mirror of https://github.com/bitcoin/bitcoin.git
465 lines
15 KiB
C++
465 lines
15 KiB
C++
// Copyright (c) 2009-2022 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include <test/fuzz/util/net.h>
|
|
|
|
#include <compat/compat.h>
|
|
#include <netaddress.h>
|
|
#include <node/protocol_version.h>
|
|
#include <protocol.h>
|
|
#include <test/fuzz/FuzzedDataProvider.h>
|
|
#include <test/fuzz/util.h>
|
|
#include <test/util/net.h>
|
|
#include <util/sock.h>
|
|
#include <util/time.h>
|
|
|
|
#include <array>
|
|
#include <cassert>
|
|
#include <cerrno>
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <thread>
|
|
#include <vector>
|
|
|
|
class CNode;
|
|
|
|
CNetAddr ConsumeNetAddr(FuzzedDataProvider& fuzzed_data_provider, FastRandomContext* rand) noexcept
|
|
{
|
|
struct NetAux {
|
|
Network net;
|
|
CNetAddr::BIP155Network bip155;
|
|
size_t len;
|
|
};
|
|
|
|
static constexpr std::array<NetAux, 6> nets{
|
|
NetAux{.net = Network::NET_IPV4, .bip155 = CNetAddr::BIP155Network::IPV4, .len = ADDR_IPV4_SIZE},
|
|
NetAux{.net = Network::NET_IPV6, .bip155 = CNetAddr::BIP155Network::IPV6, .len = ADDR_IPV6_SIZE},
|
|
NetAux{.net = Network::NET_ONION, .bip155 = CNetAddr::BIP155Network::TORV3, .len = ADDR_TORV3_SIZE},
|
|
NetAux{.net = Network::NET_I2P, .bip155 = CNetAddr::BIP155Network::I2P, .len = ADDR_I2P_SIZE},
|
|
NetAux{.net = Network::NET_CJDNS, .bip155 = CNetAddr::BIP155Network::CJDNS, .len = ADDR_CJDNS_SIZE},
|
|
NetAux{.net = Network::NET_INTERNAL, .bip155 = CNetAddr::BIP155Network{0}, .len = 0},
|
|
};
|
|
|
|
const size_t nets_index{rand == nullptr
|
|
? fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, nets.size() - 1)
|
|
: static_cast<size_t>(rand->randrange(nets.size()))};
|
|
|
|
const auto& aux = nets[nets_index];
|
|
|
|
CNetAddr addr;
|
|
|
|
if (aux.net == Network::NET_INTERNAL) {
|
|
if (rand == nullptr) {
|
|
addr.SetInternal(fuzzed_data_provider.ConsumeBytesAsString(32));
|
|
} else {
|
|
const auto v = rand->randbytes(32);
|
|
addr.SetInternal(std::string{v.begin(), v.end()});
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
DataStream s;
|
|
|
|
s << static_cast<uint8_t>(aux.bip155);
|
|
|
|
std::vector<uint8_t> addr_bytes;
|
|
if (rand == nullptr) {
|
|
addr_bytes = fuzzed_data_provider.ConsumeBytes<uint8_t>(aux.len);
|
|
addr_bytes.resize(aux.len);
|
|
} else {
|
|
addr_bytes = rand->randbytes(aux.len);
|
|
}
|
|
if (aux.net == NET_IPV6 && addr_bytes[0] == CJDNS_PREFIX) { // Avoid generating IPv6 addresses that look like CJDNS.
|
|
addr_bytes[0] = 0x55; // Just an arbitrary number, anything != CJDNS_PREFIX would do.
|
|
}
|
|
if (aux.net == NET_CJDNS) { // Avoid generating CJDNS addresses that don't start with CJDNS_PREFIX because those are !IsValid().
|
|
addr_bytes[0] = CJDNS_PREFIX;
|
|
}
|
|
s << addr_bytes;
|
|
|
|
s >> CAddress::V2_NETWORK(addr);
|
|
|
|
return addr;
|
|
}
|
|
|
|
CAddress ConsumeAddress(FuzzedDataProvider& fuzzed_data_provider) noexcept
|
|
{
|
|
return {ConsumeService(fuzzed_data_provider), ConsumeWeakEnum(fuzzed_data_provider, ALL_SERVICE_FLAGS), NodeSeconds{std::chrono::seconds{fuzzed_data_provider.ConsumeIntegral<uint32_t>()}}};
|
|
}
|
|
|
|
template <typename P>
|
|
P ConsumeDeserializationParams(FuzzedDataProvider& fuzzed_data_provider) noexcept
|
|
{
|
|
constexpr std::array ADDR_ENCODINGS{
|
|
CNetAddr::Encoding::V1,
|
|
CNetAddr::Encoding::V2,
|
|
};
|
|
constexpr std::array ADDR_FORMATS{
|
|
CAddress::Format::Disk,
|
|
CAddress::Format::Network,
|
|
};
|
|
if constexpr (std::is_same_v<P, CNetAddr::SerParams>) {
|
|
return P{PickValue(fuzzed_data_provider, ADDR_ENCODINGS)};
|
|
}
|
|
if constexpr (std::is_same_v<P, CAddress::SerParams>) {
|
|
return P{{PickValue(fuzzed_data_provider, ADDR_ENCODINGS)}, PickValue(fuzzed_data_provider, ADDR_FORMATS)};
|
|
}
|
|
}
|
|
template CNetAddr::SerParams ConsumeDeserializationParams(FuzzedDataProvider&) noexcept;
|
|
template CAddress::SerParams ConsumeDeserializationParams(FuzzedDataProvider&) noexcept;
|
|
|
|
FuzzedSock::FuzzedSock(FuzzedDataProvider& fuzzed_data_provider)
|
|
: Sock{fuzzed_data_provider.ConsumeIntegralInRange<SOCKET>(INVALID_SOCKET - 1, INVALID_SOCKET)},
|
|
m_fuzzed_data_provider{fuzzed_data_provider},
|
|
m_selectable{fuzzed_data_provider.ConsumeBool()},
|
|
m_time{MockableSteadyClock::INITIAL_MOCK_TIME}
|
|
{
|
|
ElapseTime(std::chrono::seconds(0)); // start mocking the steady clock.
|
|
}
|
|
|
|
FuzzedSock::~FuzzedSock()
|
|
{
|
|
// Sock::~Sock() will be called after FuzzedSock::~FuzzedSock() and it will call
|
|
// close(m_socket) if m_socket is not INVALID_SOCKET.
|
|
// Avoid closing an arbitrary file descriptor (m_socket is just a random very high number which
|
|
// theoretically may concide with a real opened file descriptor).
|
|
m_socket = INVALID_SOCKET;
|
|
}
|
|
|
|
void FuzzedSock::ElapseTime(std::chrono::milliseconds duration) const
|
|
{
|
|
m_time += duration;
|
|
MockableSteadyClock::SetMockTime(m_time);
|
|
}
|
|
|
|
FuzzedSock& FuzzedSock::operator=(Sock&& other)
|
|
{
|
|
assert(false && "Move of Sock into FuzzedSock not allowed.");
|
|
return *this;
|
|
}
|
|
|
|
ssize_t FuzzedSock::Send(const void* data, size_t len, int flags) const
|
|
{
|
|
constexpr std::array send_errnos{
|
|
EACCES,
|
|
EAGAIN,
|
|
EALREADY,
|
|
EBADF,
|
|
ECONNRESET,
|
|
EDESTADDRREQ,
|
|
EFAULT,
|
|
EINTR,
|
|
EINVAL,
|
|
EISCONN,
|
|
EMSGSIZE,
|
|
ENOBUFS,
|
|
ENOMEM,
|
|
ENOTCONN,
|
|
ENOTSOCK,
|
|
EOPNOTSUPP,
|
|
EPIPE,
|
|
EWOULDBLOCK,
|
|
};
|
|
if (m_fuzzed_data_provider.ConsumeBool()) {
|
|
return len;
|
|
}
|
|
const ssize_t r = m_fuzzed_data_provider.ConsumeIntegralInRange<ssize_t>(-1, len);
|
|
if (r == -1) {
|
|
SetFuzzedErrNo(m_fuzzed_data_provider, send_errnos);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
ssize_t FuzzedSock::Recv(void* buf, size_t len, int flags) const
|
|
{
|
|
// Have a permanent error at recv_errnos[0] because when the fuzzed data is exhausted
|
|
// SetFuzzedErrNo() will always return the first element and we want to avoid Recv()
|
|
// returning -1 and setting errno to EAGAIN repeatedly.
|
|
constexpr std::array recv_errnos{
|
|
ECONNREFUSED,
|
|
EAGAIN,
|
|
EBADF,
|
|
EFAULT,
|
|
EINTR,
|
|
EINVAL,
|
|
ENOMEM,
|
|
ENOTCONN,
|
|
ENOTSOCK,
|
|
EWOULDBLOCK,
|
|
};
|
|
assert(buf != nullptr || len == 0);
|
|
|
|
// Do the latency before any of the "return" statements.
|
|
if (m_fuzzed_data_provider.ConsumeBool() && std::getenv("FUZZED_SOCKET_FAKE_LATENCY") != nullptr) {
|
|
std::this_thread::sleep_for(std::chrono::milliseconds{2});
|
|
}
|
|
|
|
if (len == 0 || m_fuzzed_data_provider.ConsumeBool()) {
|
|
const ssize_t r = m_fuzzed_data_provider.ConsumeBool() ? 0 : -1;
|
|
if (r == -1) {
|
|
SetFuzzedErrNo(m_fuzzed_data_provider, recv_errnos);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
size_t copied_so_far{0};
|
|
|
|
if (!m_peek_data.empty()) {
|
|
// `MSG_PEEK` was used in the preceding `Recv()` call, copy the first bytes from `m_peek_data`.
|
|
const size_t copy_len{std::min(len, m_peek_data.size())};
|
|
std::memcpy(buf, m_peek_data.data(), copy_len);
|
|
copied_so_far += copy_len;
|
|
if ((flags & MSG_PEEK) == 0) {
|
|
m_peek_data.erase(m_peek_data.begin(), m_peek_data.begin() + copy_len);
|
|
}
|
|
}
|
|
|
|
if (copied_so_far == len) {
|
|
return copied_so_far;
|
|
}
|
|
|
|
auto new_data = ConsumeRandomLengthByteVector(m_fuzzed_data_provider, len - copied_so_far);
|
|
if (new_data.empty()) return copied_so_far;
|
|
|
|
std::memcpy(reinterpret_cast<uint8_t*>(buf) + copied_so_far, new_data.data(), new_data.size());
|
|
copied_so_far += new_data.size();
|
|
|
|
if ((flags & MSG_PEEK) != 0) {
|
|
m_peek_data.insert(m_peek_data.end(), new_data.begin(), new_data.end());
|
|
}
|
|
|
|
if (copied_so_far == len || m_fuzzed_data_provider.ConsumeBool()) {
|
|
return copied_so_far;
|
|
}
|
|
|
|
// Pad to len bytes.
|
|
std::memset(reinterpret_cast<uint8_t*>(buf) + copied_so_far, 0x0, len - copied_so_far);
|
|
|
|
return len;
|
|
}
|
|
|
|
int FuzzedSock::Connect(const sockaddr*, socklen_t) const
|
|
{
|
|
// Have a permanent error at connect_errnos[0] because when the fuzzed data is exhausted
|
|
// SetFuzzedErrNo() will always return the first element and we want to avoid Connect()
|
|
// returning -1 and setting errno to EAGAIN repeatedly.
|
|
constexpr std::array connect_errnos{
|
|
ECONNREFUSED,
|
|
EAGAIN,
|
|
ECONNRESET,
|
|
EHOSTUNREACH,
|
|
EINPROGRESS,
|
|
EINTR,
|
|
ENETUNREACH,
|
|
ETIMEDOUT,
|
|
};
|
|
if (m_fuzzed_data_provider.ConsumeBool()) {
|
|
SetFuzzedErrNo(m_fuzzed_data_provider, connect_errnos);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int FuzzedSock::Bind(const sockaddr*, socklen_t) const
|
|
{
|
|
// Have a permanent error at bind_errnos[0] because when the fuzzed data is exhausted
|
|
// SetFuzzedErrNo() will always set the global errno to bind_errnos[0]. We want to
|
|
// avoid this method returning -1 and setting errno to a temporary error (like EAGAIN)
|
|
// repeatedly because proper code should retry on temporary errors, leading to an
|
|
// infinite loop.
|
|
constexpr std::array bind_errnos{
|
|
EACCES,
|
|
EADDRINUSE,
|
|
EADDRNOTAVAIL,
|
|
EAGAIN,
|
|
};
|
|
if (m_fuzzed_data_provider.ConsumeBool()) {
|
|
SetFuzzedErrNo(m_fuzzed_data_provider, bind_errnos);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int FuzzedSock::Listen(int) const
|
|
{
|
|
// Have a permanent error at listen_errnos[0] because when the fuzzed data is exhausted
|
|
// SetFuzzedErrNo() will always set the global errno to listen_errnos[0]. We want to
|
|
// avoid this method returning -1 and setting errno to a temporary error (like EAGAIN)
|
|
// repeatedly because proper code should retry on temporary errors, leading to an
|
|
// infinite loop.
|
|
constexpr std::array listen_errnos{
|
|
EADDRINUSE,
|
|
EINVAL,
|
|
EOPNOTSUPP,
|
|
};
|
|
if (m_fuzzed_data_provider.ConsumeBool()) {
|
|
SetFuzzedErrNo(m_fuzzed_data_provider, listen_errnos);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
std::unique_ptr<Sock> FuzzedSock::Accept(sockaddr* addr, socklen_t* addr_len) const
|
|
{
|
|
constexpr std::array accept_errnos{
|
|
ECONNABORTED,
|
|
EINTR,
|
|
ENOMEM,
|
|
};
|
|
if (m_fuzzed_data_provider.ConsumeBool()) {
|
|
SetFuzzedErrNo(m_fuzzed_data_provider, accept_errnos);
|
|
return std::unique_ptr<FuzzedSock>();
|
|
}
|
|
if (addr != nullptr) {
|
|
// Set a fuzzed address in the output argument addr.
|
|
memset(addr, 0x00, *addr_len);
|
|
if (m_fuzzed_data_provider.ConsumeBool()) {
|
|
// IPv4
|
|
const socklen_t write_len = static_cast<socklen_t>(sizeof(sockaddr_in));
|
|
if (*addr_len >= write_len) {
|
|
*addr_len = write_len;
|
|
auto addr4 = reinterpret_cast<sockaddr_in*>(addr);
|
|
addr4->sin_family = AF_INET;
|
|
const auto sin_addr_bytes = m_fuzzed_data_provider.ConsumeBytes<uint8_t>(sizeof(addr4->sin_addr));
|
|
memcpy(&addr4->sin_addr, sin_addr_bytes.data(), sin_addr_bytes.size());
|
|
addr4->sin_port = m_fuzzed_data_provider.ConsumeIntegralInRange<uint16_t>(1, 65535);
|
|
}
|
|
} else {
|
|
// IPv6
|
|
const socklen_t write_len = static_cast<socklen_t>(sizeof(sockaddr_in6));
|
|
if (*addr_len >= write_len) {
|
|
*addr_len = write_len;
|
|
auto addr6 = reinterpret_cast<sockaddr_in6*>(addr);
|
|
addr6->sin6_family = AF_INET6;
|
|
const auto sin_addr_bytes = m_fuzzed_data_provider.ConsumeBytes<uint8_t>(sizeof(addr6->sin6_addr));
|
|
memcpy(&addr6->sin6_addr, sin_addr_bytes.data(), sin_addr_bytes.size());
|
|
addr6->sin6_port = m_fuzzed_data_provider.ConsumeIntegralInRange<uint16_t>(1, 65535);
|
|
}
|
|
}
|
|
}
|
|
return std::make_unique<FuzzedSock>(m_fuzzed_data_provider);
|
|
}
|
|
|
|
int FuzzedSock::GetSockOpt(int level, int opt_name, void* opt_val, socklen_t* opt_len) const
|
|
{
|
|
constexpr std::array getsockopt_errnos{
|
|
ENOMEM,
|
|
ENOBUFS,
|
|
};
|
|
if (m_fuzzed_data_provider.ConsumeBool()) {
|
|
SetFuzzedErrNo(m_fuzzed_data_provider, getsockopt_errnos);
|
|
return -1;
|
|
}
|
|
if (opt_val == nullptr) {
|
|
return 0;
|
|
}
|
|
std::memcpy(opt_val,
|
|
ConsumeFixedLengthByteVector(m_fuzzed_data_provider, *opt_len).data(),
|
|
*opt_len);
|
|
return 0;
|
|
}
|
|
|
|
int FuzzedSock::SetSockOpt(int, int, const void*, socklen_t) const
|
|
{
|
|
constexpr std::array setsockopt_errnos{
|
|
ENOMEM,
|
|
ENOBUFS,
|
|
};
|
|
if (m_fuzzed_data_provider.ConsumeBool()) {
|
|
SetFuzzedErrNo(m_fuzzed_data_provider, setsockopt_errnos);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int FuzzedSock::GetSockName(sockaddr* name, socklen_t* name_len) const
|
|
{
|
|
constexpr std::array getsockname_errnos{
|
|
ECONNRESET,
|
|
ENOBUFS,
|
|
};
|
|
if (m_fuzzed_data_provider.ConsumeBool()) {
|
|
SetFuzzedErrNo(m_fuzzed_data_provider, getsockname_errnos);
|
|
return -1;
|
|
}
|
|
assert(name_len);
|
|
const auto bytes{ConsumeRandomLengthByteVector(m_fuzzed_data_provider, *name_len)};
|
|
if (bytes.size() < (int)sizeof(sockaddr)) return -1;
|
|
std::memcpy(name, bytes.data(), bytes.size());
|
|
*name_len = bytes.size();
|
|
return 0;
|
|
}
|
|
|
|
bool FuzzedSock::SetNonBlocking() const
|
|
{
|
|
constexpr std::array setnonblocking_errnos{
|
|
EBADF,
|
|
EPERM,
|
|
};
|
|
if (m_fuzzed_data_provider.ConsumeBool()) {
|
|
SetFuzzedErrNo(m_fuzzed_data_provider, setnonblocking_errnos);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool FuzzedSock::IsSelectable() const
|
|
{
|
|
return m_selectable;
|
|
}
|
|
|
|
bool FuzzedSock::Wait(std::chrono::milliseconds timeout, Event requested, Event* occurred) const
|
|
{
|
|
constexpr std::array wait_errnos{
|
|
EBADF,
|
|
EINTR,
|
|
EINVAL,
|
|
};
|
|
if (m_fuzzed_data_provider.ConsumeBool()) {
|
|
SetFuzzedErrNo(m_fuzzed_data_provider, wait_errnos);
|
|
return false;
|
|
}
|
|
if (occurred != nullptr) {
|
|
// We simulate the requested event as occurred when ConsumeBool()
|
|
// returns false. This avoids simulating endless waiting if the
|
|
// FuzzedDataProvider runs out of data.
|
|
*occurred = m_fuzzed_data_provider.ConsumeBool() ? 0 : requested;
|
|
}
|
|
ElapseTime(timeout);
|
|
return true;
|
|
}
|
|
|
|
bool FuzzedSock::WaitMany(std::chrono::milliseconds timeout, EventsPerSock& events_per_sock) const
|
|
{
|
|
for (auto& [sock, events] : events_per_sock) {
|
|
(void)sock;
|
|
// We simulate the requested event as occurred when ConsumeBool()
|
|
// returns false. This avoids simulating endless waiting if the
|
|
// FuzzedDataProvider runs out of data.
|
|
events.occurred = m_fuzzed_data_provider.ConsumeBool() ? 0 : events.requested;
|
|
}
|
|
ElapseTime(timeout);
|
|
return true;
|
|
}
|
|
|
|
bool FuzzedSock::IsConnected(std::string& errmsg) const
|
|
{
|
|
if (m_fuzzed_data_provider.ConsumeBool()) {
|
|
return true;
|
|
}
|
|
errmsg = "disconnected at random by the fuzzer";
|
|
return false;
|
|
}
|
|
|
|
void FillNode(FuzzedDataProvider& fuzzed_data_provider, ConnmanTestMsg& connman, CNode& node) noexcept
|
|
{
|
|
auto successfully_connected = fuzzed_data_provider.ConsumeBool();
|
|
auto remote_services = ConsumeWeakEnum(fuzzed_data_provider, ALL_SERVICE_FLAGS);
|
|
auto local_services = ConsumeWeakEnum(fuzzed_data_provider, ALL_SERVICE_FLAGS);
|
|
auto version = fuzzed_data_provider.ConsumeIntegralInRange<int32_t>(MIN_PEER_PROTO_VERSION, std::numeric_limits<int32_t>::max());
|
|
auto relay_txs = fuzzed_data_provider.ConsumeBool();
|
|
connman.Handshake(node, successfully_connected, remote_services, local_services, version, relay_txs);
|
|
}
|