v0.7.34 - We seemed to maybe finally fixed the monitoring error?
This commit is contained in:
298
docs/libwebsockets_proper_pattern.md
Normal file
298
docs/libwebsockets_proper_pattern.md
Normal file
@@ -0,0 +1,298 @@
|
||||
# Libwebsockets Proper Pattern - Message Queue Design
|
||||
|
||||
## Problem Analysis
|
||||
|
||||
### Current Violation
|
||||
We're calling `lws_write()` directly from multiple code paths:
|
||||
1. **Event broadcast** (subscriptions.c:667) - when events arrive
|
||||
2. **OK responses** (websockets.c:855) - when processing EVENT messages
|
||||
3. **EOSE responses** (websockets.c:976) - when processing REQ messages
|
||||
4. **COUNT responses** (websockets.c:1922) - when processing COUNT messages
|
||||
|
||||
This violates libwebsockets' design pattern which requires:
|
||||
- **`lws_write()` ONLY called from `LWS_CALLBACK_SERVER_WRITEABLE`**
|
||||
- Application queues messages and requests writeable callback
|
||||
- Libwebsockets handles write timing and socket buffer management
|
||||
|
||||
### Consequences of Violation
|
||||
1. Partial writes when socket buffer is full
|
||||
2. Multiple concurrent write attempts before callback fires
|
||||
3. "write already pending" errors with single buffer
|
||||
4. Frame corruption from interleaved partial writes
|
||||
5. "Invalid frame header" errors on client side
|
||||
|
||||
## Correct Architecture
|
||||
|
||||
### Message Queue Pattern
|
||||
|
||||
```
|
||||
┌─────────────────────────────────────────────────────────────┐
|
||||
│ Application Layer │
|
||||
├─────────────────────────────────────────────────────────────┤
|
||||
│ │
|
||||
│ Event Arrives → Queue Message → Request Writeable Callback │
|
||||
│ REQ Received → Queue EOSE → Request Writeable Callback │
|
||||
│ EVENT Received→ Queue OK → Request Writeable Callback │
|
||||
│ COUNT Received→ Queue COUNT → Request Writeable Callback │
|
||||
│ │
|
||||
└─────────────────────────────────────────────────────────────┘
|
||||
↓
|
||||
lws_callback_on_writable(wsi)
|
||||
↓
|
||||
┌─────────────────────────────────────────────────────────────┐
|
||||
│ LWS_CALLBACK_SERVER_WRITEABLE │
|
||||
├─────────────────────────────────────────────────────────────┤
|
||||
│ │
|
||||
│ 1. Dequeue next message from queue │
|
||||
│ 2. Call lws_write() with message data │
|
||||
│ 3. If queue not empty, request another callback │
|
||||
│ │
|
||||
└─────────────────────────────────────────────────────────────┘
|
||||
↓
|
||||
libwebsockets handles:
|
||||
- Socket buffer management
|
||||
- Partial write handling
|
||||
- Frame atomicity
|
||||
```
|
||||
|
||||
## Data Structures
|
||||
|
||||
### Message Queue Node
|
||||
```c
|
||||
typedef struct message_queue_node {
|
||||
unsigned char* data; // Message data (with LWS_PRE space)
|
||||
size_t length; // Message length (without LWS_PRE)
|
||||
enum lws_write_protocol type; // LWS_WRITE_TEXT, etc.
|
||||
struct message_queue_node* next;
|
||||
} message_queue_node_t;
|
||||
```
|
||||
|
||||
### Per-Session Data Updates
|
||||
```c
|
||||
struct per_session_data {
|
||||
// ... existing fields ...
|
||||
|
||||
// Message queue (replaces single buffer)
|
||||
message_queue_node_t* message_queue_head;
|
||||
message_queue_node_t* message_queue_tail;
|
||||
int message_queue_count;
|
||||
int writeable_requested; // Flag to prevent duplicate requests
|
||||
};
|
||||
```
|
||||
|
||||
## Implementation Functions
|
||||
|
||||
### 1. Queue Message (Application Layer)
|
||||
```c
|
||||
int queue_message(struct lws* wsi, struct per_session_data* pss,
|
||||
const char* message, size_t length,
|
||||
enum lws_write_protocol type)
|
||||
{
|
||||
// Allocate node
|
||||
message_queue_node_t* node = malloc(sizeof(message_queue_node_t));
|
||||
|
||||
// Allocate buffer with LWS_PRE space
|
||||
node->data = malloc(LWS_PRE + length);
|
||||
memcpy(node->data + LWS_PRE, message, length);
|
||||
node->length = length;
|
||||
node->type = type;
|
||||
node->next = NULL;
|
||||
|
||||
// Add to queue (FIFO)
|
||||
pthread_mutex_lock(&pss->session_lock);
|
||||
if (!pss->message_queue_head) {
|
||||
pss->message_queue_head = node;
|
||||
pss->message_queue_tail = node;
|
||||
} else {
|
||||
pss->message_queue_tail->next = node;
|
||||
pss->message_queue_tail = node;
|
||||
}
|
||||
pss->message_queue_count++;
|
||||
pthread_mutex_unlock(&pss->session_lock);
|
||||
|
||||
// Request writeable callback (only if not already requested)
|
||||
if (!pss->writeable_requested) {
|
||||
pss->writeable_requested = 1;
|
||||
lws_callback_on_writable(wsi);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
|
||||
### 2. Process Queue (Writeable Callback)
|
||||
```c
|
||||
int process_message_queue(struct lws* wsi, struct per_session_data* pss)
|
||||
{
|
||||
pthread_mutex_lock(&pss->session_lock);
|
||||
|
||||
// Get next message from queue
|
||||
message_queue_node_t* node = pss->message_queue_head;
|
||||
if (!node) {
|
||||
pss->writeable_requested = 0;
|
||||
pthread_mutex_unlock(&pss->session_lock);
|
||||
return 0; // Queue empty
|
||||
}
|
||||
|
||||
// Remove from queue
|
||||
pss->message_queue_head = node->next;
|
||||
if (!pss->message_queue_head) {
|
||||
pss->message_queue_tail = NULL;
|
||||
}
|
||||
pss->message_queue_count--;
|
||||
|
||||
pthread_mutex_unlock(&pss->session_lock);
|
||||
|
||||
// Write message (libwebsockets handles partial writes)
|
||||
int result = lws_write(wsi, node->data + LWS_PRE, node->length, node->type);
|
||||
|
||||
// Free node
|
||||
free(node->data);
|
||||
free(node);
|
||||
|
||||
// If queue not empty, request another callback
|
||||
pthread_mutex_lock(&pss->session_lock);
|
||||
if (pss->message_queue_head) {
|
||||
lws_callback_on_writable(wsi);
|
||||
} else {
|
||||
pss->writeable_requested = 0;
|
||||
}
|
||||
pthread_mutex_unlock(&pss->session_lock);
|
||||
|
||||
return (result < 0) ? -1 : 0;
|
||||
}
|
||||
```
|
||||
|
||||
## Refactoring Changes
|
||||
|
||||
### Before (WRONG - Direct Write)
|
||||
```c
|
||||
// websockets.c:855 - OK response
|
||||
int write_result = lws_write(wsi, buf + LWS_PRE, response_len, LWS_WRITE_TEXT);
|
||||
if (write_result < 0) {
|
||||
DEBUG_ERROR("Write failed");
|
||||
} else if ((size_t)write_result != response_len) {
|
||||
// Partial write - queue remaining data
|
||||
queue_websocket_write(wsi, pss, ...);
|
||||
}
|
||||
```
|
||||
|
||||
### After (CORRECT - Queue Message)
|
||||
```c
|
||||
// websockets.c:855 - OK response
|
||||
queue_message(wsi, pss, response_str, response_len, LWS_WRITE_TEXT);
|
||||
// That's it! Writeable callback will handle the actual write
|
||||
```
|
||||
|
||||
### Before (WRONG - Direct Write in Broadcast)
|
||||
```c
|
||||
// subscriptions.c:667 - EVENT broadcast
|
||||
int write_result = lws_write(current_temp->wsi, buf + LWS_PRE, msg_len, LWS_WRITE_TEXT);
|
||||
if (write_result < 0) {
|
||||
DEBUG_ERROR("Write failed");
|
||||
} else if ((size_t)write_result != msg_len) {
|
||||
queue_websocket_write(...);
|
||||
}
|
||||
```
|
||||
|
||||
### After (CORRECT - Queue Message)
|
||||
```c
|
||||
// subscriptions.c:667 - EVENT broadcast
|
||||
struct per_session_data* pss = lws_wsi_user(current_temp->wsi);
|
||||
queue_message(current_temp->wsi, pss, msg_str, msg_len, LWS_WRITE_TEXT);
|
||||
// Writeable callback will handle the actual write
|
||||
```
|
||||
|
||||
## Benefits of Correct Pattern
|
||||
|
||||
1. **No Partial Write Handling Needed**
|
||||
- Libwebsockets handles partial writes internally
|
||||
- We just queue complete messages
|
||||
|
||||
2. **No "Write Already Pending" Errors**
|
||||
- Queue can hold unlimited messages
|
||||
- Each processed sequentially from callback
|
||||
|
||||
3. **Thread Safety**
|
||||
- Queue operations protected by session lock
|
||||
- Write only from single callback thread
|
||||
|
||||
4. **Frame Atomicity**
|
||||
- Libwebsockets ensures complete frame transmission
|
||||
- No interleaved partial writes
|
||||
|
||||
5. **Simpler Code**
|
||||
- No complex partial write state machine
|
||||
- Just queue and forget
|
||||
|
||||
6. **Better Performance**
|
||||
- Libwebsockets optimizes write timing
|
||||
- Batches writes when socket ready
|
||||
|
||||
## Migration Steps
|
||||
|
||||
1. ✅ Identify all `lws_write()` call sites
|
||||
2. ✅ Confirm violation of libwebsockets pattern
|
||||
3. ⏳ Design message queue structure
|
||||
4. ⏳ Implement `queue_message()` function
|
||||
5. ⏳ Implement `process_message_queue()` function
|
||||
6. ⏳ Update `per_session_data` structure
|
||||
7. ⏳ Refactor OK response to use queue
|
||||
8. ⏳ Refactor EOSE response to use queue
|
||||
9. ⏳ Refactor COUNT response to use queue
|
||||
10. ⏳ Refactor EVENT broadcast to use queue
|
||||
11. ⏳ Update `LWS_CALLBACK_SERVER_WRITEABLE` handler
|
||||
12. ⏳ Add queue cleanup in `LWS_CALLBACK_CLOSED`
|
||||
13. ⏳ Remove old partial write code
|
||||
14. ⏳ Test with rapid multiple events
|
||||
15. ⏳ Test with large events (>4KB)
|
||||
16. ⏳ Test under load
|
||||
17. ⏳ Verify no frame errors
|
||||
|
||||
## Testing Strategy
|
||||
|
||||
### Test 1: Multiple Rapid Events
|
||||
```bash
|
||||
# Send 10 events rapidly to same client
|
||||
for i in {1..10}; do
|
||||
echo '["EVENT",{"kind":1,"content":"test'$i'","created_at":'$(date +%s)',...}]' | \
|
||||
websocat ws://localhost:8888 &
|
||||
done
|
||||
```
|
||||
|
||||
**Expected**: All events queued and sent sequentially, no errors
|
||||
|
||||
### Test 2: Large Events
|
||||
```bash
|
||||
# Send event >4KB (forces multiple socket writes)
|
||||
nak event --content "$(head -c 5000 /dev/urandom | base64)" | \
|
||||
websocat ws://localhost:8888
|
||||
```
|
||||
|
||||
**Expected**: Event queued, libwebsockets handles partial writes internally
|
||||
|
||||
### Test 3: Concurrent Connections
|
||||
```bash
|
||||
# 100 concurrent connections, each sending events
|
||||
for i in {1..100}; do
|
||||
(echo '["REQ","sub'$i'",{}]'; sleep 1) | websocat ws://localhost:8888 &
|
||||
done
|
||||
```
|
||||
|
||||
**Expected**: All subscriptions work, events broadcast correctly
|
||||
|
||||
## Success Criteria
|
||||
|
||||
- ✅ No `lws_write()` calls outside `LWS_CALLBACK_SERVER_WRITEABLE`
|
||||
- ✅ No "write already pending" errors in logs
|
||||
- ✅ No "Invalid frame header" errors on client side
|
||||
- ✅ All messages delivered in correct order
|
||||
- ✅ Large events (>4KB) handled correctly
|
||||
- ✅ Multiple rapid events to same client work
|
||||
- ✅ Concurrent connections stable under load
|
||||
|
||||
## References
|
||||
|
||||
- [libwebsockets documentation](https://libwebsockets.org/lws-api-doc-main/html/index.html)
|
||||
- [LWS_CALLBACK_SERVER_WRITEABLE](https://libwebsockets.org/lws-api-doc-main/html/group__callback-when-writeable.html)
|
||||
- [lws_callback_on_writable()](https://libwebsockets.org/lws-api-doc-main/html/group__callback-when-writeable.html#ga96f3ad8e1e2c3e0c8e0b0e5e5e5e5e5e)
|
||||
200
docs/websocket_write_queue_design.md
Normal file
200
docs/websocket_write_queue_design.md
Normal file
@@ -0,0 +1,200 @@
|
||||
# WebSocket Write Queue Design
|
||||
|
||||
## Problem Statement
|
||||
|
||||
The current partial write handling implementation uses a single buffer per session, which fails when multiple events need to be sent to the same client in rapid succession. This causes:
|
||||
|
||||
1. First event gets partial write → queued successfully
|
||||
2. Second event tries to write → **FAILS** with "write already pending"
|
||||
3. Subsequent events fail similarly, causing data loss
|
||||
|
||||
### Server Log Evidence
|
||||
```
|
||||
[WARN] WS_FRAME_PARTIAL: EVENT partial write, sub=1 sent=3210 expected=5333
|
||||
[TRACE] Queued partial write: len=2123
|
||||
[WARN] WS_FRAME_PARTIAL: EVENT partial write, sub=1 sent=3210 expected=5333
|
||||
[WARN] queue_websocket_write: write already pending, cannot queue new write
|
||||
[ERROR] Failed to queue partial EVENT write for sub=1
|
||||
```
|
||||
|
||||
## Root Cause
|
||||
|
||||
WebSocket frames must be sent **atomically** - you cannot interleave multiple frames. The current single-buffer approach correctly enforces this, but it rejects new writes instead of queuing them.
|
||||
|
||||
## Solution: Write Queue Architecture
|
||||
|
||||
### Design Principles
|
||||
|
||||
1. **Frame Atomicity**: Complete one WebSocket frame before starting the next
|
||||
2. **Sequential Processing**: Process queued writes in FIFO order
|
||||
3. **Memory Safety**: Proper cleanup on connection close or errors
|
||||
4. **Thread Safety**: Protect queue operations with existing session lock
|
||||
|
||||
### Data Structures
|
||||
|
||||
#### Write Queue Node
|
||||
```c
|
||||
struct write_queue_node {
|
||||
unsigned char* buffer; // Buffer with LWS_PRE space
|
||||
size_t total_len; // Total length of data to write
|
||||
size_t offset; // How much has been written so far
|
||||
int write_type; // LWS_WRITE_TEXT, etc.
|
||||
struct write_queue_node* next; // Next node in queue
|
||||
};
|
||||
```
|
||||
|
||||
#### Per-Session Write Queue
|
||||
```c
|
||||
struct per_session_data {
|
||||
// ... existing fields ...
|
||||
|
||||
// Write queue for handling multiple pending writes
|
||||
struct write_queue_node* write_queue_head; // First item to write
|
||||
struct write_queue_node* write_queue_tail; // Last item in queue
|
||||
int write_queue_length; // Number of items in queue
|
||||
int write_in_progress; // Flag: 1 if currently writing
|
||||
};
|
||||
```
|
||||
|
||||
### Algorithm Flow
|
||||
|
||||
#### 1. Enqueue Write (`queue_websocket_write`)
|
||||
|
||||
```
|
||||
IF write_queue is empty AND no write in progress:
|
||||
- Attempt immediate write with lws_write()
|
||||
- IF complete:
|
||||
- Return success
|
||||
- ELSE (partial write):
|
||||
- Create queue node with remaining data
|
||||
- Add to queue
|
||||
- Set write_in_progress flag
|
||||
- Request LWS_CALLBACK_SERVER_WRITEABLE
|
||||
ELSE:
|
||||
- Create queue node with full data
|
||||
- Append to queue tail
|
||||
- IF no write in progress:
|
||||
- Request LWS_CALLBACK_SERVER_WRITEABLE
|
||||
```
|
||||
|
||||
#### 2. Process Queue (`process_pending_write`)
|
||||
|
||||
```
|
||||
WHILE write_queue is not empty:
|
||||
- Get head node
|
||||
- Calculate remaining data (total_len - offset)
|
||||
- Attempt write with lws_write()
|
||||
|
||||
IF write fails (< 0):
|
||||
- Log error
|
||||
- Remove and free head node
|
||||
- Continue to next node
|
||||
|
||||
ELSE IF partial write (< remaining):
|
||||
- Update offset
|
||||
- Request LWS_CALLBACK_SERVER_WRITEABLE
|
||||
- Break (wait for next callback)
|
||||
|
||||
ELSE (complete write):
|
||||
- Remove and free head node
|
||||
- Continue to next node
|
||||
|
||||
IF queue is empty:
|
||||
- Clear write_in_progress flag
|
||||
```
|
||||
|
||||
#### 3. Cleanup (`LWS_CALLBACK_CLOSED`)
|
||||
|
||||
```
|
||||
WHILE write_queue is not empty:
|
||||
- Get head node
|
||||
- Free buffer
|
||||
- Free node
|
||||
- Move to next
|
||||
Clear queue pointers
|
||||
```
|
||||
|
||||
### Memory Management
|
||||
|
||||
1. **Allocation**: Each queue node allocates buffer with `LWS_PRE + data_len`
|
||||
2. **Ownership**: Queue owns all buffers until write completes or connection closes
|
||||
3. **Deallocation**: Free buffer and node when:
|
||||
- Write completes successfully
|
||||
- Write fails with error
|
||||
- Connection closes
|
||||
|
||||
### Thread Safety
|
||||
|
||||
- Use existing `pss->session_lock` to protect queue operations
|
||||
- Lock during:
|
||||
- Enqueue operations
|
||||
- Dequeue operations
|
||||
- Queue traversal for cleanup
|
||||
|
||||
### Performance Considerations
|
||||
|
||||
1. **Queue Length Limit**: Implement max queue length (e.g., 100 items) to prevent memory exhaustion
|
||||
2. **Memory Pressure**: Monitor total queued bytes per session
|
||||
3. **Backpressure**: If queue exceeds limit, close connection with NOTICE
|
||||
|
||||
### Error Handling
|
||||
|
||||
1. **Allocation Failure**: Return error, log, send NOTICE to client
|
||||
2. **Write Failure**: Remove failed frame, continue with next
|
||||
3. **Queue Overflow**: Close connection with appropriate NOTICE
|
||||
|
||||
## Implementation Plan
|
||||
|
||||
### Phase 1: Data Structure Changes
|
||||
1. Add `write_queue_node` structure to `websockets.h`
|
||||
2. Update `per_session_data` with queue fields
|
||||
3. Remove old single-buffer fields
|
||||
|
||||
### Phase 2: Queue Operations
|
||||
1. Implement `enqueue_write()` helper
|
||||
2. Implement `dequeue_write()` helper
|
||||
3. Update `queue_websocket_write()` to use queue
|
||||
4. Update `process_pending_write()` to process queue
|
||||
|
||||
### Phase 3: Integration
|
||||
1. Update all `lws_write()` call sites
|
||||
2. Update `LWS_CALLBACK_CLOSED` cleanup
|
||||
3. Add queue length monitoring
|
||||
|
||||
### Phase 4: Testing
|
||||
1. Test with rapid multiple events to same client
|
||||
2. Test with large events (>4KB)
|
||||
3. Test under load with concurrent connections
|
||||
4. Verify no "Invalid frame header" errors
|
||||
|
||||
## Expected Outcomes
|
||||
|
||||
1. **No More Rejections**: All writes queued successfully
|
||||
2. **Frame Integrity**: Complete frames sent atomically
|
||||
3. **Memory Safety**: Proper cleanup on all paths
|
||||
4. **Performance**: Minimal overhead for queue management
|
||||
|
||||
## Metrics to Monitor
|
||||
|
||||
1. Average queue length per session
|
||||
2. Maximum queue length observed
|
||||
3. Queue overflow events (if limit implemented)
|
||||
4. Write completion rate
|
||||
5. Partial write frequency
|
||||
|
||||
## Alternative Approaches Considered
|
||||
|
||||
### 1. Larger Single Buffer
|
||||
**Rejected**: Doesn't solve the fundamental problem of multiple concurrent writes
|
||||
|
||||
### 2. Immediate Write Retry
|
||||
**Rejected**: Could cause busy-waiting and CPU waste
|
||||
|
||||
### 3. Drop Frames on Conflict
|
||||
**Rejected**: Violates reliability requirements
|
||||
|
||||
## References
|
||||
|
||||
- libwebsockets documentation on `lws_write()` and `LWS_CALLBACK_SERVER_WRITEABLE`
|
||||
- WebSocket RFC 6455 on frame structure
|
||||
- Nostr NIP-01 on relay-to-client communication
|
||||
Reference in New Issue
Block a user