v0.7.34 - We seemed to maybe finally fixed the monitoring error?
This commit is contained in:
200
docs/websocket_write_queue_design.md
Normal file
200
docs/websocket_write_queue_design.md
Normal file
@@ -0,0 +1,200 @@
|
||||
# WebSocket Write Queue Design
|
||||
|
||||
## Problem Statement
|
||||
|
||||
The current partial write handling implementation uses a single buffer per session, which fails when multiple events need to be sent to the same client in rapid succession. This causes:
|
||||
|
||||
1. First event gets partial write → queued successfully
|
||||
2. Second event tries to write → **FAILS** with "write already pending"
|
||||
3. Subsequent events fail similarly, causing data loss
|
||||
|
||||
### Server Log Evidence
|
||||
```
|
||||
[WARN] WS_FRAME_PARTIAL: EVENT partial write, sub=1 sent=3210 expected=5333
|
||||
[TRACE] Queued partial write: len=2123
|
||||
[WARN] WS_FRAME_PARTIAL: EVENT partial write, sub=1 sent=3210 expected=5333
|
||||
[WARN] queue_websocket_write: write already pending, cannot queue new write
|
||||
[ERROR] Failed to queue partial EVENT write for sub=1
|
||||
```
|
||||
|
||||
## Root Cause
|
||||
|
||||
WebSocket frames must be sent **atomically** - you cannot interleave multiple frames. The current single-buffer approach correctly enforces this, but it rejects new writes instead of queuing them.
|
||||
|
||||
## Solution: Write Queue Architecture
|
||||
|
||||
### Design Principles
|
||||
|
||||
1. **Frame Atomicity**: Complete one WebSocket frame before starting the next
|
||||
2. **Sequential Processing**: Process queued writes in FIFO order
|
||||
3. **Memory Safety**: Proper cleanup on connection close or errors
|
||||
4. **Thread Safety**: Protect queue operations with existing session lock
|
||||
|
||||
### Data Structures
|
||||
|
||||
#### Write Queue Node
|
||||
```c
|
||||
struct write_queue_node {
|
||||
unsigned char* buffer; // Buffer with LWS_PRE space
|
||||
size_t total_len; // Total length of data to write
|
||||
size_t offset; // How much has been written so far
|
||||
int write_type; // LWS_WRITE_TEXT, etc.
|
||||
struct write_queue_node* next; // Next node in queue
|
||||
};
|
||||
```
|
||||
|
||||
#### Per-Session Write Queue
|
||||
```c
|
||||
struct per_session_data {
|
||||
// ... existing fields ...
|
||||
|
||||
// Write queue for handling multiple pending writes
|
||||
struct write_queue_node* write_queue_head; // First item to write
|
||||
struct write_queue_node* write_queue_tail; // Last item in queue
|
||||
int write_queue_length; // Number of items in queue
|
||||
int write_in_progress; // Flag: 1 if currently writing
|
||||
};
|
||||
```
|
||||
|
||||
### Algorithm Flow
|
||||
|
||||
#### 1. Enqueue Write (`queue_websocket_write`)
|
||||
|
||||
```
|
||||
IF write_queue is empty AND no write in progress:
|
||||
- Attempt immediate write with lws_write()
|
||||
- IF complete:
|
||||
- Return success
|
||||
- ELSE (partial write):
|
||||
- Create queue node with remaining data
|
||||
- Add to queue
|
||||
- Set write_in_progress flag
|
||||
- Request LWS_CALLBACK_SERVER_WRITEABLE
|
||||
ELSE:
|
||||
- Create queue node with full data
|
||||
- Append to queue tail
|
||||
- IF no write in progress:
|
||||
- Request LWS_CALLBACK_SERVER_WRITEABLE
|
||||
```
|
||||
|
||||
#### 2. Process Queue (`process_pending_write`)
|
||||
|
||||
```
|
||||
WHILE write_queue is not empty:
|
||||
- Get head node
|
||||
- Calculate remaining data (total_len - offset)
|
||||
- Attempt write with lws_write()
|
||||
|
||||
IF write fails (< 0):
|
||||
- Log error
|
||||
- Remove and free head node
|
||||
- Continue to next node
|
||||
|
||||
ELSE IF partial write (< remaining):
|
||||
- Update offset
|
||||
- Request LWS_CALLBACK_SERVER_WRITEABLE
|
||||
- Break (wait for next callback)
|
||||
|
||||
ELSE (complete write):
|
||||
- Remove and free head node
|
||||
- Continue to next node
|
||||
|
||||
IF queue is empty:
|
||||
- Clear write_in_progress flag
|
||||
```
|
||||
|
||||
#### 3. Cleanup (`LWS_CALLBACK_CLOSED`)
|
||||
|
||||
```
|
||||
WHILE write_queue is not empty:
|
||||
- Get head node
|
||||
- Free buffer
|
||||
- Free node
|
||||
- Move to next
|
||||
Clear queue pointers
|
||||
```
|
||||
|
||||
### Memory Management
|
||||
|
||||
1. **Allocation**: Each queue node allocates buffer with `LWS_PRE + data_len`
|
||||
2. **Ownership**: Queue owns all buffers until write completes or connection closes
|
||||
3. **Deallocation**: Free buffer and node when:
|
||||
- Write completes successfully
|
||||
- Write fails with error
|
||||
- Connection closes
|
||||
|
||||
### Thread Safety
|
||||
|
||||
- Use existing `pss->session_lock` to protect queue operations
|
||||
- Lock during:
|
||||
- Enqueue operations
|
||||
- Dequeue operations
|
||||
- Queue traversal for cleanup
|
||||
|
||||
### Performance Considerations
|
||||
|
||||
1. **Queue Length Limit**: Implement max queue length (e.g., 100 items) to prevent memory exhaustion
|
||||
2. **Memory Pressure**: Monitor total queued bytes per session
|
||||
3. **Backpressure**: If queue exceeds limit, close connection with NOTICE
|
||||
|
||||
### Error Handling
|
||||
|
||||
1. **Allocation Failure**: Return error, log, send NOTICE to client
|
||||
2. **Write Failure**: Remove failed frame, continue with next
|
||||
3. **Queue Overflow**: Close connection with appropriate NOTICE
|
||||
|
||||
## Implementation Plan
|
||||
|
||||
### Phase 1: Data Structure Changes
|
||||
1. Add `write_queue_node` structure to `websockets.h`
|
||||
2. Update `per_session_data` with queue fields
|
||||
3. Remove old single-buffer fields
|
||||
|
||||
### Phase 2: Queue Operations
|
||||
1. Implement `enqueue_write()` helper
|
||||
2. Implement `dequeue_write()` helper
|
||||
3. Update `queue_websocket_write()` to use queue
|
||||
4. Update `process_pending_write()` to process queue
|
||||
|
||||
### Phase 3: Integration
|
||||
1. Update all `lws_write()` call sites
|
||||
2. Update `LWS_CALLBACK_CLOSED` cleanup
|
||||
3. Add queue length monitoring
|
||||
|
||||
### Phase 4: Testing
|
||||
1. Test with rapid multiple events to same client
|
||||
2. Test with large events (>4KB)
|
||||
3. Test under load with concurrent connections
|
||||
4. Verify no "Invalid frame header" errors
|
||||
|
||||
## Expected Outcomes
|
||||
|
||||
1. **No More Rejections**: All writes queued successfully
|
||||
2. **Frame Integrity**: Complete frames sent atomically
|
||||
3. **Memory Safety**: Proper cleanup on all paths
|
||||
4. **Performance**: Minimal overhead for queue management
|
||||
|
||||
## Metrics to Monitor
|
||||
|
||||
1. Average queue length per session
|
||||
2. Maximum queue length observed
|
||||
3. Queue overflow events (if limit implemented)
|
||||
4. Write completion rate
|
||||
5. Partial write frequency
|
||||
|
||||
## Alternative Approaches Considered
|
||||
|
||||
### 1. Larger Single Buffer
|
||||
**Rejected**: Doesn't solve the fundamental problem of multiple concurrent writes
|
||||
|
||||
### 2. Immediate Write Retry
|
||||
**Rejected**: Could cause busy-waiting and CPU waste
|
||||
|
||||
### 3. Drop Frames on Conflict
|
||||
**Rejected**: Violates reliability requirements
|
||||
|
||||
## References
|
||||
|
||||
- libwebsockets documentation on `lws_write()` and `LWS_CALLBACK_SERVER_WRITEABLE`
|
||||
- WebSocket RFC 6455 on frame structure
|
||||
- Nostr NIP-01 on relay-to-client communication
|
||||
Reference in New Issue
Block a user