util: introduce general purpose thread pool

This commit is contained in:
furszy 2023-02-16 12:20:33 -03:00
parent 7cc9a08706
commit 701bc9ee31
No known key found for this signature in database
GPG Key ID: 5DD23CCC686AA623
3 changed files with 460 additions and 0 deletions

View File

@ -103,6 +103,7 @@ add_executable(test_bitcoin
sync_tests.cpp sync_tests.cpp
system_tests.cpp system_tests.cpp
testnet4_miner_tests.cpp testnet4_miner_tests.cpp
threadpool_tests.cpp
timeoffsets_tests.cpp timeoffsets_tests.cpp
torcontrol_tests.cpp torcontrol_tests.cpp
transaction_tests.cpp transaction_tests.cpp

View File

@ -0,0 +1,268 @@
// Copyright (c) 2024-present The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <util/string.h>
#include <util/threadpool.h>
#include <boost/test/unit_test.hpp>
BOOST_AUTO_TEST_SUITE(threadpool_tests)
constexpr auto TIMEOUT_SECS = std::chrono::seconds(120);
template <typename T>
void WaitFor(std::vector<std::future<T>>& futures, const std::string& context)
{
for (size_t i = 0; i < futures.size(); ++i) {
if (futures[i].wait_for(TIMEOUT_SECS) != std::future_status::ready) {
throw std::runtime_error("Timeout waiting for: " + context + ", task index " + util::ToString(i));
}
}
}
BOOST_AUTO_TEST_CASE(threadpool_basic)
{
// Test Cases
// 1) Submit tasks and verify completion.
// 2) Maintain all threads busy except one.
// 3) Wait for work to finish.
// 4) Wait for result object.
// 5) The task throws an exception, catch must be done in the consumer side.
// 6) Busy workers, help them by processing tasks from outside.
const int NUM_WORKERS_DEFAULT = 3;
const std::string POOL_NAME = "test";
// Test case 1, submit tasks and verify completion.
{
int num_tasks = 50;
ThreadPool threadPool(POOL_NAME);
threadPool.Start(NUM_WORKERS_DEFAULT);
std::atomic<int> counter = 0;
// Store futures to ensure completion before checking counter.
std::vector<std::future<void>> futures;
futures.reserve(num_tasks);
for (int i = 1; i <= num_tasks; i++) {
futures.emplace_back(threadPool.Submit([&counter, i]() {
counter.fetch_add(i);
}));
}
// Wait for all tasks to finish
WaitFor(futures, /*context=*/"test1 task");
int expected_value = (num_tasks * (num_tasks + 1)) / 2; // Gauss sum.
BOOST_CHECK_EQUAL(counter.load(), expected_value);
BOOST_CHECK_EQUAL(threadPool.WorkQueueSize(), 0);
}
// Test case 2, maintain all threads busy except one.
{
ThreadPool threadPool(POOL_NAME);
threadPool.Start(NUM_WORKERS_DEFAULT);
// Single blocking future for all threads
std::promise<void> blocker;
std::shared_future<void> blocker_future(blocker.get_future());
// Use per-thread ready promises to ensure all blocked threads have started
std::vector<std::promise<void>> ready_promises(NUM_WORKERS_DEFAULT - 1);
std::vector<std::future<void>> ready_futures;
ready_futures.reserve(NUM_WORKERS_DEFAULT - 1);
for (auto& p : ready_promises) ready_futures.emplace_back(p.get_future());
// Submit blocking task to all threads except one
std::vector<std::future<void>> blocking_tasks;
blocking_tasks.reserve(NUM_WORKERS_DEFAULT - 1);
for (int i = 0; i < NUM_WORKERS_DEFAULT - 1; i++) {
std::promise<void>& ready = ready_promises[i];
blocking_tasks.emplace_back(threadPool.Submit([&ready, blocker_future]() {
ready.set_value();
blocker_future.wait();
}));
}
// Wait until all blocked threads are actually blocked
WaitFor(ready_futures, /*context=*/"test2 blocking tasks enabled");
// Now execute tasks on the single available worker
// and check that all the tasks are executed.
int num_tasks = 15;
std::atomic<int> counter = 0;
// Store futures to wait on
std::vector<std::future<void>> futures;
futures.reserve(num_tasks);
for (int i = 0; i < num_tasks; i++) {
futures.emplace_back(threadPool.Submit([&counter]() {
counter.fetch_add(1);
}));
}
WaitFor(futures, /*context=*/"test2 tasks");
BOOST_CHECK_EQUAL(counter.load(), num_tasks);
blocker.set_value();
WaitFor(blocking_tasks, /*context=*/"test2 blocking tasks disabled");
threadPool.Stop();
BOOST_CHECK_EQUAL(threadPool.WorkersCount(), 0);
}
// Test case 3, wait for work to finish.
{
ThreadPool threadPool(POOL_NAME);
threadPool.Start(NUM_WORKERS_DEFAULT);
std::atomic<bool> flag = false;
std::future<void> future = threadPool.Submit([&flag]() {
std::this_thread::sleep_for(std::chrono::milliseconds{200});
flag.store(true);
});
future.wait();
BOOST_CHECK(flag.load());
}
// Test case 4, obtain result object.
{
ThreadPool threadPool(POOL_NAME);
threadPool.Start(NUM_WORKERS_DEFAULT);
std::future<bool> future_bool = threadPool.Submit([]() {
return true;
});
BOOST_CHECK(future_bool.get());
std::future<std::string> future_str = threadPool.Submit([]() {
return std::string("true");
});
std::string result = future_str.get();
BOOST_CHECK_EQUAL(result, "true");
}
// Test case 5, throw exception and catch it on the consumer side.
{
ThreadPool threadPool(POOL_NAME);
threadPool.Start(NUM_WORKERS_DEFAULT);
int ROUNDS = 5;
std::string err_msg{"something wrong happened"};
std::vector<std::future<void>> futures;
futures.reserve(ROUNDS);
for (int i = 0; i < ROUNDS; i++) {
futures.emplace_back(threadPool.Submit([err_msg, i]() {
throw std::runtime_error(err_msg + util::ToString(i));
}));
}
for (int i = 0; i < ROUNDS; i++) {
try {
futures.at(i).get();
BOOST_FAIL("Expected exception not thrown");
} catch (const std::runtime_error& e) {
BOOST_CHECK_EQUAL(e.what(), err_msg + util::ToString(i));
}
}
}
// Test case 6, all workers are busy, help them by processing tasks from outside.
{
ThreadPool threadPool(POOL_NAME);
threadPool.Start(NUM_WORKERS_DEFAULT);
std::promise<void> blocker;
std::shared_future<void> blocker_future(blocker.get_future());
// Submit blocking task
for (int i = 0; i < NUM_WORKERS_DEFAULT; i++) {
threadPool.Submit([blocker_future]() {
blocker_future.wait();
});
}
// Now submit tasks and check that none of them are executed.
int num_tasks = 20;
std::atomic<int> counter = 0;
for (int i = 0; i < num_tasks; i++) {
threadPool.Submit([&counter]() {
counter.fetch_add(1);
});
}
std::this_thread::sleep_for(std::chrono::milliseconds{100});
BOOST_CHECK_EQUAL(threadPool.WorkQueueSize(), 20);
// Now process manually
for (int i = 0; i < num_tasks; i++) {
threadPool.ProcessTask();
}
BOOST_CHECK_EQUAL(counter.load(), num_tasks);
blocker.set_value();
threadPool.Stop();
}
// Test case 7, recursive submission of tasks.
{
ThreadPool threadPool(POOL_NAME);
threadPool.Start(NUM_WORKERS_DEFAULT);
std::promise<void> signal;
threadPool.Submit([&]() {
threadPool.Submit([&]() {
signal.set_value();
});
});
signal.get_future().wait();
threadPool.Stop();
}
// Test case 8, submit a task when all threads are busy and then stop the pool.
{
ThreadPool threadPool(POOL_NAME);
threadPool.Start(NUM_WORKERS_DEFAULT);
std::promise<void> blocker;
std::shared_future<void> blocker_future(blocker.get_future());
// Per-thread ready promises to ensure all workers are actually blocked
std::vector<std::promise<void>> ready_promises(NUM_WORKERS_DEFAULT);
std::vector<std::future<void>> ready_futures;
ready_futures.reserve(NUM_WORKERS_DEFAULT);
for (auto& p : ready_promises) ready_futures.emplace_back(p.get_future());
// Fill all workers with blocking tasks
for (int i = 0; i < NUM_WORKERS_DEFAULT; i++) {
std::promise<void>& ready = ready_promises[i];
threadPool.Submit([blocker_future, &ready]() {
ready.set_value();
blocker_future.wait();
});
}
// Wait until all threads are actually blocked
WaitFor(ready_futures, /*context=*/"test8 blocking tasks enabled");
// Submit an extra task that should execute once a worker is free
std::future<bool> future = threadPool.Submit([]() { return true; });
// At this point, all workers are blocked, and the extra task is queued
BOOST_CHECK_EQUAL(threadPool.WorkQueueSize(), 1);
// Wait a short moment before unblocking the threads to mimic a concurrent shutdown
std::thread thread_unblocker([&blocker]() {
std::this_thread::sleep_for(std::chrono::milliseconds{300});
blocker.set_value();
});
// Stop the pool while the workers are still blocked
threadPool.Stop();
// Expect the submitted task to complete
BOOST_CHECK(future.get());
thread_unblocker.join();
// Pool should be stopped and no workers remaining
BOOST_CHECK_EQUAL(threadPool.WorkersCount(), 0);
}
}
BOOST_AUTO_TEST_SUITE_END()

191
src/util/threadpool.h Normal file
View File

@ -0,0 +1,191 @@
// Copyright (c) 2024-present The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or https://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_UTIL_THREADPOOL_H
#define BITCOIN_UTIL_THREADPOOL_H
#include <sync.h>
#include <util/string.h>
#include <util/thread.h>
#include <util/threadinterrupt.h>
#include <algorithm>
#include <atomic>
#include <condition_variable>
#include <cstddef>
#include <functional>
#include <future>
#include <memory>
#include <stdexcept>
#include <utility>
#include <queue>
#include <thread>
#include <vector>
/**
* @brief Fixed-size thread pool for running arbitrary tasks concurrently.
*
* The thread pool maintains a set of worker threads that consume and execute
* tasks submitted through Submit(). Once started, tasks can be queued and
* processed asynchronously until Stop() is called.
*
* ### Thread-safety and lifecycle
* - `Start()` and `Stop()` must be called from a controller (non-worker) thread.
* Calling `Stop()` from a worker thread will deadlock, as it waits for all
* workers to join, including the current one.
*
* - `Submit()` can be called from any thread, including workers. It safely
* enqueues new work for execution as long as the pool has active workers.
*
* - `Stop()` prevents further task submission and wakes all worker threads.
* Workers finish processing all remaining queued tasks before exiting,
* guaranteeing that no caller waits forever on a pending future.
*/
class ThreadPool {
private:
std::string m_name;
Mutex m_mutex;
std::queue<std::function<void()>> m_work_queue GUARDED_BY(m_mutex);
std::condition_variable m_cv;
// Note: m_interrupt must be modified while holding the same mutex used by threads waiting on the condition variable.
// This ensures threads blocked on m_cv reliably observe the change and proceed correctly without missing signals.
// Ref: https://en.cppreference.com/w/cpp/thread/condition_variable
bool m_interrupt GUARDED_BY(m_mutex){false};
std::vector<std::thread> m_workers GUARDED_BY(m_mutex);
void WorkerThread() EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
{
WAIT_LOCK(m_mutex, wait_lock);
for (;;) {
std::function<void()> task;
{
// Wait only if needed; avoid sleeping when a new task was submitted while we were processing another one.
if (!m_interrupt && m_work_queue.empty()) {
// Block until the pool is interrupted or a task is available.
m_cv.wait(wait_lock,[&]() EXCLUSIVE_LOCKS_REQUIRED(m_mutex) { return m_interrupt || !m_work_queue.empty(); });
}
// If stopped and no work left, exit worker
if (m_interrupt && m_work_queue.empty()) {
return;
}
task = std::move(m_work_queue.front());
m_work_queue.pop();
}
{
// Execute the task without the lock
REVERSE_LOCK(wait_lock, m_mutex);
task();
}
}
}
public:
explicit ThreadPool(const std::string& name) : m_name(name) {}
~ThreadPool()
{
Stop(); // In case it hasn't been stopped.
}
/**
* @brief Start worker threads.
*
* Creates and launches `num_workers` threads that begin executing tasks
* from the queue. If the pool is already started, throws.
*
* Must be called from a controller (non-worker) thread.
*/
void Start(int num_workers) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
{
LOCK(m_mutex);
if (!m_workers.empty()) throw std::runtime_error("Thread pool already started");
m_interrupt = false; // Reset
// Create workers
for (int i = 0; i < num_workers; i++) {
m_workers.emplace_back(&util::TraceThread, m_name + "_pool_" + util::ToString(i), [this] { WorkerThread(); });
}
}
/**
* @brief Stop all worker threads and wait for them to exit.
*
* Sets the interrupt flag, wakes all waiting workers, and joins them.
* Any remaining tasks in the queue will be processed before returning.
*
* Must be called from a controller (non-worker) thread.
*/
void Stop() EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
{
// Notify workers and join them.
std::vector<std::thread> threads_to_join;
{
LOCK(m_mutex);
m_interrupt = true;
threads_to_join.swap(m_workers);
}
m_cv.notify_all();
for (auto& worker : threads_to_join) worker.join();
// m_interrupt is left true until next Start()
}
/**
* @brief Submit a new task for asynchronous execution.
*
* Enqueues a callable to be executed by one of the worker threads.
* Returns a `std::future` that can be used to retrieve the tasks result.
*/
template<class T> EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
auto Submit(T task) -> std::future<decltype(task())>
{
using TaskType = std::packaged_task<decltype(task())()>;
auto ptr_task = std::make_shared<TaskType>(std::move(task));
std::future<decltype(task())> future = ptr_task->get_future();
{
LOCK(m_mutex);
if (m_workers.empty() || m_interrupt) {
throw std::runtime_error("No active workers; cannot accept new tasks");
}
m_work_queue.emplace([ptr_task]() {
(*ptr_task)();
});
}
m_cv.notify_one();
return future;
}
/**
* @brief Execute a single queued task synchronously.
* Removes one task from the queue and executes it on the calling thread.
*/
void ProcessTask() EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
{
std::function<void()> task;
{
LOCK(m_mutex);
if (m_work_queue.empty()) return;
// Pop the task
task = std::move(m_work_queue.front());
m_work_queue.pop();
}
task();
}
size_t WorkQueueSize() EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
{
return WITH_LOCK(m_mutex, return m_work_queue.size());
}
size_t WorkersCount() EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
{
return WITH_LOCK(m_mutex, return m_workers.size());
}
};
#endif // BITCOIN_UTIL_THREADPOOL_H