REQUIRE(m_node.chainman->ProcessNewBlock(block, /*force_processing=*/true, /*min_pow_checked=*/true, nullptr));
}
// Unblock the index thread so it can process the reorg
promise.set_value();
// Wait for the index to reach the new tip
func_wait_until(blocking_height + 2, 5s);
index.Stop();
}
BOOST_AUTO_TEST_SUITE_END()

View File

@ -118,6 +118,7 @@ add_executable(fuzz
string.cpp
strprintf.cpp
system.cpp
threadpool.cpp
timeoffsets.cpp
torcontrol.cpp
transaction.cpp

View File

@ -0,0 +1,93 @@
// Copyright (c) 2025-present The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <common/system.h>
#include <util/threadpool.h>
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/fuzz/fuzz.h>
#include <iostream>
struct ExpectedException : std::runtime_error {
ExpectedException(const std::string &msg) : std::runtime_error(msg) {}
};
struct ThrowTask {
void operator()() const { throw ExpectedException("fail"); }
};
struct CounterTask {
std::atomic_uint32_t& m_counter;
explicit CounterTask(std::atomic_uint32_t& counter) : m_counter{counter} {}
void operator()() const { m_counter.fetch_add(1); }
};
// Increases 'fail_counter' if the expected exception is thrown
static void get_future(std::future<void>& future, uint32_t& fail_counter) {
try {
future.get();
} catch (const ExpectedException&) {
fail_counter++;
} catch (...) {
assert(false);
}
}
FUZZ_TARGET(threadpool)
{
FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.size());
const uint32_t num_tasks = fuzzed_data_provider.ConsumeIntegralInRange<uint32_t>(0, 1024);
const uint32_t num_workers = fuzzed_data_provider.ConsumeIntegralInRange<uint32_t>(1, 4);
if (GetNumCores() < (int) num_workers) {
std::cout << "WARNING: Running more threads than available cores" << std::endl;
}
ThreadPool pool{"fuzz"};
pool.Start(num_workers);
assert(pool.WorkersCount() == num_workers);
assert(pool.WorkQueueSize() == 0);
// Counters
std::atomic_uint32_t task_counter{0};
uint32_t fail_counter{0};
uint32_t expected_task_counter{0};
uint32_t expected_fail_tasks{0};
std::queue<std::future<void>> futures;
for (uint32_t i = 0; i < num_tasks; ++i) {
bool will_throw = fuzzed_data_provider.ConsumeBool();
bool wait_immediately = fuzzed_data_provider.ConsumeBool();
std::future<void> fut;
if (will_throw) {
expected_fail_tasks++;
fut = pool.Submit(ThrowTask{});
} else {
expected_task_counter++;
fut = pool.Submit(CounterTask{task_counter});
}
// If caller wants to wait immediately, consume the future here (safe).
if (wait_immediately) {
// This waits for this task to complete immediately; prior queued tasks may also complete
// as they were queued earlier.
get_future(fut, fail_counter);
} else {
// Store task for a posterior check
futures.emplace(std::move(fut));
}
}
// Drain remaining futures
while (!futures.empty()) {
auto fut = std::move(futures.front());
futures.pop();
get_future(fut, fail_counter);
}
assert(pool.WorkQueueSize() == 0);
assert(task_counter.load() == expected_task_counter);
assert(fail_counter == expected_fail_tasks);
pool.Stop();
}

View File

@ -0,0 +1,278 @@
// Copyright (c) 2024-present The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <util/string.h>
#include <util/threadpool.h>
#include <boost/test/unit_test.hpp>
BOOST_AUTO_TEST_SUITE(threadpool_tests)
constexpr auto TIMEOUT_SECS = std::chrono::seconds(120);
template <typename T>
void WaitFor(std::vector<std::future<T>>& futures, const std::string& context)
{
for (size_t i = 0; i < futures.size(); ++i) {
if (futures[i].wait_for(TIMEOUT_SECS) != std::future_status::ready) {
throw std::runtime_error("Timeout waiting for: " + context + ", task index " + util::ToString(i));
}
}
}
BOOST_AUTO_TEST_CASE(threadpool_basic)
{
// Test Cases
// 1) Submit tasks and verify completion.
// 2) Maintain all threads busy except one.
// 3) Wait for work to finish.
// 4) Wait for result object.
// 5) The task throws an exception, catch must be done in the consumer side.
// 6) Busy workers, help them by processing tasks from outside.
const int NUM_WORKERS_DEFAULT = 3;
const std::string POOL_NAME = "test";
// Test case 0, submit task to a non-started pool
{
ThreadPool threadPool(POOL_NAME);
bool err = false;
try {
threadPool.Submit([]() { return false; });
} catch (const std::runtime_error&) { err = true; }
BOOST_CHECK(err);
}
// Test case 1, submit tasks and verify completion.
{
int num_tasks = 50;
ThreadPool threadPool(POOL_NAME);
threadPool.Start(NUM_WORKERS_DEFAULT);
std::atomic<int> counter = 0;
// Store futures to ensure completion before checking counter.
std::vector<std::future<void>> futures;
futures.reserve(num_tasks);
for (int i = 1; i <= num_tasks; i++) {
futures.emplace_back(threadPool.Submit([&counter, i]() {
counter.fetch_add(i);
}));
}
// Wait for all tasks to finish
WaitFor(futures, /*context=*/"test1 task");
int expected_value = (num_tasks * (num_tasks + 1)) / 2; // Gauss sum.
BOOST_CHECK_EQUAL(counter.load(), expected_value);
BOOST_CHECK_EQUAL(threadPool.WorkQueueSize(), 0);
}
// Test case 2, maintain all threads busy except one.
{
ThreadPool threadPool(POOL_NAME);
threadPool.Start(NUM_WORKERS_DEFAULT);
// Single blocking future for all threads
std::promise<void> blocker;
std::shared_future<void> blocker_future(blocker.get_future());
// Use per-thread ready promises to ensure all blocked threads have started
std::vector<std::promise<void>> ready_promises(NUM_WORKERS_DEFAULT - 1);
std::vector<std::future<void>> ready_futures;
ready_futures.reserve(NUM_WORKERS_DEFAULT - 1);
for (auto& p : ready_promises) ready_futures.emplace_back(p.get_future());
// Submit blocking task to all threads except one
std::vector<std::future<void>> blocking_tasks;
blocking_tasks.reserve(NUM_WORKERS_DEFAULT - 1);
for (int i = 0; i < NUM_WORKERS_DEFAULT - 1; i++) {
std::promise<void>& ready = ready_promises[i];
blocking_tasks.emplace_back(threadPool.Submit([&ready, blocker_future]() {
ready.set_value();
blocker_future.wait();
}));
}
// Wait until all blocked threads are actually blocked
WaitFor(ready_futures, /*context=*/"test2 blocking tasks enabled");
// Now execute tasks on the single available worker
// and check that all the tasks are executed.
int num_tasks = 15;
std::atomic<int> counter = 0;
// Store futures to wait on
std::vector<std::future<void>> futures;
futures.reserve(num_tasks);
for (int i = 0; i < num_tasks; i++) {
futures.emplace_back(threadPool.Submit([&counter]() {
counter.fetch_add(1);
}));
}
WaitFor(futures, /*context=*/"test2 tasks");
BOOST_CHECK_EQUAL(counter.load(), num_tasks);
blocker.set_value();
WaitFor(blocking_tasks, /*context=*/"test2 blocking tasks disabled");
threadPool.Stop();
BOOST_CHECK_EQUAL(threadPool.WorkersCount(), 0);
}
// Test case 3, wait for work to finish.
{
ThreadPool threadPool(POOL_NAME);
threadPool.Start(NUM_WORKERS_DEFAULT);
std::atomic<bool> flag = false;
std::future<void> future = threadPool.Submit([&flag]() {
std::this_thread::sleep_for(std::chrono::milliseconds{200});
flag.store(true);
});
future.wait();
BOOST_CHECK(flag.load());
}
// Test case 4, obtain result object.
{
ThreadPool threadPool(POOL_NAME);
threadPool.Start(NUM_WORKERS_DEFAULT);
std::future<bool> future_bool = threadPool.Submit([]() {
return true;
});
BOOST_CHECK(future_bool.get());
std::future<std::string> future_str = threadPool.Submit([]() {
return std::string("true");
});
std::string result = future_str.get();
BOOST_CHECK_EQUAL(result, "true");
}
// Test case 5, throw exception and catch it on the consumer side.
{
ThreadPool threadPool(POOL_NAME);
threadPool.Start(NUM_WORKERS_DEFAULT);
int ROUNDS = 5;
std::string err_msg{"something wrong happened"};
std::vector<std::future<void>> futures;
futures.reserve(ROUNDS);
for (int i = 0; i < ROUNDS; i++) {
futures.emplace_back(threadPool.Submit([err_msg, i]() {
throw std::runtime_error(err_msg + util::ToString(i));
}));
}
for (int i = 0; i < ROUNDS; i++) {
try {
futures.at(i).get();
BOOST_FAIL("Expected exception not thrown");
} catch (const std::runtime_error& e) {
BOOST_CHECK_EQUAL(e.what(), err_msg + util::ToString(i));
}
}
}
// Test case 6, all workers are busy, help them by processing tasks from outside.
{
ThreadPool threadPool(POOL_NAME);
threadPool.Start(NUM_WORKERS_DEFAULT);
std::promise<void> blocker;
std::shared_future<void> blocker_future(blocker.get_future());
// Submit blocking task
for (int i = 0; i < NUM_WORKERS_DEFAULT; i++) {
threadPool.Submit([blocker_future]() {
blocker_future.wait();
});
}
// Now submit tasks and check that none of them are executed.
int num_tasks = 20;
std::atomic<int> counter = 0;
for (int i = 0; i < num_tasks; i++) {
threadPool.Submit([&counter]() {
counter.fetch_add(1);
});
}
std::this_thread::sleep_for(std::chrono::milliseconds{100});
BOOST_CHECK_EQUAL(threadPool.WorkQueueSize(), 20);
// Now process manually
for (int i = 0; i < num_tasks; i++) {
threadPool.ProcessTask();
}
BOOST_CHECK_EQUAL(counter.load(), num_tasks);
blocker.set_value();
threadPool.Stop();
}
// Test case 7, recursive submission of tasks.
{
ThreadPool threadPool(POOL_NAME);
threadPool.Start(NUM_WORKERS_DEFAULT);
std::promise<void> signal;
threadPool.Submit([&]() {
threadPool.Submit([&]() {
signal.set_value();
});
});
signal.get_future().wait();
threadPool.Stop();
}
// Test case 8, submit a task when all threads are busy and then stop the pool.
{
ThreadPool threadPool(POOL_NAME);
threadPool.Start(NUM_WORKERS_DEFAULT);
std::promise<void> blocker;
std::shared_future<void> blocker_future(blocker.get_future());
// Per-thread ready promises to ensure all workers are actually blocked
std::vector<std::promise<void>> ready_promises(NUM_WORKERS_DEFAULT);
std::vector<std::future<void>> ready_futures;
ready_futures.reserve(NUM_WORKERS_DEFAULT);
for (auto& p : ready_promises) ready_futures.emplace_back(p.get_future());
// Fill all workers with blocking tasks
for (int i = 0; i < NUM_WORKERS_DEFAULT; i++) {
std::promise<void>& ready = ready_promises[i];
threadPool.Submit([blocker_future, &ready]() {
ready.set_value();
blocker_future.wait();
});
}
// Wait until all threads are actually blocked
WaitFor(ready_futures, /*context=*/"test8 blocking tasks enabled");
// Submit an extra task that should execute once a worker is free
std::future<bool> future = threadPool.Submit([]() { return true; });
// At this point, all workers are blocked, and the extra task is queued
BOOST_CHECK_EQUAL(threadPool.WorkQueueSize(), 1);
// Wait a short moment before unblocking the threads to mimic a concurrent shutdown
std::thread thread_unblocker([&blocker]() {
std::this_thread::sleep_for(std::chrono::milliseconds{300});
blocker.set_value();
});
// Stop the pool while the workers are still blocked
threadPool.Stop();
// Expect the submitted task to complete
BOOST_CHECK(future.get());
thread_unblocker.join();
// Pool should be stopped and no workers remaining
BOOST_CHECK_EQUAL(threadPool.WorkersCount(), 0);
}
}
BOOST_AUTO_TEST_SUITE_END()

View File

@ -7,6 +7,7 @@
#include <index/txindex.h>
#include <interfaces/chain.h>
#include <test/util/setup_common.h>
#include <util/threadpool.h>
#include <validation.h>
#include <boost/test/unit_test.hpp>
@ -73,4 +74,45 @@ BOOST_FIXTURE_TEST_CASE(txindex_initial_sync, TestChain100Setup)
txindex.Stop();
}
BOOST_FIXTURE_TEST_CASE(txindex_parallel_initial_sync, TestChain100Setup)
{
int tip_height = 100; // pre-mined blocks
const uint16_t MINE_BLOCKS = 650;
for (int round = 0; round < 2; round++) { // two rounds to test sync from genesis and from a higher block
// Generate blocks
mineBlocks(MINE_BLOCKS);
const CBlockIndex* tip = WITH_LOCK(::cs_main, return m_node.chainman->ActiveChain().Tip());
BOOST_REQUIRE(tip->nHeight == MINE_BLOCKS + tip_height);
tip_height = tip->nHeight;
// Init and start index
TxIndex txindex(interfaces::MakeChain(m_node), 1 << 20, /*f_memory=*/false);
BOOST_REQUIRE(txindex.Init());
ThreadPool thread_pool("txindex");
thread_pool.Start(2);
txindex.SetThreadPool(thread_pool);
txindex.SetBlocksPerWorker(200);
BOOST_CHECK(!txindex.BlockUntilSyncedToCurrentChain());
txindex.Sync();
const auto& summary{txindex.GetSummary()};
BOOST_CHECK(summary.synced);
BOOST_CHECK_EQUAL(summary.best_block_height, tip_height);
// Check that txindex has all txs that were in the chain before it started.
CTransactionRef tx_disk;
uint256 block_hash;
for (const auto& txn : m_coinbase_txns) {
if (!txindex.FindTx(txn->GetHash(), block_hash, tx_disk)) {
BOOST_ERROR("FindTx failed");
} else if (tx_disk->GetHash() != txn->GetHash()) {
BOOST_ERROR("Read incorrect tx");
}
}
txindex.Interrupt();
txindex.Stop();
}
}
BOOST_AUTO_TEST_SUITE_END()

192
src/util/threadpool.h Normal file
View File

@ -0,0 +1,192 @@
// Copyright (c) 2024-present The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or https://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_UTIL_THREADPOOL_H
#define BITCOIN_UTIL_THREADPOOL_H
#include <sync.h>
#include <util/string.h>
#include <util/thread.h>
#include <util/threadinterrupt.h>
#include <algorithm>
#include <atomic>
#include <condition_variable>
#include <cstddef>
#include <functional>
#include <future>
#include <memory>
#include <stdexcept>
#include <utility>
#include <queue>
#include <thread>
#include <vector>
/**
* @brief Fixed-size thread pool for running arbitrary tasks concurrently.
*
* The thread pool maintains a set of worker threads that consume and execute
* tasks submitted through Submit(). Once started, tasks can be queued and
* processed asynchronously until Stop() is called.
*
* ### Thread-safety and lifecycle
* - `Start()` and `Stop()` must be called from a controller (non-worker) thread.
* Calling `Stop()` from a worker thread will deadlock, as it waits for all
* workers to join, including the current one.
*
* - `Submit()` can be called from any thread, including workers. It safely
* enqueues new work for execution as long as the pool has active workers.
*
* - `Stop()` prevents further task submission and wakes all worker threads.
* Workers finish processing all remaining queued tasks before exiting,
* guaranteeing that no caller waits forever on a pending future.
*/
class ThreadPool {
private:
std::string m_name;
Mutex m_mutex;
std::queue<std::function<void()>> m_work_queue GUARDED_BY(m_mutex);
std::condition_variable m_cv;
// Note: m_interrupt must be modified while holding the same mutex used by threads waiting on the condition variable.
// This ensures threads blocked on m_cv reliably observe the change and proceed correctly without missing signals.
// Ref: https://en.cppreference.com/w/cpp/thread/condition_variable
bool m_interrupt GUARDED_BY(m_mutex){false};
std::vector<std::thread> m_workers GUARDED_BY(m_mutex);
void WorkerThread() EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
{
WAIT_LOCK(m_mutex, wait_lock);
for (;;) {
std::function<void()> task;
{
// Wait only if needed; avoid sleeping when a new task was submitted while we were processing another one.
if (!m_interrupt && m_work_queue.empty()) {
// Block until the pool is interrupted or a task is available.
m_cv.wait(wait_lock,[&]() EXCLUSIVE_LOCKS_REQUIRED(m_mutex) { return m_interrupt || !m_work_queue.empty(); });
}
// If stopped and no work left, exit worker
if (m_interrupt && m_work_queue.empty()) {
return;
}
task = std::move(m_work_queue.front());
m_work_queue.pop();
}
{
// Execute the task without the lock
REVERSE_LOCK(wait_lock, m_mutex);
task();
}
}
}
public:
explicit ThreadPool(const std::string& name) : m_name(name) {}
~ThreadPool()
{
Stop(); // In case it hasn't been stopped.
}
/**
* @brief Start worker threads.
*
* Creates and launches `num_workers` threads that begin executing tasks
* from the queue. If the pool is already started, throws.
*
* Must be called from a controller (non-worker) thread.
*/
void Start(int num_workers) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
{
assert(num_workers > 0);
LOCK(m_mutex);
if (!m_workers.empty()) throw std::runtime_error("Thread pool already started");
m_interrupt = false; // Reset
// Create workers
for (int i = 0; i < num_workers; i++) {
m_workers.emplace_back(&util::TraceThread, m_name + "_pool_" + util::ToString(i), [this] { WorkerThread(); });
}
}
/**
* @brief Stop all worker threads and wait for them to exit.
*
* Sets the interrupt flag, wakes all waiting workers, and joins them.
* Any remaining tasks in the queue will be processed before returning.
*
* Must be called from a controller (non-worker) thread.
*/
void Stop() EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
{
// Notify workers and join them.
std::vector<std::thread> threads_to_join;
{
LOCK(m_mutex);
m_interrupt = true;
threads_to_join.swap(m_workers);
}
m_cv.notify_all();
for (auto& worker : threads_to_join) worker.join();
// m_interrupt is left true until next Start()
}
/**
* @brief Submit a new task for asynchronous execution.
*
* Enqueues a callable to be executed by one of the worker threads.
* Returns a `std::future` that can be used to retrieve the tasks result.
*/
template<class T> EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
auto Submit(T task) -> std::future<decltype(task())>
{
using TaskType = std::packaged_task<decltype(task())()>;
auto ptr_task = std::make_shared<TaskType>(std::move(task));
std::future<decltype(task())> future = ptr_task->get_future();
{
LOCK(m_mutex);
if (m_workers.empty() || m_interrupt) {
throw std::runtime_error("No active workers; cannot accept new tasks");
}
m_work_queue.emplace([ptr_task]() {
(*ptr_task)();
});
}
m_cv.notify_one();
return future;
}
/**
* @brief Execute a single queued task synchronously.
* Removes one task from the queue and executes it on the calling thread.
*/
void ProcessTask() EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
{
std::function<void()> task;
{
LOCK(m_mutex);
if (m_work_queue.empty()) return;
// Pop the task
task = std::move(m_work_queue.front());
m_work_queue.pop();
}
task();
}
size_t WorkQueueSize() EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
{
return WITH_LOCK(m_mutex, return m_work_queue.size());
}
size_t WorkersCount() EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
{
return WITH_LOCK(m_mutex, return m_workers.size());
}
};
#endif // BITCOIN_UTIL_THREADPOOL_H