secp256k1

This commit is contained in:
Laan Tungir 2025-08-16 10:48:58 -04:00
parent 2036d0165b
commit 77186c88dd
175 changed files with 79997 additions and 1 deletions

@ -1 +0,0 @@
Subproject commit 74b8068c5d9411a9a96261bc898cc9e9f1f20dfb

2
secp256k1/.gitattributes vendored Normal file
View File

@ -0,0 +1,2 @@
src/precomputed_ecmult.c linguist-generated
src/precomputed_ecmult_gen.c linguist-generated

View File

@ -0,0 +1,33 @@
name: "Install Valgrind"
description: "Install Homebrew's Valgrind package and cache it."
runs:
using: "composite"
steps:
- run: |
brew tap LouisBrunner/valgrind
brew fetch --HEAD LouisBrunner/valgrind/valgrind
echo "CI_HOMEBREW_CELLAR_VALGRIND=$(brew --cellar valgrind)" >> "$GITHUB_ENV"
shell: bash
- run: |
sw_vers > valgrind_fingerprint
brew --version >> valgrind_fingerprint
git -C "$(brew --cache)/valgrind--git" rev-parse HEAD >> valgrind_fingerprint
cat valgrind_fingerprint
shell: bash
- uses: actions/cache@v4
id: cache
with:
path: ${{ env.CI_HOMEBREW_CELLAR_VALGRIND }}
key: ${{ github.job }}-valgrind-${{ hashFiles('valgrind_fingerprint') }}
- if: steps.cache.outputs.cache-hit != 'true'
run: |
brew install --HEAD LouisBrunner/valgrind/valgrind
shell: bash
- if: steps.cache.outputs.cache-hit == 'true'
run: |
brew link valgrind
shell: bash

View File

@ -0,0 +1,34 @@
name: "Print logs"
description: "Print the log files produced by ci/ci.sh"
runs:
using: "composite"
steps:
- shell: bash
run: |
# Print the log files produced by ci/ci.sh
# Helper functions
group() {
title=$1
echo "::group::$title"
}
endgroup() {
echo "::endgroup::"
}
cat_file() {
file=$1
group "$file"
cat "$file"
endgroup
}
# Print all *.log files
shopt -s nullglob
for file in *.log; do
cat_file "$file"
done
# Print environment
group "CI env"
env
endgroup

View File

@ -0,0 +1,54 @@
name: 'Run in Docker with environment'
description: 'Run a command in a Docker container, while passing explicitly set environment variables into the container.'
inputs:
dockerfile:
description: 'A Dockerfile that defines an image'
required: true
tag:
description: 'A tag of an image'
required: true
command:
description: 'A command to run in a container'
required: false
default: ./ci/ci.sh
runs:
using: "composite"
steps:
- uses: docker/setup-buildx-action@v3
- uses: docker/build-push-action@v5
id: main_builder
continue-on-error: true
with:
context: .
file: ${{ inputs.dockerfile }}
tags: ${{ inputs.tag }}
load: true
cache-from: type=gha
- uses: docker/build-push-action@v5
id: retry_builder
if: steps.main_builder.outcome == 'failure'
with:
context: .
file: ${{ inputs.dockerfile }}
tags: ${{ inputs.tag }}
load: true
cache-from: type=gha
- # Workaround for https://github.com/google/sanitizers/issues/1614 .
# The underlying issue has been fixed in clang 18.1.3.
run: sudo sysctl -w vm.mmap_rnd_bits=28
shell: bash
- # Tell Docker to pass environment variables in `env` into the container.
run: >
docker run \
$(echo '${{ toJSON(env) }}' | jq -r 'keys[] | "--env \(.) "') \
--volume ${{ github.workspace }}:${{ github.workspace }} \
--workdir ${{ github.workspace }} \
${{ inputs.tag }} bash -c "
git config --global --add safe.directory ${{ github.workspace }}
${{ inputs.command }}
"
shell: bash

771
secp256k1/.github/workflows/ci.yml vendored Normal file
View File

@ -0,0 +1,771 @@
name: CI
on:
pull_request:
push:
branches:
- '**'
tags-ignore:
- '**'
concurrency:
group: ${{ github.event_name != 'pull_request' && github.run_id || github.ref }}
cancel-in-progress: true
env:
### compiler options
HOST:
WRAPPER_CMD:
# Specific warnings can be disabled with -Wno-error=foo.
# -pedantic-errors is not equivalent to -Werror=pedantic and thus not implied by -Werror according to the GCC manual.
WERROR_CFLAGS: '-Werror -pedantic-errors'
MAKEFLAGS: '-j4'
BUILD: 'check'
### secp256k1 config
ECMULTWINDOW: 15
ECMULTGENKB: 86
ASM: 'no'
WIDEMUL: 'auto'
WITH_VALGRIND: 'yes'
EXTRAFLAGS:
### secp256k1 modules
EXPERIMENTAL: 'no'
ECDH: 'no'
RECOVERY: 'no'
EXTRAKEYS: 'no'
SCHNORRSIG: 'no'
MUSIG: 'no'
ELLSWIFT: 'no'
### test options
SECP256K1_TEST_ITERS: 64
BENCH: 'yes'
SECP256K1_BENCH_ITERS: 2
CTIMETESTS: 'yes'
SYMBOL_CHECK: 'yes'
# Compile and run the examples.
EXAMPLES: 'yes'
jobs:
docker_cache:
name: "Build ${{ matrix.arch }} Docker image"
runs-on: ${{ matrix.runner }}
strategy:
fail-fast: false
matrix:
include:
- arch: x64
runner: ubuntu-latest
- arch: arm64
runner: ubuntu-24.04-arm
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
# See: https://github.com/moby/buildkit/issues/3969.
driver-opts: |
network=host
- name: Build container
uses: docker/build-push-action@v5
with:
file: ./ci/linux-debian.Dockerfile
tags: ${{ matrix.arch }}-debian-image
cache-from: type=gha
cache-to: type=gha,mode=min
x86_64-debian:
name: "x86_64: Linux (Debian stable)"
runs-on: ubuntu-latest
needs: docker_cache
strategy:
fail-fast: false
matrix:
configuration:
- env_vars: { WIDEMUL: 'int64', RECOVERY: 'yes' }
- env_vars: { WIDEMUL: 'int64', ECDH: 'yes', EXTRAKEYS: 'yes', SCHNORRSIG: 'yes', MUSIG: 'yes', ELLSWIFT: 'yes' }
- env_vars: { WIDEMUL: 'int128' }
- env_vars: { WIDEMUL: 'int128_struct', ELLSWIFT: 'yes' }
- env_vars: { WIDEMUL: 'int128', RECOVERY: 'yes', EXTRAKEYS: 'yes', SCHNORRSIG: 'yes', MUSIG: 'yes', ELLSWIFT: 'yes' }
- env_vars: { WIDEMUL: 'int128', ECDH: 'yes', EXTRAKEYS: 'yes', SCHNORRSIG: 'yes', MUSIG: 'yes' }
- env_vars: { WIDEMUL: 'int128', ASM: 'x86_64', ELLSWIFT: 'yes' }
- env_vars: { RECOVERY: 'yes', EXTRAKEYS: 'yes', SCHNORRSIG: 'yes', MUSIG: 'yes' }
- env_vars: { CTIMETESTS: 'no', RECOVERY: 'yes', ECDH: 'yes', EXTRAKEYS: 'yes', SCHNORRSIG: 'yes', MUSIG: 'yes', CPPFLAGS: '-DVERIFY' }
- env_vars: { BUILD: 'distcheck', WITH_VALGRIND: 'no', CTIMETESTS: 'no', BENCH: 'no' }
- env_vars: { CPPFLAGS: '-DDETERMINISTIC' }
- env_vars: { CFLAGS: '-O0', CTIMETESTS: 'no' }
- env_vars: { CFLAGS: '-O1', RECOVERY: 'yes', ECDH: 'yes', EXTRAKEYS: 'yes', SCHNORRSIG: 'yes', MUSIG: 'yes', ELLSWIFT: 'yes' }
- env_vars: { ECMULTGENKB: 2, ECMULTWINDOW: 2 }
- env_vars: { ECMULTGENKB: 86, ECMULTWINDOW: 4 }
cc:
- 'gcc'
- 'clang'
- 'gcc-snapshot'
- 'clang-snapshot'
env:
CC: ${{ matrix.cc }}
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
env: ${{ matrix.configuration.env_vars }}
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: x64-debian-image
- name: Print logs
uses: ./.github/actions/print-logs
if: ${{ !cancelled() }}
i686_debian:
name: "i686: Linux (Debian stable)"
runs-on: ubuntu-latest
needs: docker_cache
strategy:
fail-fast: false
matrix:
cc:
- 'i686-linux-gnu-gcc'
- 'clang --target=i686-pc-linux-gnu -isystem /usr/i686-linux-gnu/include'
env:
HOST: 'i686-linux-gnu'
ECDH: 'yes'
RECOVERY: 'yes'
EXTRAKEYS: 'yes'
SCHNORRSIG: 'yes'
MUSIG: 'yes'
ELLSWIFT: 'yes'
CC: ${{ matrix.cc }}
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: x64-debian-image
- name: Print logs
uses: ./.github/actions/print-logs
if: ${{ !cancelled() }}
s390x_debian:
name: "s390x (big-endian): Linux (Debian stable, QEMU)"
runs-on: ubuntu-latest
needs: docker_cache
env:
WRAPPER_CMD: 'qemu-s390x'
SECP256K1_TEST_ITERS: 16
HOST: 's390x-linux-gnu'
WITH_VALGRIND: 'no'
ECDH: 'yes'
RECOVERY: 'yes'
EXTRAKEYS: 'yes'
SCHNORRSIG: 'yes'
MUSIG: 'yes'
ELLSWIFT: 'yes'
CTIMETESTS: 'no'
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: x64-debian-image
- name: Print logs
uses: ./.github/actions/print-logs
if: ${{ !cancelled() }}
arm32_debian:
name: "ARM32: Linux (Debian stable, QEMU)"
runs-on: ubuntu-latest
needs: docker_cache
strategy:
fail-fast: false
matrix:
configuration:
- env_vars: {}
- env_vars: { EXPERIMENTAL: 'yes', ASM: 'arm32' }
env:
WRAPPER_CMD: 'qemu-arm'
SECP256K1_TEST_ITERS: 16
HOST: 'arm-linux-gnueabihf'
WITH_VALGRIND: 'no'
ECDH: 'yes'
RECOVERY: 'yes'
EXTRAKEYS: 'yes'
SCHNORRSIG: 'yes'
MUSIG: 'yes'
ELLSWIFT: 'yes'
CTIMETESTS: 'no'
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
env: ${{ matrix.configuration.env_vars }}
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: x64-debian-image
- name: Print logs
uses: ./.github/actions/print-logs
if: ${{ !cancelled() }}
arm64-debian:
name: "arm64: Linux (Debian stable)"
runs-on: ubuntu-24.04-arm
needs: docker_cache
env:
SECP256K1_TEST_ITERS: 16
WITH_VALGRIND: 'no'
ECDH: 'yes'
RECOVERY: 'yes'
EXTRAKEYS: 'yes'
SCHNORRSIG: 'yes'
MUSIG: 'yes'
ELLSWIFT: 'yes'
CTIMETESTS: 'no'
CC: ${{ matrix.cc }}
strategy:
fail-fast: false
matrix:
cc:
- 'gcc'
- 'clang'
- 'gcc-snapshot'
- 'clang-snapshot'
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: arm64-debian-image
- name: Print logs
uses: ./.github/actions/print-logs
if: ${{ !cancelled() }}
ppc64le_debian:
name: "ppc64le: Linux (Debian stable, QEMU)"
runs-on: ubuntu-latest
needs: docker_cache
env:
WRAPPER_CMD: 'qemu-ppc64le'
SECP256K1_TEST_ITERS: 16
HOST: 'powerpc64le-linux-gnu'
WITH_VALGRIND: 'no'
ECDH: 'yes'
RECOVERY: 'yes'
EXTRAKEYS: 'yes'
SCHNORRSIG: 'yes'
MUSIG: 'yes'
ELLSWIFT: 'yes'
CTIMETESTS: 'no'
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: x64-debian-image
- name: Print logs
uses: ./.github/actions/print-logs
if: ${{ !cancelled() }}
valgrind_debian:
name: "Valgrind ${{ matrix.binary_arch }} (memcheck)"
runs-on: ${{ matrix.runner }}
needs: docker_cache
strategy:
fail-fast: false
matrix:
include:
- docker_arch: x64
runner: ubuntu-latest
binary_arch: x64
env_vars: { CC: 'clang', ASM: 'auto' }
- docker_arch: x64
runner: ubuntu-latest
binary_arch: i686
env_vars: { CC: 'i686-linux-gnu-gcc', HOST: 'i686-linux-gnu', ASM: 'auto' }
- docker_arch: arm64
runner: ubuntu-24.04-arm
binary_arch: arm64
env_vars: { CC: 'clang', ASM: 'auto' }
- docker_arch: x64
runner: ubuntu-latest
binary_arch: x64
env_vars: { CC: 'clang', ASM: 'no', ECMULTGENKB: 2, ECMULTWINDOW: 2 }
- docker_arch: x64
runner: ubuntu-latest
binary_arch: i686
env_vars: { CC: 'i686-linux-gnu-gcc', HOST: 'i686-linux-gnu', ASM: 'no', ECMULTGENKB: 2, ECMULTWINDOW: 2 }
- docker_arch: arm64
runner: ubuntu-24.04-arm
binary_arch: arm64
env_vars: { CC: 'clang', ASM: 'no', ECMULTGENKB: 2, ECMULTWINDOW: 2 }
env:
# The `--error-exitcode` is required to make the test fail if valgrind found errors,
# otherwise it will return 0 (https://www.valgrind.org/docs/manual/manual-core.html).
WRAPPER_CMD: 'valgrind --error-exitcode=42'
ECDH: 'yes'
RECOVERY: 'yes'
EXTRAKEYS: 'yes'
SCHNORRSIG: 'yes'
MUSIG: 'yes'
ELLSWIFT: 'yes'
CTIMETESTS: 'no'
SECP256K1_TEST_ITERS: 2
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
env: ${{ matrix.env_vars }}
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: ${{ matrix.docker_arch }}-debian-image
- name: Print logs
uses: ./.github/actions/print-logs
if: ${{ !cancelled() }}
sanitizers_debian:
name: "UBSan, ASan, LSan"
runs-on: ubuntu-latest
needs: docker_cache
strategy:
fail-fast: false
matrix:
configuration:
- env_vars: { CC: 'clang', ASM: 'auto' }
- env_vars: { CC: 'i686-linux-gnu-gcc', HOST: 'i686-linux-gnu', ASM: 'auto' }
- env_vars: { CC: 'clang', ASM: 'no', ECMULTGENKB: 2, ECMULTWINDOW: 2 }
- env_vars: { CC: 'i686-linux-gnu-gcc', HOST: 'i686-linux-gnu', ASM: 'no', ECMULTGENKB: 2, ECMULTWINDOW: 2 }
env:
ECDH: 'yes'
RECOVERY: 'yes'
EXTRAKEYS: 'yes'
SCHNORRSIG: 'yes'
MUSIG: 'yes'
ELLSWIFT: 'yes'
CTIMETESTS: 'no'
CFLAGS: '-fsanitize=undefined,address -g'
UBSAN_OPTIONS: 'print_stacktrace=1:halt_on_error=1'
ASAN_OPTIONS: 'strict_string_checks=1:detect_stack_use_after_return=1:detect_leaks=1'
LSAN_OPTIONS: 'use_unaligned=1'
SECP256K1_TEST_ITERS: 32
SYMBOL_CHECK: 'no'
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
env: ${{ matrix.configuration.env_vars }}
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: x64-debian-image
- name: Print logs
uses: ./.github/actions/print-logs
if: ${{ !cancelled() }}
msan_debian:
name: "MSan"
runs-on: ubuntu-latest
needs: docker_cache
strategy:
fail-fast: false
matrix:
configuration:
- env_vars:
CTIMETESTS: 'yes'
CFLAGS: '-fsanitize=memory -fsanitize-recover=memory -g'
- env_vars:
ECMULTGENKB: 2
ECMULTWINDOW: 2
CTIMETESTS: 'yes'
CFLAGS: '-fsanitize=memory -fsanitize-recover=memory -g -O3'
- env_vars:
# -fsanitize-memory-param-retval is clang's default, but our build system disables it
# when ctime_tests when enabled.
CFLAGS: '-fsanitize=memory -fsanitize-recover=memory -fsanitize-memory-param-retval -g'
CTIMETESTS: 'no'
env:
ECDH: 'yes'
RECOVERY: 'yes'
EXTRAKEYS: 'yes'
SCHNORRSIG: 'yes'
MUSIG: 'yes'
ELLSWIFT: 'yes'
CC: 'clang'
SECP256K1_TEST_ITERS: 32
ASM: 'no'
WITH_VALGRIND: 'no'
SYMBOL_CHECK: 'no'
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
env: ${{ matrix.configuration.env_vars }}
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: x64-debian-image
- name: Print logs
uses: ./.github/actions/print-logs
if: ${{ !cancelled() }}
mingw_debian:
name: ${{ matrix.configuration.job_name }}
runs-on: ubuntu-latest
needs: docker_cache
env:
WRAPPER_CMD: 'wine'
WITH_VALGRIND: 'no'
ECDH: 'yes'
RECOVERY: 'yes'
EXTRAKEYS: 'yes'
SCHNORRSIG: 'yes'
MUSIG: 'yes'
ELLSWIFT: 'yes'
CTIMETESTS: 'no'
strategy:
fail-fast: false
matrix:
configuration:
- job_name: 'x86_64 (mingw32-w64): Windows (Debian stable, Wine)'
env_vars:
HOST: 'x86_64-w64-mingw32'
- job_name: 'i686 (mingw32-w64): Windows (Debian stable, Wine)'
env_vars:
HOST: 'i686-w64-mingw32'
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
env: ${{ matrix.configuration.env_vars }}
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: x64-debian-image
- name: Print logs
uses: ./.github/actions/print-logs
if: ${{ !cancelled() }}
x86_64-macos-native:
name: "x86_64: macOS Ventura, Valgrind"
# See: https://github.com/actions/runner-images#available-images.
runs-on: macos-13
env:
CC: 'clang'
HOMEBREW_NO_AUTO_UPDATE: 1
HOMEBREW_NO_INSTALL_CLEANUP: 1
SYMBOL_CHECK: 'no'
strategy:
fail-fast: false
matrix:
env_vars:
- { WIDEMUL: 'int64', RECOVERY: 'yes', ECDH: 'yes', EXTRAKEYS: 'yes', SCHNORRSIG: 'yes', MUSIG: 'yes', ELLSWIFT: 'yes' }
- { WIDEMUL: 'int128_struct', ECMULTGENKB: 2, ECMULTWINDOW: 4 }
- { WIDEMUL: 'int128', ECDH: 'yes', EXTRAKEYS: 'yes', SCHNORRSIG: 'yes', MUSIG: 'yes', ELLSWIFT: 'yes' }
- { WIDEMUL: 'int128', RECOVERY: 'yes' }
- { WIDEMUL: 'int128', RECOVERY: 'yes', ECDH: 'yes', EXTRAKEYS: 'yes', SCHNORRSIG: 'yes', MUSIG: 'yes', ELLSWIFT: 'yes' }
- { WIDEMUL: 'int128', RECOVERY: 'yes', ECDH: 'yes', EXTRAKEYS: 'yes', SCHNORRSIG: 'yes', MUSIG: 'yes', ELLSWIFT: 'yes', CC: 'gcc' }
- { WIDEMUL: 'int128', RECOVERY: 'yes', ECDH: 'yes', EXTRAKEYS: 'yes', SCHNORRSIG: 'yes', MUSIG: 'yes', ELLSWIFT: 'yes', WRAPPER_CMD: 'valgrind --error-exitcode=42', SECP256K1_TEST_ITERS: 2 }
- { WIDEMUL: 'int128', RECOVERY: 'yes', ECDH: 'yes', EXTRAKEYS: 'yes', SCHNORRSIG: 'yes', MUSIG: 'yes', ELLSWIFT: 'yes', CC: 'gcc', WRAPPER_CMD: 'valgrind --error-exitcode=42', SECP256K1_TEST_ITERS: 2 }
- { WIDEMUL: 'int128', RECOVERY: 'yes', ECDH: 'yes', EXTRAKEYS: 'yes', SCHNORRSIG: 'yes', MUSIG: 'yes', ELLSWIFT: 'yes', CPPFLAGS: '-DVERIFY', CTIMETESTS: 'no' }
- BUILD: 'distcheck'
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install Homebrew packages
run: |
brew install --quiet automake libtool gcc
ln -s $(brew --prefix gcc)/bin/gcc-?? /usr/local/bin/gcc
- name: Install and cache Valgrind
uses: ./.github/actions/install-homebrew-valgrind
- name: CI script
env: ${{ matrix.env_vars }}
run: ./ci/ci.sh
- name: Symbol check
run: |
python3 --version
python3 -m pip install lief
python3 ./tools/symbol-check.py .libs/libsecp256k1.dylib
- name: Print logs
uses: ./.github/actions/print-logs
if: ${{ !cancelled() }}
arm64-macos-native:
name: "ARM64: macOS Sonoma"
# See: https://github.com/actions/runner-images#available-images.
runs-on: macos-14
env:
CC: 'clang'
HOMEBREW_NO_AUTO_UPDATE: 1
HOMEBREW_NO_INSTALL_CLEANUP: 1
WITH_VALGRIND: 'no'
CTIMETESTS: 'no'
SYMBOL_CHECK: 'no'
strategy:
fail-fast: false
matrix:
env_vars:
- { WIDEMUL: 'int64', RECOVERY: 'yes', ECDH: 'yes', EXTRAKEYS: 'yes', SCHNORRSIG: 'yes', MUSIG: 'yes', ELLSWIFT: 'yes' }
- { WIDEMUL: 'int128_struct', ECMULTGENPRECISION: 2, ECMULTWINDOW: 4 }
- { WIDEMUL: 'int128', ECDH: 'yes', EXTRAKEYS: 'yes', SCHNORRSIG: 'yes', MUSIG: 'yes', ELLSWIFT: 'yes' }
- { WIDEMUL: 'int128', RECOVERY: 'yes' }
- { WIDEMUL: 'int128', RECOVERY: 'yes', ECDH: 'yes', EXTRAKEYS: 'yes', SCHNORRSIG: 'yes', MUSIG: 'yes', ELLSWIFT: 'yes' }
- { WIDEMUL: 'int128', RECOVERY: 'yes', ECDH: 'yes', EXTRAKEYS: 'yes', SCHNORRSIG: 'yes', MUSIG: 'yes', ELLSWIFT: 'yes', CC: 'gcc' }
- { WIDEMUL: 'int128', RECOVERY: 'yes', ECDH: 'yes', EXTRAKEYS: 'yes', SCHNORRSIG: 'yes', MUSIG: 'yes', ELLSWIFT: 'yes', CPPFLAGS: '-DVERIFY' }
- BUILD: 'distcheck'
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install Homebrew packages
run: |
brew install --quiet automake libtool gcc
ln -s $(brew --prefix gcc)/bin/gcc-?? /usr/local/bin/gcc
- name: CI script
env: ${{ matrix.env_vars }}
run: ./ci/ci.sh
- name: Symbol check
env:
VIRTUAL_ENV: '${{ github.workspace }}/venv'
run: |
python3 --version
python3 -m venv $VIRTUAL_ENV
export PATH="$VIRTUAL_ENV/bin:$PATH"
python3 -m pip install lief
python3 ./tools/symbol-check.py .libs/libsecp256k1.dylib
- name: Print logs
uses: ./.github/actions/print-logs
if: ${{ !cancelled() }}
win64-native:
name: ${{ matrix.configuration.job_name }}
# See: https://github.com/actions/runner-images#available-images.
runs-on: windows-2022
strategy:
fail-fast: false
matrix:
configuration:
- job_name: 'x64 (MSVC): Windows (VS 2022, shared)'
cmake_options: '-A x64 -DBUILD_SHARED_LIBS=ON'
symbol_check: 'true'
- job_name: 'x64 (MSVC): Windows (VS 2022, static)'
cmake_options: '-A x64 -DBUILD_SHARED_LIBS=OFF'
- job_name: 'x64 (MSVC): Windows (VS 2022, int128_struct)'
cmake_options: '-A x64 -DSECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY=int128_struct'
- job_name: 'x64 (MSVC): Windows (VS 2022, int128_struct with __(u)mulh)'
cmake_options: '-A x64 -DSECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY=int128_struct'
cpp_flags: '/DSECP256K1_MSVC_MULH_TEST_OVERRIDE'
- job_name: 'x86 (MSVC): Windows (VS 2022)'
cmake_options: '-A Win32'
- job_name: 'x64 (MSVC): Windows (clang-cl)'
cmake_options: '-T ClangCL'
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Generate buildsystem
run: cmake -E env CFLAGS="/WX ${{ matrix.configuration.cpp_flags }}" cmake -B build -DSECP256K1_ENABLE_MODULE_RECOVERY=ON -DSECP256K1_BUILD_EXAMPLES=ON ${{ matrix.configuration.cmake_options }}
- name: Build
run: cmake --build build --config RelWithDebInfo -- /p:UseMultiToolTask=true /maxCpuCount
- name: Binaries info
# Use the bash shell included with Git for Windows.
shell: bash
run: |
cd build/bin/RelWithDebInfo && file *tests.exe bench*.exe libsecp256k1-*.dll || true
- name: Symbol check
if: ${{ matrix.configuration.symbol_check }}
shell: bash
run: |
py -3 --version
py -3 -m pip install lief
py -3 ./tools/symbol-check.py build/bin/RelWithDebInfo/libsecp256k1-*.dll
- name: Check
run: |
ctest -C RelWithDebInfo --test-dir build -j ([int]$env:NUMBER_OF_PROCESSORS + 1)
build\bin\RelWithDebInfo\bench_ecmult.exe
build\bin\RelWithDebInfo\bench_internal.exe
build\bin\RelWithDebInfo\bench.exe
win64-native-headers:
name: "x64 (MSVC): C++ (public headers)"
# See: https://github.com/actions/runner-images#available-images.
runs-on: windows-2022
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Add cl.exe to PATH
uses: ilammy/msvc-dev-cmd@v1
- name: C++ (public headers)
run: |
cl.exe -c -WX -TP include/*.h
cxx_fpermissive_debian:
name: "C++ -fpermissive (entire project)"
runs-on: ubuntu-latest
needs: docker_cache
env:
CC: 'g++'
CFLAGS: '-fpermissive -g'
CPPFLAGS: '-DSECP256K1_CPLUSPLUS_TEST_OVERRIDE'
WERROR_CFLAGS:
ECDH: 'yes'
RECOVERY: 'yes'
EXTRAKEYS: 'yes'
SCHNORRSIG: 'yes'
MUSIG: 'yes'
ELLSWIFT: 'yes'
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: x64-debian-image
- name: Print logs
uses: ./.github/actions/print-logs
if: ${{ !cancelled() }}
cxx_headers_debian:
name: "C++ (public headers)"
runs-on: ubuntu-latest
needs: docker_cache
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: x64-debian-image
command: |
g++ -Werror include/*.h
clang -Werror -x c++-header include/*.h
sage:
name: "SageMath prover"
runs-on: ubuntu-latest
container:
image: sagemath/sagemath:latest
options: --user root
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
run: |
cd sage
sage prove_group_implementations.sage
release:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
- run: ./autogen.sh && ./configure --enable-dev-mode && make distcheck
- name: Check installation with Autotools
env:
CI_INSTALL: ${{ runner.temp }}/${{ github.run_id }}${{ github.action }}/install
run: |
./autogen.sh && ./configure --prefix=${{ env.CI_INSTALL }} && make clean && make install && ls -RlAh ${{ env.CI_INSTALL }}
gcc -o ecdsa examples/ecdsa.c $(PKG_CONFIG_PATH=${{ env.CI_INSTALL }}/lib/pkgconfig pkg-config --cflags --libs libsecp256k1) -Wl,-rpath,"${{ env.CI_INSTALL }}/lib" && ./ecdsa
- name: Check installation with CMake
env:
CI_BUILD: ${{ runner.temp }}/${{ github.run_id }}${{ github.action }}/build
CI_INSTALL: ${{ runner.temp }}/${{ github.run_id }}${{ github.action }}/install
run: |
cmake -B ${{ env.CI_BUILD }} -DCMAKE_INSTALL_PREFIX=${{ env.CI_INSTALL }} && cmake --build ${{ env.CI_BUILD }} && cmake --install ${{ env.CI_BUILD }} && ls -RlAh ${{ env.CI_INSTALL }}
gcc -o ecdsa examples/ecdsa.c -I ${{ env.CI_INSTALL }}/include -L ${{ env.CI_INSTALL }}/lib*/ -l secp256k1 -Wl,-rpath,"${{ env.CI_INSTALL }}/lib",-rpath,"${{ env.CI_INSTALL }}/lib64" && ./ecdsa

71
secp256k1/.gitignore vendored Normal file
View File

@ -0,0 +1,71 @@
bench
bench_ecmult
bench_internal
noverify_tests
tests
exhaustive_tests
precompute_ecmult_gen
precompute_ecmult
ctime_tests
ecdh_example
ecdsa_example
schnorr_example
ellswift_example
musig_example
*.exe
*.so
*.a
*.csv
*.log
*.trs
*.sage.py
Makefile
configure
.libs/
Makefile.in
aclocal.m4
autom4te.cache/
config.log
config.status
conftest*
*.tar.gz
*.la
libtool
.deps/
.dirstamp
*.lo
*.o
*~
coverage/
coverage.html
coverage.*.html
*.gcda
*.gcno
*.gcov
build-aux/ar-lib
build-aux/config.guess
build-aux/config.sub
build-aux/depcomp
build-aux/install-sh
build-aux/ltmain.sh
build-aux/m4/libtool.m4
build-aux/m4/lt~obsolete.m4
build-aux/m4/ltoptions.m4
build-aux/m4/ltsugar.m4
build-aux/m4/ltversion.m4
build-aux/missing
build-aux/compile
build-aux/test-driver
libsecp256k1.pc
### CMake
/CMakeUserPresets.json
# Default CMake build directory.
/build
### Python
__pycache__/
*.py[oc]

201
secp256k1/CHANGELOG.md Normal file
View File

@ -0,0 +1,201 @@
# Changelog
All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [Unreleased]
## [0.7.0] - 2025-07-21
#### Added
- CMake: Added `secp256k1_objs` interface library to allow parent projects to embed libsecp256k1 object files into their own static libraries.
- build: Added `SECP256K1_NO_API_VISIBILITY_ATTRIBUTES` preprocessor flag (CMake option: `SECP256K1_ENABLE_API_VISIBILITY_ATTRIBUTES`) that disables explicit "visibility" attributes for API symbols. Defining this macro enables the user to control the visibility of the API symbols via `-fvisibility=<value>` when building libsecp256k1. (All non-API declarations will always have hidden visibility, even with `SECP256K1_ENABLE_API_VISIBILITY_ATTRIBUTES` defined.) For instance, `-fvisibility=hidden` can be useful even for the API symbols, e.g., when building a static libsecp256k1 which is linked into a shared library, and the latter should not re-export the libsecp256k1 API.
#### Changed
- The pointers `secp256k1_context_static` and `secp256k1_context_no_precomp` to the constant context objects are now `const`.
- Removed `SECP256K1_WARN_UNUSED_RESULT` attribute (defined as `__attribute__ ((__warn_unused_result__))`) from several API functions that always return 1. Compilers will no longer warn if the return value is unused.
- CMake: Building with CMake is no longer considered experimental.
- CMake: The minimum required CMake version was increased to 3.22.
- CMake: Shared libraries built with CMake on FreeBSD now create the full versioned filename and symlink chain, matching the behavior of autotools builds.
#### Removed
- Removed previously deprecated function aliases `secp256k1_ec_privkey_negate`, `secp256k1_ec_privkey_tweak_add` and
`secp256k1_ec_privkey_tweak_mul`. Use `secp256k1_ec_seckey_negate`, `secp256k1_ec_seckey_tweak_add` and
`secp256k1_ec_seckey_tweak_mul` instead.
#### ABI Compatibility
The symbols `secp256k1_ec_privkey_negate`, `secp256k1_ec_privkey_tweak_add`, and `secp256k1_ec_privkey_tweak_mul` were removed.
The pointers `secp256k1_context_static` and `secp256k1_context_no_precomp` have been made `const`.
Otherwise, the library maintains backward compatibility with version 0.6.0.
## [0.6.0] - 2024-11-04
#### Added
- New module `musig` implements the MuSig2 multisignature scheme according to the [BIP 327 specification](https://github.com/bitcoin/bips/blob/master/bip-0327.mediawiki). See:
- Header file `include/secp256k1_musig.h` which defines the new API.
- Document `doc/musig.md` for further notes on API usage.
- Usage example `examples/musig.c`.
- New CMake variable `SECP256K1_APPEND_LDFLAGS` for appending linker flags to the build command.
#### Changed
- API functions now use a significantly more robust method to clear secrets from the stack before returning. However, secret clearing remains a best-effort security measure and cannot guarantee complete removal.
- Any type `secp256k1_foo` can now be forward-declared using `typedef struct secp256k1_foo secp256k1_foo;` (or also `struct secp256k1_foo;` in C++).
- Organized CMake build artifacts into dedicated directories (`bin/` for executables, `lib/` for libraries) to improve build output structure and Windows shared library compatibility.
#### Removed
- Removed the `secp256k1_scratch_space` struct and its associated functions `secp256k1_scratch_space_create` and `secp256k1_scratch_space_destroy` because the scratch space was unused in the API.
#### ABI Compatibility
The symbols `secp256k1_scratch_space_create` and `secp256k1_scratch_space_destroy` were removed.
Otherwise, the library maintains backward compatibility with versions 0.3.x through 0.5.x.
## [0.5.1] - 2024-08-01
#### Added
- Added usage example for an ElligatorSwift key exchange.
#### Changed
- The default size of the precomputed table for signing was changed from 22 KiB to 86 KiB. The size can be changed with the configure option `--ecmult-gen-kb` (`SECP256K1_ECMULT_GEN_KB` for CMake).
- "auto" is no longer an accepted value for the `--with-ecmult-window` and `--with-ecmult-gen-kb` configure options (this also applies to `SECP256K1_ECMULT_WINDOW_SIZE` and `SECP256K1_ECMULT_GEN_KB` in CMake). To achieve the same configuration as previously provided by the "auto" value, omit setting the configure option explicitly.
#### Fixed
- Fixed compilation when the extrakeys module is disabled.
#### ABI Compatibility
The ABI is backward compatible with versions 0.5.0, 0.4.x and 0.3.x.
## [0.5.0] - 2024-05-06
#### Added
- New function `secp256k1_ec_pubkey_sort` that sorts public keys using lexicographic (of compressed serialization) order.
#### Changed
- The implementation of the point multiplication algorithm used for signing and public key generation was changed, resulting in improved performance for those operations.
- The related configure option `--ecmult-gen-precision` was replaced with `--ecmult-gen-kb` (`SECP256K1_ECMULT_GEN_KB` for CMake).
- This changes the supported precomputed table sizes for these operations. The new supported sizes are 2 KiB, 22 KiB, or 86 KiB (while the old supported sizes were 32 KiB, 64 KiB, or 512 KiB).
#### ABI Compatibility
The ABI is backward compatible with versions 0.4.x and 0.3.x.
## [0.4.1] - 2023-12-21
#### Changed
- The point multiplication algorithm used for ECDH operations (module `ecdh`) was replaced with a slightly faster one.
- Optional handwritten x86_64 assembly for field operations was removed because modern C compilers are able to output more efficient assembly. This change results in a significant speedup of some library functions when handwritten x86_64 assembly is enabled (`--with-asm=x86_64` in GNU Autotools, `-DSECP256K1_ASM=x86_64` in CMake), which is the default on x86_64. Benchmarks with GCC 10.5.0 show a 10% speedup for `secp256k1_ecdsa_verify` and `secp256k1_schnorrsig_verify`.
#### ABI Compatibility
The ABI is backward compatible with versions 0.4.0 and 0.3.x.
## [0.4.0] - 2023-09-04
#### Added
- New module `ellswift` implements ElligatorSwift encoding for public keys and x-only Diffie-Hellman key exchange for them.
ElligatorSwift permits representing secp256k1 public keys as 64-byte arrays which cannot be distinguished from uniformly random. See:
- Header file `include/secp256k1_ellswift.h` which defines the new API.
- Document `doc/ellswift.md` which explains the mathematical background of the scheme.
- The [paper](https://eprint.iacr.org/2022/759) on which the scheme is based.
- We now test the library with unreleased development snapshots of GCC and Clang. This gives us an early chance to catch miscompilations and constant-time issues introduced by the compiler (such as those that led to the previous two releases).
#### Fixed
- Fixed symbol visibility in Windows DLL builds, where three internal library symbols were wrongly exported.
#### Changed
- When consuming libsecp256k1 as a static library on Windows, the user must now define the `SECP256K1_STATIC` macro before including `secp256k1.h`.
#### ABI Compatibility
This release is backward compatible with the ABI of 0.3.0, 0.3.1, and 0.3.2. Symbol visibility is now believed to be handled properly on supported platforms and is now considered to be part of the ABI. Please report any improperly exported symbols as a bug.
## [0.3.2] - 2023-05-13
We strongly recommend updating to 0.3.2 if you use or plan to use GCC >=13 to compile libsecp256k1. When in doubt, check the GCC version using `gcc -v`.
#### Security
- Module `ecdh`: Fix "constant-timeness" issue with GCC 13.1 (and potentially future versions of GCC) that could leave applications using libsecp256k1's ECDH module vulnerable to a timing side-channel attack. The fix avoids secret-dependent control flow during ECDH computations when libsecp256k1 is compiled with GCC 13.1.
#### Fixed
- Fixed an old bug that permitted compilers to potentially output bad assembly code on x86_64. In theory, it could lead to a crash or a read of unrelated memory, but this has never been observed on any compilers so far.
#### Changed
- Various improvements and changes to CMake builds. CMake builds remain experimental.
- Made API versioning consistent with GNU Autotools builds.
- Switched to `BUILD_SHARED_LIBS` variable for controlling whether to build a static or a shared library.
- Added `SECP256K1_INSTALL` variable for the controlling whether to install the build artefacts.
- Renamed asm build option `arm` to `arm32`. Use `--with-asm=arm32` instead of `--with-asm=arm` (GNU Autotools), and `-DSECP256K1_ASM=arm32` instead of `-DSECP256K1_ASM=arm` (CMake).
#### ABI Compatibility
The ABI is compatible with versions 0.3.0 and 0.3.1.
## [0.3.1] - 2023-04-10
We strongly recommend updating to 0.3.1 if you use or plan to use Clang >=14 to compile libsecp256k1, e.g., Xcode >=14 on macOS has Clang >=14. When in doubt, check the Clang version using `clang -v`.
#### Security
- Fix "constant-timeness" issue with Clang >=14 that could leave applications using libsecp256k1 vulnerable to a timing side-channel attack. The fix avoids secret-dependent control flow and secret-dependent memory accesses in conditional moves of memory objects when libsecp256k1 is compiled with Clang >=14.
#### Added
- Added tests against [Project Wycheproof's](https://github.com/C2SP/wycheproof/) set of ECDSA test vectors (Bitcoin "low-S" variant), a fixed set of test cases designed to trigger various edge cases.
#### Changed
- Increased minimum required CMake version to 3.13. CMake builds remain experimental.
#### ABI Compatibility
The ABI is compatible with version 0.3.0.
## [0.3.0] - 2023-03-08
#### Added
- Added experimental support for CMake builds. Traditional GNU Autotools builds (`./configure` and `make`) remain fully supported.
- Usage examples: Added a recommended method for securely clearing sensitive data, e.g., secret keys, from memory.
- Tests: Added a new test binary `noverify_tests`. This binary runs the tests without some additional checks present in the ordinary `tests` binary and is thereby closer to production binaries. The `noverify_tests` binary is automatically run as part of the `make check` target.
#### Fixed
- Fixed declarations of API variables for MSVC (`__declspec(dllimport)`). This fixes MSVC builds of programs which link against a libsecp256k1 DLL dynamically and use API variables (and not only API functions). Unfortunately, the MSVC linker now will emit warning `LNK4217` when trying to link against libsecp256k1 statically. Pass `/ignore:4217` to the linker to suppress this warning.
#### Changed
- Forbade cloning or destroying `secp256k1_context_static`. Create a new context instead of cloning the static context. (If this change breaks your code, your code is probably wrong.)
- Forbade randomizing (copies of) `secp256k1_context_static`. Randomizing a copy of `secp256k1_context_static` did not have any effect and did not provide defense-in-depth protection against side-channel attacks. Create a new context if you want to benefit from randomization.
#### Removed
- Removed the configuration header `src/libsecp256k1-config.h`. We recommend passing flags to `./configure` or `cmake` to set configuration options (see `./configure --help` or `cmake -LH`). If you cannot or do not want to use one of the supported build systems, pass configuration flags such as `-DSECP256K1_ENABLE_MODULE_SCHNORRSIG` manually to the compiler (see the file `configure.ac` for supported flags).
#### ABI Compatibility
Due to changes in the API regarding `secp256k1_context_static` described above, the ABI is *not* compatible with previous versions.
## [0.2.0] - 2022-12-12
#### Added
- Added usage examples for common use cases in a new `examples/` directory.
- Added `secp256k1_selftest`, to be used in conjunction with `secp256k1_context_static`.
- Added support for 128-bit wide multiplication on MSVC for x86_64 and arm64, giving roughly a 20% speedup on those platforms.
#### Changed
- Enabled modules `schnorrsig`, `extrakeys` and `ecdh` by default in `./configure`.
- The `secp256k1_nonce_function_rfc6979` nonce function, used by default by `secp256k1_ecdsa_sign`, now reduces the message hash modulo the group order to match the specification. This only affects improper use of ECDSA signing API.
#### Deprecated
- Deprecated context flags `SECP256K1_CONTEXT_VERIFY` and `SECP256K1_CONTEXT_SIGN`. Use `SECP256K1_CONTEXT_NONE` instead.
- Renamed `secp256k1_context_no_precomp` to `secp256k1_context_static`.
- Module `schnorrsig`: renamed `secp256k1_schnorrsig_sign` to `secp256k1_schnorrsig_sign32`.
#### ABI Compatibility
Since this is the first release, we do not compare application binary interfaces.
However, there are earlier unreleased versions of libsecp256k1 that are *not* ABI compatible with this version.
## [0.1.0] - 2013-03-05 to 2021-12-25
This version was in fact never released.
The number was given by the build system since the introduction of autotools in Jan 2014 (ea0fe5a5bf0c04f9cc955b2966b614f5f378c6f6).
Therefore, this version number does not uniquely identify a set of source files.
[unreleased]: https://github.com/bitcoin-core/secp256k1/compare/v0.7.0...HEAD
[0.7.0]: https://github.com/bitcoin-core/secp256k1/compare/v0.6.0...v0.7.0
[0.6.0]: https://github.com/bitcoin-core/secp256k1/compare/v0.5.1...v0.6.0
[0.5.1]: https://github.com/bitcoin-core/secp256k1/compare/v0.5.0...v0.5.1
[0.5.0]: https://github.com/bitcoin-core/secp256k1/compare/v0.4.1...v0.5.0
[0.4.1]: https://github.com/bitcoin-core/secp256k1/compare/v0.4.0...v0.4.1
[0.4.0]: https://github.com/bitcoin-core/secp256k1/compare/v0.3.2...v0.4.0
[0.3.2]: https://github.com/bitcoin-core/secp256k1/compare/v0.3.1...v0.3.2
[0.3.1]: https://github.com/bitcoin-core/secp256k1/compare/v0.3.0...v0.3.1
[0.3.0]: https://github.com/bitcoin-core/secp256k1/compare/v0.2.0...v0.3.0
[0.2.0]: https://github.com/bitcoin-core/secp256k1/compare/423b6d19d373f1224fd671a982584d7e7900bc93..v0.2.0
[0.1.0]: https://github.com/bitcoin-core/secp256k1/commit/423b6d19d373f1224fd671a982584d7e7900bc93

364
secp256k1/CMakeLists.txt Normal file
View File

@ -0,0 +1,364 @@
cmake_minimum_required(VERSION 3.22)
#=============================
# Project / Package metadata
#=============================
project(libsecp256k1
# The package (a.k.a. release) version is based on semantic versioning 2.0.0 of
# the API. All changes in experimental modules are treated as
# backwards-compatible and therefore at most increase the minor version.
VERSION 0.7.1
DESCRIPTION "Optimized C library for ECDSA signatures and secret/public key operations on curve secp256k1."
HOMEPAGE_URL "https://github.com/bitcoin-core/secp256k1"
LANGUAGES C
)
enable_testing()
include(CTestUseLaunchers) # Allow users to set CTEST_USE_LAUNCHERS in custom `ctest -S` scripts.
list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)
# The library version is based on libtool versioning of the ABI. The set of
# rules for updating the version can be found here:
# https://www.gnu.org/software/libtool/manual/html_node/Updating-version-info.html
# All changes in experimental modules are treated as if they don't affect the
# interface and therefore only increase the revision.
set(${PROJECT_NAME}_LIB_VERSION_CURRENT 6)
set(${PROJECT_NAME}_LIB_VERSION_REVISION 1)
set(${PROJECT_NAME}_LIB_VERSION_AGE 0)
#=============================
# Language setup
#=============================
set(CMAKE_C_STANDARD 90)
set(CMAKE_C_EXTENSIONS OFF)
#=============================
# Configurable options
#=============================
if(libsecp256k1_IS_TOP_LEVEL)
option(BUILD_SHARED_LIBS "Build shared libraries." ON)
endif()
option(SECP256K1_INSTALL "Enable installation." ${PROJECT_IS_TOP_LEVEL})
option(SECP256K1_ENABLE_API_VISIBILITY_ATTRIBUTES "Enable visibility attributes in the API." ON)
## Modules
# We declare all options before processing them, to make sure we can express
# dependencies while processing.
option(SECP256K1_ENABLE_MODULE_ECDH "Enable ECDH module." ON)
option(SECP256K1_ENABLE_MODULE_RECOVERY "Enable ECDSA pubkey recovery module." OFF)
option(SECP256K1_ENABLE_MODULE_EXTRAKEYS "Enable extrakeys module." ON)
option(SECP256K1_ENABLE_MODULE_SCHNORRSIG "Enable schnorrsig module." ON)
option(SECP256K1_ENABLE_MODULE_MUSIG "Enable musig module." ON)
option(SECP256K1_ENABLE_MODULE_ELLSWIFT "Enable ElligatorSwift module." ON)
option(SECP256K1_USE_EXTERNAL_DEFAULT_CALLBACKS "Enable external default callback functions." OFF)
if(SECP256K1_USE_EXTERNAL_DEFAULT_CALLBACKS)
add_compile_definitions(USE_EXTERNAL_DEFAULT_CALLBACKS=1)
endif()
set(SECP256K1_ECMULT_WINDOW_SIZE 15 CACHE STRING "Window size for ecmult precomputation for verification, specified as integer in range [2..24]. The default value is a reasonable setting for desktop machines (currently 15). [default=15]")
set_property(CACHE SECP256K1_ECMULT_WINDOW_SIZE PROPERTY STRINGS 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)
include(CheckStringOptionValue)
check_string_option_value(SECP256K1_ECMULT_WINDOW_SIZE)
add_compile_definitions(ECMULT_WINDOW_SIZE=${SECP256K1_ECMULT_WINDOW_SIZE})
set(SECP256K1_ECMULT_GEN_KB 86 CACHE STRING "The size of the precomputed table for signing in multiples of 1024 bytes (on typical platforms). Larger values result in possibly better signing or key generation performance at the cost of a larger table. Valid choices are 2, 22, 86. The default value is a reasonable setting for desktop machines (currently 86). [default=86]")
set_property(CACHE SECP256K1_ECMULT_GEN_KB PROPERTY STRINGS 2 22 86)
check_string_option_value(SECP256K1_ECMULT_GEN_KB)
if(SECP256K1_ECMULT_GEN_KB EQUAL 2)
add_compile_definitions(COMB_BLOCKS=2)
add_compile_definitions(COMB_TEETH=5)
elseif(SECP256K1_ECMULT_GEN_KB EQUAL 22)
add_compile_definitions(COMB_BLOCKS=11)
add_compile_definitions(COMB_TEETH=6)
elseif(SECP256K1_ECMULT_GEN_KB EQUAL 86)
add_compile_definitions(COMB_BLOCKS=43)
add_compile_definitions(COMB_TEETH=6)
endif()
set(SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY "OFF" CACHE STRING "Test-only override of the (autodetected by the C code) \"widemul\" setting. Legal values are: \"OFF\", \"int128_struct\", \"int128\" or \"int64\". [default=OFF]")
set_property(CACHE SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY PROPERTY STRINGS "OFF" "int128_struct" "int128" "int64")
check_string_option_value(SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY)
if(SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY)
string(TOUPPER "${SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY}" widemul_upper_value)
add_compile_definitions(USE_FORCE_WIDEMUL_${widemul_upper_value}=1)
endif()
mark_as_advanced(FORCE SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY)
set(SECP256K1_ASM "AUTO" CACHE STRING "Assembly to use: \"AUTO\", \"OFF\", \"x86_64\" or \"arm32\" (experimental). [default=AUTO]")
set_property(CACHE SECP256K1_ASM PROPERTY STRINGS "AUTO" "OFF" "x86_64" "arm32")
check_string_option_value(SECP256K1_ASM)
if(SECP256K1_ASM STREQUAL "arm32")
enable_language(ASM)
include(CheckArm32Assembly)
check_arm32_assembly()
if(HAVE_ARM32_ASM)
add_compile_definitions(USE_EXTERNAL_ASM=1)
else()
message(FATAL_ERROR "ARM32 assembly requested but not available.")
endif()
elseif(SECP256K1_ASM)
include(CheckX86_64Assembly)
check_x86_64_assembly()
if(HAVE_X86_64_ASM)
set(SECP256K1_ASM "x86_64")
add_compile_definitions(USE_ASM_X86_64=1)
elseif(SECP256K1_ASM STREQUAL "AUTO")
set(SECP256K1_ASM "OFF")
else()
message(FATAL_ERROR "x86_64 assembly requested but not available.")
endif()
endif()
option(SECP256K1_EXPERIMENTAL "Allow experimental configuration options." OFF)
if(NOT SECP256K1_EXPERIMENTAL)
if(SECP256K1_ASM STREQUAL "arm32")
message(FATAL_ERROR "ARM32 assembly is experimental. Use -DSECP256K1_EXPERIMENTAL=ON to allow.")
endif()
endif()
set(SECP256K1_VALGRIND "AUTO" CACHE STRING "Build with extra checks for running inside Valgrind. [default=AUTO]")
set_property(CACHE SECP256K1_VALGRIND PROPERTY STRINGS "AUTO" "OFF" "ON")
check_string_option_value(SECP256K1_VALGRIND)
if(SECP256K1_VALGRIND)
find_package(Valgrind MODULE)
if(Valgrind_FOUND)
set(SECP256K1_VALGRIND ON)
include_directories(${Valgrind_INCLUDE_DIR})
add_compile_definitions(VALGRIND)
elseif(SECP256K1_VALGRIND STREQUAL "AUTO")
set(SECP256K1_VALGRIND OFF)
else()
message(FATAL_ERROR "Valgrind support requested but valgrind/memcheck.h header not available.")
endif()
endif()
option(SECP256K1_BUILD_BENCHMARK "Build benchmarks." ON)
option(SECP256K1_BUILD_TESTS "Build tests." ON)
option(SECP256K1_BUILD_EXHAUSTIVE_TESTS "Build exhaustive tests." ON)
option(SECP256K1_BUILD_CTIME_TESTS "Build constant-time tests." ${SECP256K1_VALGRIND})
option(SECP256K1_BUILD_EXAMPLES "Build examples." OFF)
# Redefine configuration flags.
# We leave assertions on, because they are only used in the examples, and we want them always on there.
if(MSVC)
string(REGEX REPLACE "/DNDEBUG[ \t\r\n]*" "" CMAKE_C_FLAGS_RELWITHDEBINFO "${CMAKE_C_FLAGS_RELWITHDEBINFO}")
string(REGEX REPLACE "/DNDEBUG[ \t\r\n]*" "" CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE}")
string(REGEX REPLACE "/DNDEBUG[ \t\r\n]*" "" CMAKE_C_FLAGS_MINSIZEREL "${CMAKE_C_FLAGS_MINSIZEREL}")
else()
string(REGEX REPLACE "-DNDEBUG[ \t\r\n]*" "" CMAKE_C_FLAGS_RELWITHDEBINFO "${CMAKE_C_FLAGS_RELWITHDEBINFO}")
string(REGEX REPLACE "-DNDEBUG[ \t\r\n]*" "" CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE}")
string(REGEX REPLACE "-DNDEBUG[ \t\r\n]*" "" CMAKE_C_FLAGS_MINSIZEREL "${CMAKE_C_FLAGS_MINSIZEREL}")
# Prefer -O2 optimization level. (-O3 is CMake's default for Release for many compilers.)
string(REGEX REPLACE "-O3( |$)" "-O2\\1" CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE}")
endif()
# Define custom "Coverage" build type.
set(CMAKE_C_FLAGS_COVERAGE "${CMAKE_C_FLAGS_RELWITHDEBINFO} -O0 -DCOVERAGE=1 --coverage" CACHE STRING
"Flags used by the C compiler during \"Coverage\" builds."
FORCE
)
set(CMAKE_EXE_LINKER_FLAGS_COVERAGE "${CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFO} --coverage" CACHE STRING
"Flags used for linking binaries during \"Coverage\" builds."
FORCE
)
set(CMAKE_SHARED_LINKER_FLAGS_COVERAGE "${CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFO} --coverage" CACHE STRING
"Flags used by the shared libraries linker during \"Coverage\" builds."
FORCE
)
mark_as_advanced(
CMAKE_C_FLAGS_COVERAGE
CMAKE_EXE_LINKER_FLAGS_COVERAGE
CMAKE_SHARED_LINKER_FLAGS_COVERAGE
)
if(PROJECT_IS_TOP_LEVEL)
get_property(is_multi_config GLOBAL PROPERTY GENERATOR_IS_MULTI_CONFIG)
set(default_build_type "RelWithDebInfo")
if(is_multi_config)
set(CMAKE_CONFIGURATION_TYPES "${default_build_type}" "Release" "Debug" "MinSizeRel" "Coverage" CACHE STRING
"Supported configuration types."
FORCE
)
else()
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY
STRINGS "${default_build_type}" "Release" "Debug" "MinSizeRel" "Coverage"
)
if(NOT CMAKE_BUILD_TYPE)
message(STATUS "Setting build type to \"${default_build_type}\" as none was specified")
set(CMAKE_BUILD_TYPE "${default_build_type}" CACHE STRING
"Choose the type of build."
FORCE
)
endif()
endif()
endif()
include(TryAppendCFlags)
if(MSVC)
# For both cl and clang-cl compilers.
try_append_c_flags(/W3) # Production quality warning level.
# Eliminate deprecation warnings for the older, less secure functions.
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
else()
try_append_c_flags(-Wall) # GCC >= 2.95 and probably many other compilers.
endif()
if(CMAKE_C_COMPILER_ID STREQUAL "MSVC")
# Keep the following commands ordered lexicographically.
try_append_c_flags(/wd4146) # Disable warning C4146 "unary minus operator applied to unsigned type, result still unsigned".
try_append_c_flags(/wd4244) # Disable warning C4244 "'conversion' conversion from 'type1' to 'type2', possible loss of data".
try_append_c_flags(/wd4267) # Disable warning C4267 "'var' : conversion from 'size_t' to 'type', possible loss of data".
else()
# Keep the following commands ordered lexicographically.
try_append_c_flags(-pedantic)
try_append_c_flags(-Wcast-align) # GCC >= 2.95.
try_append_c_flags(-Wcast-align=strict) # GCC >= 8.0.
try_append_c_flags(-Wconditional-uninitialized) # Clang >= 3.0 only.
try_append_c_flags(-Wextra) # GCC >= 3.4, this is the newer name of -W, which we don't use because older GCCs will warn about unused functions.
try_append_c_flags(-Wnested-externs)
try_append_c_flags(-Wno-long-long) # GCC >= 3.0, -Wlong-long is implied by -pedantic.
try_append_c_flags(-Wno-overlength-strings) # GCC >= 4.2, -Woverlength-strings is implied by -pedantic.
try_append_c_flags(-Wno-unused-function) # GCC >= 3.0, -Wunused-function is implied by -Wall.
try_append_c_flags(-Wreserved-identifier) # Clang >= 13.0 only.
try_append_c_flags(-Wshadow)
try_append_c_flags(-Wstrict-prototypes)
try_append_c_flags(-Wundef)
endif()
set(print_msan_notice)
if(SECP256K1_BUILD_CTIME_TESTS)
include(CheckMemorySanitizer)
check_memory_sanitizer(msan_enabled)
if(msan_enabled)
try_append_c_flags(-fno-sanitize-memory-param-retval)
set(print_msan_notice YES)
endif()
unset(msan_enabled)
endif()
set(SECP256K1_APPEND_CFLAGS "" CACHE STRING "Compiler flags that are appended to the command line after all other flags added by the build system. This variable is intended for debugging and special builds.")
if(SECP256K1_APPEND_CFLAGS)
# Appending to this low-level rule variable is the only way to
# guarantee that the flags appear at the end of the command line.
string(APPEND CMAKE_C_COMPILE_OBJECT " ${SECP256K1_APPEND_CFLAGS}")
endif()
set(SECP256K1_APPEND_LDFLAGS "" CACHE STRING "Linker flags that are appended to the command line after all other flags added by the build system. This variable is intended for debugging and special builds.")
if(SECP256K1_APPEND_LDFLAGS)
# Appending to this low-level rule variable is the only way to
# guarantee that the flags appear at the end of the command line.
string(APPEND CMAKE_C_CREATE_SHARED_LIBRARY " ${SECP256K1_APPEND_LDFLAGS}")
string(APPEND CMAKE_C_LINK_EXECUTABLE " ${SECP256K1_APPEND_LDFLAGS}")
endif()
if(NOT CMAKE_RUNTIME_OUTPUT_DIRECTORY)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${PROJECT_BINARY_DIR}/bin)
endif()
if(NOT CMAKE_LIBRARY_OUTPUT_DIRECTORY)
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${PROJECT_BINARY_DIR}/lib)
endif()
if(NOT CMAKE_ARCHIVE_OUTPUT_DIRECTORY)
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY ${PROJECT_BINARY_DIR}/lib)
endif()
add_subdirectory(src)
if(SECP256K1_BUILD_EXAMPLES)
add_subdirectory(examples)
endif()
message("\n")
message("secp256k1 configure summary")
message("===========================")
message("Build artifacts:")
if(BUILD_SHARED_LIBS)
set(library_type "Shared")
else()
set(library_type "Static")
endif()
message(" library type ........................ ${library_type}")
message("Optional modules:")
message(" ECDH ................................ ${SECP256K1_ENABLE_MODULE_ECDH}")
message(" ECDSA pubkey recovery ............... ${SECP256K1_ENABLE_MODULE_RECOVERY}")
message(" extrakeys ........................... ${SECP256K1_ENABLE_MODULE_EXTRAKEYS}")
message(" schnorrsig .......................... ${SECP256K1_ENABLE_MODULE_SCHNORRSIG}")
message(" musig ............................... ${SECP256K1_ENABLE_MODULE_MUSIG}")
message(" ElligatorSwift ...................... ${SECP256K1_ENABLE_MODULE_ELLSWIFT}")
message("Parameters:")
message(" ecmult window size .................. ${SECP256K1_ECMULT_WINDOW_SIZE}")
message(" ecmult gen table size ............... ${SECP256K1_ECMULT_GEN_KB} KiB")
message("Optional features:")
message(" assembly ............................ ${SECP256K1_ASM}")
message(" external callbacks .................. ${SECP256K1_USE_EXTERNAL_DEFAULT_CALLBACKS}")
if(SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY)
message(" wide multiplication (test-only) ..... ${SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY}")
endif()
message("Optional binaries:")
message(" benchmark ........................... ${SECP256K1_BUILD_BENCHMARK}")
message(" noverify_tests ...................... ${SECP256K1_BUILD_TESTS}")
set(tests_status "${SECP256K1_BUILD_TESTS}")
if(CMAKE_BUILD_TYPE STREQUAL "Coverage")
set(tests_status OFF)
endif()
message(" tests ............................... ${tests_status}")
message(" exhaustive tests .................... ${SECP256K1_BUILD_EXHAUSTIVE_TESTS}")
message(" ctime_tests ......................... ${SECP256K1_BUILD_CTIME_TESTS}")
message(" examples ............................ ${SECP256K1_BUILD_EXAMPLES}")
message("")
if(CMAKE_CROSSCOMPILING)
set(cross_status "TRUE, for ${CMAKE_SYSTEM_NAME}, ${CMAKE_SYSTEM_PROCESSOR}")
else()
set(cross_status "FALSE")
endif()
message("Cross compiling ....................... ${cross_status}")
message("API visibility attributes ............. ${SECP256K1_ENABLE_API_VISIBILITY_ATTRIBUTES}")
message("Valgrind .............................. ${SECP256K1_VALGRIND}")
get_directory_property(definitions COMPILE_DEFINITIONS)
string(REPLACE ";" " " definitions "${definitions}")
message("Preprocessor defined macros ........... ${definitions}")
message("C compiler ............................ ${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}, ${CMAKE_C_COMPILER}")
message("CFLAGS ................................ ${CMAKE_C_FLAGS}")
get_directory_property(compile_options COMPILE_OPTIONS)
string(REPLACE ";" " " compile_options "${compile_options}")
message("Compile options ....................... " ${compile_options})
if(NOT is_multi_config)
message("Build type:")
message(" - CMAKE_BUILD_TYPE ................... ${CMAKE_BUILD_TYPE}")
string(TOUPPER "${CMAKE_BUILD_TYPE}" build_type)
message(" - CFLAGS ............................. ${CMAKE_C_FLAGS_${build_type}}")
message(" - LDFLAGS for executables ............ ${CMAKE_EXE_LINKER_FLAGS_${build_type}}")
message(" - LDFLAGS for shared libraries ....... ${CMAKE_SHARED_LINKER_FLAGS_${build_type}}")
else()
message("Supported configurations .............. ${CMAKE_CONFIGURATION_TYPES}")
message("RelWithDebInfo configuration:")
message(" - CFLAGS ............................. ${CMAKE_C_FLAGS_RELWITHDEBINFO}")
message(" - LDFLAGS for executables ............ ${CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFO}")
message(" - LDFLAGS for shared libraries ....... ${CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFO}")
message("Debug configuration:")
message(" - CFLAGS ............................. ${CMAKE_C_FLAGS_DEBUG}")
message(" - LDFLAGS for executables ............ ${CMAKE_EXE_LINKER_FLAGS_DEBUG}")
message(" - LDFLAGS for shared libraries ....... ${CMAKE_SHARED_LINKER_FLAGS_DEBUG}")
endif()
if(SECP256K1_APPEND_CFLAGS)
message("SECP256K1_APPEND_CFLAGS ............... ${SECP256K1_APPEND_CFLAGS}")
endif()
if(SECP256K1_APPEND_LDFLAGS)
message("SECP256K1_APPEND_LDFLAGS .............. ${SECP256K1_APPEND_LDFLAGS}")
endif()
message("")
if(print_msan_notice)
message(
"Note:\n"
" MemorySanitizer detected, tried to add -fno-sanitize-memory-param-retval to compile options\n"
" to avoid false positives in ctime_tests. Pass -DSECP256K1_BUILD_CTIME_TESTS=OFF to avoid this.\n"
)
endif()
if(SECP256K1_EXPERIMENTAL)
message(
" ******\n"
" WARNING: experimental build\n"
" Experimental features do not have stable APIs or properties, and may not be safe for production use.\n"
" ******\n"
)
endif()

View File

@ -0,0 +1,18 @@
{
"version": 3,
"configurePresets": [
{
"name": "dev-mode",
"displayName": "Development mode (intended only for developers of the library)",
"cacheVariables": {
"SECP256K1_EXPERIMENTAL": "ON",
"SECP256K1_ENABLE_MODULE_RECOVERY": "ON",
"SECP256K1_BUILD_EXAMPLES": "ON"
},
"warnings": {
"dev": true,
"uninitialized": true
}
}
]
}

109
secp256k1/CONTRIBUTING.md Normal file
View File

@ -0,0 +1,109 @@
# Contributing to libsecp256k1
## Scope
libsecp256k1 is a library for elliptic curve cryptography on the curve secp256k1, not a general-purpose cryptography library.
The library primarily serves the needs of the Bitcoin Core project but provides additional functionality for the benefit of the wider Bitcoin ecosystem.
## Adding new functionality or modules
The libsecp256k1 project welcomes contributions in the form of new functionality or modules, provided they are within the project's scope.
It is the responsibility of the contributors to convince the maintainers that the proposed functionality is within the project's scope, high-quality and maintainable.
Contributors are recommended to provide the following in addition to the new code:
* **Specification:**
A specification can help significantly in reviewing the new code as it provides documentation and context.
It may justify various design decisions, give a motivation and outline security goals.
If the specification contains pseudocode, a reference implementation or test vectors, these can be used to compare with the proposed libsecp256k1 code.
* **Security Arguments:**
In addition to a defining the security goals, it should be argued that the new functionality meets these goals.
Depending on the nature of the new functionality, a wide range of security arguments are acceptable, ranging from being "obviously secure" to rigorous proofs of security.
* **Relevance Arguments:**
The relevance of the new functionality for the Bitcoin ecosystem should be argued by outlining clear use cases.
These are not the only factors taken into account when considering to add new functionality.
The proposed new libsecp256k1 code must be of high quality, including API documentation and tests, as well as featuring a misuse-resistant API design.
We recommend reaching out to other contributors (see [Communication Channels](#communication-channels)) and get feedback before implementing new functionality.
## Communication channels
Most communication about libsecp256k1 occurs on the GitHub repository: in issues, pull request or on the discussion board.
Additionally, there is an IRC channel dedicated to libsecp256k1, with biweekly meetings (see channel topic).
The channel is `#secp256k1` on Libera Chat.
The easiest way to participate on IRC is with the web client, [web.libera.chat](https://web.libera.chat/#secp256k1).
Chat history logs can be found at https://gnusha.org/secp256k1/.
## Contributor workflow & peer review
The Contributor Workflow & Peer Review in libsecp256k1 are similar to Bitcoin Core's workflow and review processes described in its [CONTRIBUTING.md](https://github.com/bitcoin/bitcoin/blob/master/CONTRIBUTING.md).
### Coding conventions
In addition, libsecp256k1 tries to maintain the following coding conventions:
* No runtime heap allocation (e.g., no `malloc`) unless explicitly requested by the caller (via `secp256k1_context_create` or `secp256k1_scratch_space_create`, for example). Moreover, it should be possible to use the library without any heap allocations.
* The tests should cover all lines and branches of the library (see [Test coverage](#coverage)).
* Operations involving secret data should be tested for being constant time with respect to the secrets (see [src/ctime_tests.c](src/ctime_tests.c)).
* Local variables containing secret data should be cleared explicitly to try to delete secrets from memory.
* Use `secp256k1_memcmp_var` instead of `memcmp` (see [#823](https://github.com/bitcoin-core/secp256k1/issues/823)).
* As a rule of thumb, the default values for configuration options should target standard desktop machines and align with Bitcoin Core's defaults, and the tests should mostly exercise the default configuration (see [#1549](https://github.com/bitcoin-core/secp256k1/issues/1549#issuecomment-2200559257)).
#### Style conventions
* Commits should be atomic and diffs should be easy to read. For this reason, do not mix any formatting fixes or code moves with actual code changes. Make sure each individual commit is hygienic: that it builds successfully on its own without warnings, errors, regressions, or test failures.
* New code should adhere to the style of existing, in particular surrounding, code. Other than that, we do not enforce strict rules for code formatting.
* The code conforms to C89. Most notably, that means that only `/* ... */` comments are allowed (no `//` line comments). Moreover, any declarations in a `{ ... }` block (e.g., a function) must appear at the beginning of the block before any statements. When you would like to declare a variable in the middle of a block, you can open a new block:
```C
void secp256k_foo(void) {
unsigned int x; /* declaration */
int y = 2*x; /* declaration */
x = 17; /* statement */
{
int a, b; /* declaration */
a = x + y; /* statement */
secp256k_bar(x, &b); /* statement */
}
}
```
* Use `unsigned int` instead of just `unsigned`.
* Use `void *ptr` instead of `void* ptr`.
* Arguments of the publicly-facing API must have a specific order defined in [include/secp256k1.h](include/secp256k1.h).
* User-facing comment lines in headers should be limited to 80 chars if possible.
* All identifiers in file scope should start with `secp256k1_`.
* Avoid trailing whitespace.
* Use the constants `EXIT_SUCCESS`/`EXIT_FAILURE` (defined in `stdlib.h`) to indicate program execution status for examples and other binaries.
### Tests
#### Coverage
This library aims to have full coverage of reachable lines and branches.
To create a test coverage report, configure with `--enable-coverage` (use of GCC is necessary):
$ ./configure --enable-coverage
Run the tests:
$ make check
To create a report, `gcovr` is recommended, as it includes branch coverage reporting:
$ gcovr --exclude 'src/bench*' --print-summary
To create a HTML report with coloured and annotated source code:
$ mkdir -p coverage
$ gcovr --exclude 'src/bench*' --html --html-details -o coverage/coverage.html
#### Exhaustive tests
There are tests of several functions in which a small group replaces secp256k1.
These tests are *exhaustive* since they provide all elements and scalars of the small group as input arguments (see [src/tests_exhaustive.c](src/tests_exhaustive.c)).
### Benchmarks
See `src/bench*.c` for examples of benchmarks.

19
secp256k1/COPYING Normal file
View File

@ -0,0 +1,19 @@
Copyright (c) 2013 Pieter Wuille
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

313
secp256k1/Makefile.am Normal file
View File

@ -0,0 +1,313 @@
ACLOCAL_AMFLAGS = -I build-aux/m4
# AM_CFLAGS will be automatically prepended to CFLAGS by Automake when compiling some foo
# which does not have an explicit foo_CFLAGS variable set.
AM_CFLAGS = $(SECP_CFLAGS)
lib_LTLIBRARIES = libsecp256k1.la
include_HEADERS = include/secp256k1.h
include_HEADERS += include/secp256k1_preallocated.h
noinst_HEADERS =
noinst_HEADERS += src/scalar.h
noinst_HEADERS += src/scalar_4x64.h
noinst_HEADERS += src/scalar_8x32.h
noinst_HEADERS += src/scalar_low.h
noinst_HEADERS += src/scalar_impl.h
noinst_HEADERS += src/scalar_4x64_impl.h
noinst_HEADERS += src/scalar_8x32_impl.h
noinst_HEADERS += src/scalar_low_impl.h
noinst_HEADERS += src/group.h
noinst_HEADERS += src/group_impl.h
noinst_HEADERS += src/ecdsa.h
noinst_HEADERS += src/ecdsa_impl.h
noinst_HEADERS += src/eckey.h
noinst_HEADERS += src/eckey_impl.h
noinst_HEADERS += src/ecmult.h
noinst_HEADERS += src/ecmult_impl.h
noinst_HEADERS += src/ecmult_compute_table.h
noinst_HEADERS += src/ecmult_compute_table_impl.h
noinst_HEADERS += src/ecmult_const.h
noinst_HEADERS += src/ecmult_const_impl.h
noinst_HEADERS += src/ecmult_gen.h
noinst_HEADERS += src/ecmult_gen_impl.h
noinst_HEADERS += src/ecmult_gen_compute_table.h
noinst_HEADERS += src/ecmult_gen_compute_table_impl.h
noinst_HEADERS += src/field_10x26.h
noinst_HEADERS += src/field_10x26_impl.h
noinst_HEADERS += src/field_5x52.h
noinst_HEADERS += src/field_5x52_impl.h
noinst_HEADERS += src/field_5x52_int128_impl.h
noinst_HEADERS += src/modinv32.h
noinst_HEADERS += src/modinv32_impl.h
noinst_HEADERS += src/modinv64.h
noinst_HEADERS += src/modinv64_impl.h
noinst_HEADERS += src/precomputed_ecmult.h
noinst_HEADERS += src/precomputed_ecmult_gen.h
noinst_HEADERS += src/assumptions.h
noinst_HEADERS += src/checkmem.h
noinst_HEADERS += src/testutil.h
noinst_HEADERS += src/util.h
noinst_HEADERS += src/util_local_visibility.h
noinst_HEADERS += src/int128.h
noinst_HEADERS += src/int128_impl.h
noinst_HEADERS += src/int128_native.h
noinst_HEADERS += src/int128_native_impl.h
noinst_HEADERS += src/int128_struct.h
noinst_HEADERS += src/int128_struct_impl.h
noinst_HEADERS += src/scratch.h
noinst_HEADERS += src/scratch_impl.h
noinst_HEADERS += src/selftest.h
noinst_HEADERS += src/testrand.h
noinst_HEADERS += src/testrand_impl.h
noinst_HEADERS += src/hash.h
noinst_HEADERS += src/hash_impl.h
noinst_HEADERS += src/field.h
noinst_HEADERS += src/field_impl.h
noinst_HEADERS += src/bench.h
noinst_HEADERS += src/wycheproof/ecdsa_secp256k1_sha256_bitcoin_test.h
noinst_HEADERS += src/hsort.h
noinst_HEADERS += src/hsort_impl.h
noinst_HEADERS += contrib/lax_der_parsing.h
noinst_HEADERS += contrib/lax_der_parsing.c
noinst_HEADERS += contrib/lax_der_privatekey_parsing.h
noinst_HEADERS += contrib/lax_der_privatekey_parsing.c
noinst_HEADERS += examples/examples_util.h
PRECOMPUTED_LIB = libsecp256k1_precomputed.la
noinst_LTLIBRARIES = $(PRECOMPUTED_LIB)
libsecp256k1_precomputed_la_SOURCES = src/precomputed_ecmult.c src/precomputed_ecmult_gen.c
# We need `-I$(top_srcdir)/src` in VPATH builds if libsecp256k1_precomputed_la_SOURCES have been recreated in the build tree.
# This helps users and packagers who insist on recreating the precomputed files (e.g., Gentoo).
libsecp256k1_precomputed_la_CPPFLAGS = -I$(top_srcdir)/src $(SECP_CONFIG_DEFINES)
if USE_EXTERNAL_ASM
COMMON_LIB = libsecp256k1_common.la
else
COMMON_LIB =
endif
noinst_LTLIBRARIES += $(COMMON_LIB)
pkgconfigdir = $(libdir)/pkgconfig
pkgconfig_DATA = libsecp256k1.pc
if USE_EXTERNAL_ASM
if USE_ASM_ARM
libsecp256k1_common_la_SOURCES = src/asm/field_10x26_arm.s
endif
endif
libsecp256k1_la_SOURCES = src/secp256k1.c
libsecp256k1_la_CPPFLAGS = $(SECP_CONFIG_DEFINES)
libsecp256k1_la_LIBADD = $(COMMON_LIB) $(PRECOMPUTED_LIB)
libsecp256k1_la_LDFLAGS = -no-undefined -version-info $(LIB_VERSION_CURRENT):$(LIB_VERSION_REVISION):$(LIB_VERSION_AGE)
noinst_PROGRAMS =
if USE_BENCHMARK
noinst_PROGRAMS += bench bench_internal bench_ecmult
bench_SOURCES = src/bench.c
bench_LDADD = libsecp256k1.la
bench_CPPFLAGS = $(SECP_CONFIG_DEFINES)
bench_internal_SOURCES = src/bench_internal.c
bench_internal_LDADD = $(COMMON_LIB) $(PRECOMPUTED_LIB)
bench_internal_CPPFLAGS = $(SECP_CONFIG_DEFINES)
bench_ecmult_SOURCES = src/bench_ecmult.c
bench_ecmult_LDADD = $(COMMON_LIB) $(PRECOMPUTED_LIB)
bench_ecmult_CPPFLAGS = $(SECP_CONFIG_DEFINES)
endif
TESTS =
if USE_TESTS
TESTS += noverify_tests
noinst_PROGRAMS += noverify_tests
noverify_tests_SOURCES = src/tests.c
noverify_tests_CPPFLAGS = $(SECP_CONFIG_DEFINES)
noverify_tests_LDADD = $(COMMON_LIB) $(PRECOMPUTED_LIB)
noverify_tests_LDFLAGS = -static
if !ENABLE_COVERAGE
TESTS += tests
noinst_PROGRAMS += tests
tests_SOURCES = $(noverify_tests_SOURCES)
tests_CPPFLAGS = $(noverify_tests_CPPFLAGS) -DVERIFY
tests_LDADD = $(noverify_tests_LDADD)
tests_LDFLAGS = $(noverify_tests_LDFLAGS)
endif
endif
if USE_CTIME_TESTS
noinst_PROGRAMS += ctime_tests
ctime_tests_SOURCES = src/ctime_tests.c
ctime_tests_LDADD = libsecp256k1.la
ctime_tests_CPPFLAGS = $(SECP_CONFIG_DEFINES)
endif
if USE_EXHAUSTIVE_TESTS
noinst_PROGRAMS += exhaustive_tests
exhaustive_tests_SOURCES = src/tests_exhaustive.c
exhaustive_tests_CPPFLAGS = $(SECP_CONFIG_DEFINES)
if !ENABLE_COVERAGE
exhaustive_tests_CPPFLAGS += -DVERIFY
endif
# Note: do not include $(PRECOMPUTED_LIB) in exhaustive_tests (it uses runtime-generated tables).
exhaustive_tests_LDADD = $(COMMON_LIB)
exhaustive_tests_LDFLAGS = -static
TESTS += exhaustive_tests
endif
if USE_EXAMPLES
noinst_PROGRAMS += ecdsa_example
ecdsa_example_SOURCES = examples/ecdsa.c
ecdsa_example_CPPFLAGS = -I$(top_srcdir)/include -DSECP256K1_STATIC
ecdsa_example_LDADD = libsecp256k1.la
ecdsa_example_LDFLAGS = -static
if BUILD_WINDOWS
ecdsa_example_LDFLAGS += -lbcrypt
endif
TESTS += ecdsa_example
if ENABLE_MODULE_ECDH
noinst_PROGRAMS += ecdh_example
ecdh_example_SOURCES = examples/ecdh.c
ecdh_example_CPPFLAGS = -I$(top_srcdir)/include -DSECP256K1_STATIC
ecdh_example_LDADD = libsecp256k1.la
ecdh_example_LDFLAGS = -static
if BUILD_WINDOWS
ecdh_example_LDFLAGS += -lbcrypt
endif
TESTS += ecdh_example
endif
if ENABLE_MODULE_SCHNORRSIG
noinst_PROGRAMS += schnorr_example
schnorr_example_SOURCES = examples/schnorr.c
schnorr_example_CPPFLAGS = -I$(top_srcdir)/include -DSECP256K1_STATIC
schnorr_example_LDADD = libsecp256k1.la
schnorr_example_LDFLAGS = -static
if BUILD_WINDOWS
schnorr_example_LDFLAGS += -lbcrypt
endif
TESTS += schnorr_example
endif
if ENABLE_MODULE_ELLSWIFT
noinst_PROGRAMS += ellswift_example
ellswift_example_SOURCES = examples/ellswift.c
ellswift_example_CPPFLAGS = -I$(top_srcdir)/include -DSECP256K1_STATIC
ellswift_example_LDADD = libsecp256k1.la
ellswift_example_LDFLAGS = -static
if BUILD_WINDOWS
ellswift_example_LDFLAGS += -lbcrypt
endif
TESTS += ellswift_example
endif
if ENABLE_MODULE_MUSIG
noinst_PROGRAMS += musig_example
musig_example_SOURCES = examples/musig.c
musig_example_CPPFLAGS = -I$(top_srcdir)/include -DSECP256K1_STATIC
musig_example_LDADD = libsecp256k1.la
musig_example_LDFLAGS = -static
if BUILD_WINDOWS
musig_example_LDFLAGS += -lbcrypt
endif
TESTS += musig_example
endif
endif
### Precomputed tables
EXTRA_PROGRAMS = precompute_ecmult precompute_ecmult_gen
CLEANFILES = $(EXTRA_PROGRAMS)
precompute_ecmult_SOURCES = src/precompute_ecmult.c
precompute_ecmult_CPPFLAGS = $(SECP_CONFIG_DEFINES) -DVERIFY
precompute_ecmult_LDADD = $(COMMON_LIB)
precompute_ecmult_gen_SOURCES = src/precompute_ecmult_gen.c
precompute_ecmult_gen_CPPFLAGS = $(SECP_CONFIG_DEFINES) -DVERIFY
precompute_ecmult_gen_LDADD = $(COMMON_LIB)
# See Automake manual, Section "Errors with distclean".
# We don't list any dependencies for the prebuilt files here because
# otherwise make's decision whether to rebuild them (even in the first
# build by a normal user) depends on mtimes, and thus is very fragile.
# This means that rebuilds of the prebuilt files always need to be
# forced by deleting them.
src/precomputed_ecmult.c:
$(MAKE) $(AM_MAKEFLAGS) precompute_ecmult$(EXEEXT)
./precompute_ecmult$(EXEEXT)
src/precomputed_ecmult_gen.c:
$(MAKE) $(AM_MAKEFLAGS) precompute_ecmult_gen$(EXEEXT)
./precompute_ecmult_gen$(EXEEXT)
PRECOMP = src/precomputed_ecmult_gen.c src/precomputed_ecmult.c
precomp: $(PRECOMP)
# Ensure the prebuilt files will be build first (only if they don't exist,
# e.g., after `make maintainer-clean`).
BUILT_SOURCES = $(PRECOMP)
.PHONY: clean-precomp
clean-precomp:
rm -f $(PRECOMP)
maintainer-clean-local: clean-precomp
### Pregenerated test vectors
### (see the comments in the previous section for detailed rationale)
TESTVECTORS = src/wycheproof/ecdsa_secp256k1_sha256_bitcoin_test.h
if ENABLE_MODULE_ECDH
TESTVECTORS += src/wycheproof/ecdh_secp256k1_test.h
endif
src/wycheproof/ecdsa_secp256k1_sha256_bitcoin_test.h:
mkdir -p $(@D)
python3 $(top_srcdir)/tools/tests_wycheproof_generate_ecdsa.py $(top_srcdir)/src/wycheproof/ecdsa_secp256k1_sha256_bitcoin_test.json > $@
src/wycheproof/ecdh_secp256k1_test.h:
mkdir -p $(@D)
python3 $(top_srcdir)/tools/tests_wycheproof_generate_ecdh.py $(top_srcdir)/src/wycheproof/ecdh_secp256k1_test.json > $@
testvectors: $(TESTVECTORS)
BUILT_SOURCES += $(TESTVECTORS)
.PHONY: clean-testvectors
clean-testvectors:
rm -f $(TESTVECTORS)
maintainer-clean-local: clean-testvectors
### Additional files to distribute
EXTRA_DIST = autogen.sh CHANGELOG.md SECURITY.md
EXTRA_DIST += doc/release-process.md doc/safegcd_implementation.md
EXTRA_DIST += doc/ellswift.md doc/musig.md
EXTRA_DIST += examples/EXAMPLES_COPYING
EXTRA_DIST += sage/gen_exhaustive_groups.sage
EXTRA_DIST += sage/gen_split_lambda_constants.sage
EXTRA_DIST += sage/group_prover.sage
EXTRA_DIST += sage/prove_group_implementations.sage
EXTRA_DIST += sage/secp256k1_params.sage
EXTRA_DIST += sage/weierstrass_prover.sage
EXTRA_DIST += src/wycheproof/WYCHEPROOF_COPYING
EXTRA_DIST += src/wycheproof/ecdsa_secp256k1_sha256_bitcoin_test.json
EXTRA_DIST += src/wycheproof/ecdh_secp256k1_test.json
EXTRA_DIST += tools/tests_wycheproof_generate_ecdsa.py
EXTRA_DIST += tools/tests_wycheproof_generate_ecdh.py
if ENABLE_MODULE_ECDH
include src/modules/ecdh/Makefile.am.include
endif
if ENABLE_MODULE_RECOVERY
include src/modules/recovery/Makefile.am.include
endif
if ENABLE_MODULE_EXTRAKEYS
include src/modules/extrakeys/Makefile.am.include
endif
if ENABLE_MODULE_SCHNORRSIG
include src/modules/schnorrsig/Makefile.am.include
endif
if ENABLE_MODULE_MUSIG
include src/modules/musig/Makefile.am.include
endif
if ENABLE_MODULE_ELLSWIFT
include src/modules/ellswift/Makefile.am.include
endif

178
secp256k1/README.md Normal file
View File

@ -0,0 +1,178 @@
libsecp256k1
============
![Dependencies: None](https://img.shields.io/badge/dependencies-none-success)
[![irc.libera.chat #secp256k1](https://img.shields.io/badge/irc.libera.chat-%23secp256k1-success)](https://web.libera.chat/#secp256k1)
High-performance high-assurance C library for digital signatures and other cryptographic primitives on the secp256k1 elliptic curve.
This library is intended to be the highest quality publicly available library for cryptography on the secp256k1 curve. However, the primary focus of its development has been for usage in the Bitcoin system and usage unlike Bitcoin's may be less well tested, verified, or suffer from a less well thought out interface. Correct usage requires some care and consideration that the library is fit for your application's purpose.
Features:
* secp256k1 ECDSA signing/verification and key generation.
* Additive and multiplicative tweaking of secret/public keys.
* Serialization/parsing of secret keys, public keys, signatures.
* Constant time, constant memory access signing and public key generation.
* Derandomized ECDSA (via RFC6979 or with a caller provided function.)
* Very efficient implementation.
* Suitable for embedded systems.
* No runtime dependencies.
* Optional module for public key recovery.
* Optional module for ECDH key exchange.
* Optional module for Schnorr signatures according to [BIP-340](https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki).
* Optional module for ElligatorSwift key exchange according to [BIP-324](https://github.com/bitcoin/bips/blob/master/bip-0324.mediawiki).
* Optional module for MuSig2 Schnorr multi-signatures according to [BIP-327](https://github.com/bitcoin/bips/blob/master/bip-0327.mediawiki).
Implementation details
----------------------
* General
* No runtime heap allocation.
* Extensive testing infrastructure.
* Structured to facilitate review and analysis.
* Intended to be portable to any system with a C89 compiler and uint64_t support.
* No use of floating types.
* Expose only higher level interfaces to minimize the API surface and improve application security. ("Be difficult to use insecurely.")
* Field operations
* Optimized implementation of arithmetic modulo the curve's field size (2^256 - 0x1000003D1).
* Using 5 52-bit limbs
* Using 10 26-bit limbs (including hand-optimized assembly for 32-bit ARM, by Wladimir J. van der Laan).
* This is an experimental feature that has not received enough scrutiny to satisfy the standard of quality of this library but is made available for testing and review by the community.
* Scalar operations
* Optimized implementation without data-dependent branches of arithmetic modulo the curve's order.
* Using 4 64-bit limbs (relying on __int128 support in the compiler).
* Using 8 32-bit limbs.
* Modular inverses (both field elements and scalars) based on [safegcd](https://gcd.cr.yp.to/index.html) with some modifications, and a variable-time variant (by Peter Dettman).
* Group operations
* Point addition formula specifically simplified for the curve equation (y^2 = x^3 + 7).
* Use addition between points in Jacobian and affine coordinates where possible.
* Use a unified addition/doubling formula where necessary to avoid data-dependent branches.
* Point/x comparison without a field inversion by comparison in the Jacobian coordinate space.
* Point multiplication for verification (a*P + b*G).
* Use wNAF notation for point multiplicands.
* Use a much larger window for multiples of G, using precomputed multiples.
* Use Shamir's trick to do the multiplication with the public key and the generator simultaneously.
* Use secp256k1's efficiently-computable endomorphism to split the P multiplicand into 2 half-sized ones.
* Point multiplication for signing
* Use a precomputed table of multiples of powers of 16 multiplied with the generator, so general multiplication becomes a series of additions.
* Intended to be completely free of timing sidechannels for secret-key operations (on reasonable hardware/toolchains)
* Access the table with branch-free conditional moves so memory access is uniform.
* No data-dependent branches
* Optional runtime blinding which attempts to frustrate differential power analysis.
* The precomputed tables add and eventually subtract points for which no known scalar (secret key) is known, preventing even an attacker with control over the secret key used to control the data internally.
Obtaining and verifying
-----------------------
The git tag for each release (e.g. `v0.6.0`) is GPG-signed by one of the maintainers.
For a fully verified build of this project, it is recommended to obtain this repository
via git, obtain the GPG keys of the signing maintainer(s), and then verify the release
tag's signature using git.
This can be done with the following steps:
1. Obtain the GPG keys listed in [SECURITY.md](./SECURITY.md).
2. If possible, cross-reference these key IDs with another source controlled by its owner (e.g.
social media, personal website). This is to mitigate the unlikely case that incorrect
content is being presented by this repository.
3. Clone the repository:
```
git clone https://github.com/bitcoin-core/secp256k1
```
4. Check out the latest release tag, e.g.
```
git checkout v0.6.0
```
5. Use git to verify the GPG signature:
```
% git tag -v v0.6.0 | grep -C 3 'Good signature'
gpg: Signature made Mon 04 Nov 2024 12:14:44 PM EST
gpg: using RSA key 4BBB845A6F5A65A69DFAEC234861DBF262123605
gpg: Good signature from "Jonas Nick <jonas@n-ck.net>" [unknown]
gpg: aka "Jonas Nick <jonasd.nick@gmail.com>" [unknown]
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: 36C7 1A37 C9D9 88BD E825 08D9 B1A7 0E4F 8DCD 0366
Subkey fingerprint: 4BBB 845A 6F5A 65A6 9DFA EC23 4861 DBF2 6212 3605
```
Building with Autotools
-----------------------
$ ./autogen.sh # Generate a ./configure script
$ ./configure # Generate a build system
$ make # Run the actual build process
$ make check # Run the test suite
$ sudo make install # Install the library into the system (optional)
To compile optional modules (such as Schnorr signatures), you need to run `./configure` with additional flags (such as `--enable-module-schnorrsig`). Run `./configure --help` to see the full list of available flags.
Building with CMake
-------------------
To maintain a pristine source tree, CMake encourages to perform an out-of-source build by using a separate dedicated build tree.
### Building on POSIX systems
$ cmake -B build # Generate a build system in subdirectory "build"
$ cmake --build build # Run the actual build process
$ ctest --test-dir build # Run the test suite
$ sudo cmake --install build # Install the library into the system (optional)
To compile optional modules (such as Schnorr signatures), you need to run `cmake` with additional flags (such as `-DSECP256K1_ENABLE_MODULE_SCHNORRSIG=ON`). Run `cmake -B build -LH` or `ccmake -B build` to see the full list of available flags.
### Cross compiling
To alleviate issues with cross compiling, preconfigured toolchain files are available in the `cmake` directory.
For example, to cross compile for Windows:
$ cmake -B build -DCMAKE_TOOLCHAIN_FILE=cmake/x86_64-w64-mingw32.toolchain.cmake
To cross compile for Android with [NDK](https://developer.android.com/ndk/guides/cmake) (using NDK's toolchain file, and assuming the `ANDROID_NDK_ROOT` environment variable has been set):
$ cmake -B build -DCMAKE_TOOLCHAIN_FILE="${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake" -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=28
### Building on Windows
To build on Windows with Visual Studio, a proper [generator](https://cmake.org/cmake/help/latest/manual/cmake-generators.7.html#visual-studio-generators) must be specified for a new build tree.
The following example assumes using of Visual Studio 2022 and CMake v3.21+.
In "Developer Command Prompt for VS 2022":
>cmake -G "Visual Studio 17 2022" -A x64 -B build
>cmake --build build --config RelWithDebInfo
Usage examples
-----------
Usage examples can be found in the [examples](examples) directory. To compile them you need to configure with `--enable-examples`.
* [ECDSA example](examples/ecdsa.c)
* [Schnorr signatures example](examples/schnorr.c)
* [Deriving a shared secret (ECDH) example](examples/ecdh.c)
* [ElligatorSwift key exchange example](examples/ellswift.c)
* [MuSig2 Schnorr multi-signatures example](examples/musig.c)
To compile the examples, make sure the corresponding modules are enabled.
Benchmark
------------
If configured with `--enable-benchmark` (which is the default), binaries for benchmarking the libsecp256k1 functions will be present in the root directory after the build.
To print the benchmark result to the command line:
$ ./bench_name
To create a CSV file for the benchmark result :
$ ./bench_name | sed '2d;s/ \{1,\}//g' > bench_name.csv
Reporting a vulnerability
------------
See [SECURITY.md](SECURITY.md)
Contributing to libsecp256k1
------------
See [CONTRIBUTING.md](CONTRIBUTING.md)

15
secp256k1/SECURITY.md Normal file
View File

@ -0,0 +1,15 @@
# Security Policy
## Reporting a Vulnerability
To report security issues send an email to secp256k1-security@bitcoincore.org (not for support).
The following keys may be used to communicate sensitive information to developers:
| Name | Fingerprint |
|------|-------------|
| Pieter Wuille | 133E AC17 9436 F14A 5CF1 B794 860F EB80 4E66 9320 |
| Jonas Nick | 36C7 1A37 C9D9 88BD E825 08D9 B1A7 0E4F 8DCD 0366 |
| Tim Ruffing | 09E0 3F87 1092 E40E 106E 902B 33BC 86AB 80FF 5516 |
You can import a key by running the following command with that individuals fingerprint: `gpg --keyserver hkps://keys.openpgp.org --recv-keys "<fingerprint>"` Ensure that you put quotes around fingerprints containing spaces.

3
secp256k1/autogen.sh Executable file
View File

@ -0,0 +1,3 @@
#!/bin/sh
set -e
autoreconf -if --warnings=all

View File

@ -0,0 +1,91 @@
dnl escape "$0x" below using the m4 quadrigaph @S|@, and escape it again with a \ for the shell.
AC_DEFUN([SECP_X86_64_ASM_CHECK],[
AC_MSG_CHECKING(for x86_64 assembly availability)
AC_LINK_IFELSE([AC_LANG_PROGRAM([[
#include <stdint.h>]],[[
uint64_t a = 11, tmp;
__asm__ __volatile__("movq \@S|@0x100000000,%1; mulq %%rsi" : "+a"(a) : "S"(tmp) : "cc", "%rdx");
]])], [has_x86_64_asm=yes], [has_x86_64_asm=no])
AC_MSG_RESULT([$has_x86_64_asm])
])
AC_DEFUN([SECP_ARM32_ASM_CHECK], [
AC_MSG_CHECKING(for ARM32 assembly availability)
SECP_ARM32_ASM_CHECK_CFLAGS_saved_CFLAGS="$CFLAGS"
CFLAGS="-x assembler"
AC_LINK_IFELSE([AC_LANG_SOURCE([[
.syntax unified
.eabi_attribute 24, 1
.eabi_attribute 25, 1
.text
.global main
main:
ldr r0, =0x002A
mov r7, #1
swi 0
]])], [has_arm32_asm=yes], [has_arm32_asm=no])
AC_MSG_RESULT([$has_arm32_asm])
CFLAGS="$SECP_ARM32_ASM_CHECK_CFLAGS_saved_CFLAGS"
])
AC_DEFUN([SECP_VALGRIND_CHECK],[
AC_MSG_CHECKING([for valgrind support])
if test x"$has_valgrind" != x"yes"; then
CPPFLAGS_TEMP="$CPPFLAGS"
CPPFLAGS="$VALGRIND_CPPFLAGS $CPPFLAGS"
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
#include <valgrind/memcheck.h>
]], [[
#if defined(NVALGRIND)
# error "Valgrind does not support this platform."
#endif
]])], [has_valgrind=yes])
CPPFLAGS="$CPPFLAGS_TEMP"
fi
AC_MSG_RESULT($has_valgrind)
])
AC_DEFUN([SECP_MSAN_CHECK], [
AC_MSG_CHECKING(whether MemorySanitizer is enabled)
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[
#if defined(__has_feature)
# if __has_feature(memory_sanitizer)
/* MemorySanitizer is enabled. */
# elif
# error "MemorySanitizer is disabled."
# endif
#else
# error "__has_feature is not defined."
#endif
]])], [msan_enabled=yes], [msan_enabled=no])
AC_MSG_RESULT([$msan_enabled])
])
dnl SECP_TRY_APPEND_CFLAGS(flags, VAR)
dnl Append flags to VAR if CC accepts them.
AC_DEFUN([SECP_TRY_APPEND_CFLAGS], [
AC_MSG_CHECKING([if ${CC} supports $1])
SECP_TRY_APPEND_CFLAGS_saved_CFLAGS="$CFLAGS"
CFLAGS="$1 $CFLAGS"
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])], [flag_works=yes], [flag_works=no])
AC_MSG_RESULT($flag_works)
CFLAGS="$SECP_TRY_APPEND_CFLAGS_saved_CFLAGS"
if test x"$flag_works" = x"yes"; then
$2="$$2 $1"
fi
unset flag_works
AC_SUBST($2)
])
dnl SECP_SET_DEFAULT(VAR, default, default-dev-mode)
dnl Set VAR to default or default-dev-mode, depending on whether dev mode is enabled
AC_DEFUN([SECP_SET_DEFAULT], [
if test "${enable_dev_mode+set}" != set; then
AC_MSG_ERROR([[Set enable_dev_mode before calling SECP_SET_DEFAULT]])
fi
if test x"$enable_dev_mode" = x"yes"; then
$1="$3"
else
$1="$2"
fi
])

163
secp256k1/ci/ci.sh Executable file
View File

@ -0,0 +1,163 @@
#!/bin/sh
set -eux
export LC_ALL=C
# Print commit and relevant CI environment to allow reproducing the job outside of CI.
git show --no-patch
print_environment() {
# Turn off -x because it messes up the output
set +x
# There are many ways to print variable names and their content. This one
# does not rely on bash.
for var in WERROR_CFLAGS MAKEFLAGS BUILD \
ECMULTWINDOW ECMULTGENKB ASM WIDEMUL WITH_VALGRIND EXTRAFLAGS \
EXPERIMENTAL ECDH RECOVERY EXTRAKEYS MUSIG SCHNORRSIG ELLSWIFT \
SECP256K1_TEST_ITERS BENCH SECP256K1_BENCH_ITERS CTIMETESTS SYMBOL_CHECK \
EXAMPLES \
HOST WRAPPER_CMD \
CC CFLAGS CPPFLAGS AR NM \
UBSAN_OPTIONS ASAN_OPTIONS LSAN_OPTIONS
do
eval "isset=\${$var+x}"
if [ -n "$isset" ]; then
eval "val=\${$var}"
# shellcheck disable=SC2154
printf '%s="%s" ' "$var" "$val"
fi
done
echo "$0"
set -x
}
print_environment
env >> test_env.log
# If gcc is requested, assert that it's in fact gcc (and not some symlinked Apple clang).
case "${CC:-undefined}" in
*gcc*)
$CC -v 2>&1 | grep -q "gcc version" || exit 1;
;;
esac
if [ -n "${CC+x}" ]; then
# The MSVC compiler "cl" doesn't understand "-v"
$CC -v || true
fi
if [ "$WITH_VALGRIND" = "yes" ]; then
valgrind --version
fi
if [ -n "$WRAPPER_CMD" ]; then
$WRAPPER_CMD --version
fi
# Workaround for https://bugs.kde.org/show_bug.cgi?id=452758 (fixed in valgrind 3.20.0).
case "${CC:-undefined}" in
clang*)
if [ "$CTIMETESTS" = "yes" ] && [ "$WITH_VALGRIND" = "yes" ]
then
export CFLAGS="${CFLAGS:+$CFLAGS }-gdwarf-4"
else
case "$WRAPPER_CMD" in
valgrind*)
export CFLAGS="${CFLAGS:+$CFLAGS }-gdwarf-4"
;;
esac
fi
;;
esac
./autogen.sh
./configure \
--enable-experimental="$EXPERIMENTAL" \
--with-test-override-wide-multiply="$WIDEMUL" --with-asm="$ASM" \
--with-ecmult-window="$ECMULTWINDOW" \
--with-ecmult-gen-kb="$ECMULTGENKB" \
--enable-module-ecdh="$ECDH" --enable-module-recovery="$RECOVERY" \
--enable-module-ellswift="$ELLSWIFT" \
--enable-module-extrakeys="$EXTRAKEYS" \
--enable-module-schnorrsig="$SCHNORRSIG" \
--enable-module-musig="$MUSIG" \
--enable-examples="$EXAMPLES" \
--enable-ctime-tests="$CTIMETESTS" \
--with-valgrind="$WITH_VALGRIND" \
--host="$HOST" $EXTRAFLAGS
# We have set "-j<n>" in MAKEFLAGS.
build_exit_code=0
make > make.log 2>&1 || build_exit_code=$?
cat make.log
if [ $build_exit_code -ne 0 ]; then
case "${CC:-undefined}" in
*snapshot*)
# Ignore internal compiler errors in gcc-snapshot and clang-snapshot
grep -e "internal compiler error:" -e "PLEASE submit a bug report" make.log
exit $?
;;
*)
exit 1
;;
esac
fi
# Print information about binaries so that we can see that the architecture is correct
file *tests* || true
file bench* || true
file .libs/* || true
if [ "$SYMBOL_CHECK" = "yes" ]
then
python3 --version
case "$HOST" in
*mingw*)
ls -l .libs
python3 ./tools/symbol-check.py .libs/libsecp256k1-*.dll
;;
*)
python3 ./tools/symbol-check.py .libs/libsecp256k1.so
;;
esac
fi
# This tells `make check` to wrap test invocations.
export LOG_COMPILER="$WRAPPER_CMD"
make "$BUILD"
# Using the local `libtool` because on macOS the system's libtool has nothing to do with GNU libtool
EXEC='./libtool --mode=execute'
if [ -n "$WRAPPER_CMD" ]
then
EXEC="$EXEC $WRAPPER_CMD"
fi
if [ "$BENCH" = "yes" ]
then
{
$EXEC ./bench_ecmult
$EXEC ./bench_internal
$EXEC ./bench
} >> bench.log 2>&1
fi
if [ "$CTIMETESTS" = "yes" ]
then
if [ "$WITH_VALGRIND" = "yes" ]; then
./libtool --mode=execute valgrind --error-exitcode=42 ./ctime_tests > ctime_tests.log 2>&1
else
$EXEC ./ctime_tests > ctime_tests.log 2>&1
fi
fi
# Rebuild precomputed files (if not cross-compiling).
if [ -z "$HOST" ]
then
make clean-precomp clean-testvectors
make precomp testvectors
fi
# Check that no repo files have been modified by the build.
# (This fails for example if the precomp files need to be updated in the repo.)
git diff --exit-code

View File

@ -0,0 +1,83 @@
FROM debian:stable-slim
SHELL ["/bin/bash", "-c"]
WORKDIR /root
# A too high maximum number of file descriptors (with the default value
# inherited from the docker host) can cause issues with some of our tools:
# - sanitizers hanging: https://github.com/google/sanitizers/issues/1662
# - valgrind crashing: https://stackoverflow.com/a/75293014
# This is not be a problem on our CI hosts, but developers who run the image
# on their machines may run into this (e.g., on Arch Linux), so warn them.
# (Note that .bashrc is only executed in interactive bash shells.)
RUN echo 'if [[ $(ulimit -n) -gt 200000 ]]; then echo "WARNING: Very high value reported by \"ulimit -n\". Consider passing \"--ulimit nofile=32768\" to \"docker run\"."; fi' >> /root/.bashrc
RUN dpkg --add-architecture i386 && \
dpkg --add-architecture s390x && \
dpkg --add-architecture armhf && \
dpkg --add-architecture arm64 && \
dpkg --add-architecture ppc64el
# dkpg-dev: to make pkg-config work in cross-builds
# llvm: for llvm-symbolizer, which is used by clang's UBSan for symbolized stack traces
RUN apt-get update && apt-get install --no-install-recommends -y \
git ca-certificates \
make automake libtool pkg-config dpkg-dev valgrind qemu-user \
gcc clang llvm libclang-rt-dev libc6-dbg \
g++ \
gcc-i686-linux-gnu libc6-dev-i386-cross libc6-dbg:i386 libubsan1:i386 libasan8:i386 \
gcc-s390x-linux-gnu libc6-dev-s390x-cross libc6-dbg:s390x \
gcc-arm-linux-gnueabihf libc6-dev-armhf-cross libc6-dbg:armhf \
gcc-powerpc64le-linux-gnu libc6-dev-ppc64el-cross libc6-dbg:ppc64el \
gcc-mingw-w64-x86-64-win32 wine64 wine \
gcc-mingw-w64-i686-win32 wine32 \
python3-full && \
if ! ( dpkg --print-architecture | grep --quiet "arm64" ) ; then \
apt-get install --no-install-recommends -y \
gcc-aarch64-linux-gnu libc6-dev-arm64-cross libc6-dbg:arm64 ;\
fi && \
apt-get clean && rm -rf /var/lib/apt/lists/*
# Build and install gcc snapshot
ARG GCC_SNAPSHOT_MAJOR=16
RUN apt-get update && apt-get install --no-install-recommends -y wget libgmp-dev libmpfr-dev libmpc-dev flex && \
mkdir gcc && cd gcc && \
wget --progress=dot:giga --https-only --recursive --accept '*.tar.xz' --level 1 --no-directories "https://gcc.gnu.org/pub/gcc/snapshots/LATEST-${GCC_SNAPSHOT_MAJOR}" && \
wget "https://gcc.gnu.org/pub/gcc/snapshots/LATEST-${GCC_SNAPSHOT_MAJOR}/sha512.sum" && \
sha512sum --check --ignore-missing sha512.sum && \
# We should have downloaded exactly one tar.xz file
ls && \
[ $(ls *.tar.xz | wc -l) -eq "1" ] && \
tar xf *.tar.xz && \
mkdir gcc-build && cd gcc-build && \
../*/configure --prefix=/opt/gcc-snapshot --enable-languages=c --disable-bootstrap --disable-multilib --without-isl && \
make -j $(nproc) && \
make install && \
cd ../.. && rm -rf gcc && \
ln -s /opt/gcc-snapshot/bin/gcc /usr/bin/gcc-snapshot && \
apt-get autoremove -y wget libgmp-dev libmpfr-dev libmpc-dev flex && \
apt-get clean && rm -rf /var/lib/apt/lists/*
# Install clang snapshot, see https://apt.llvm.org/
RUN \
# Setup GPG keys of LLVM repository
apt-get update && apt-get install --no-install-recommends -y wget && \
wget -qO- https://apt.llvm.org/llvm-snapshot.gpg.key | tee /etc/apt/trusted.gpg.d/apt.llvm.org.asc && \
# Add repository for this Debian release
. /etc/os-release && echo "deb http://apt.llvm.org/${VERSION_CODENAME} llvm-toolchain-${VERSION_CODENAME} main" >> /etc/apt/sources.list && \
apt-get update && \
# Determine the version number of the LLVM development branch
LLVM_VERSION=$(apt-cache search --names-only '^clang-[0-9]+$' | sort -V | tail -1 | cut -f1 -d" " | cut -f2 -d"-" ) && \
# Install
apt-get install --no-install-recommends -y "clang-${LLVM_VERSION}" && \
# Create symlink
ln -s "/usr/bin/clang-${LLVM_VERSION}" /usr/bin/clang-snapshot && \
# Clean up
apt-get autoremove -y wget && \
apt-get clean && rm -rf /var/lib/apt/lists/*
ENV VIRTUAL_ENV=/root/venv
RUN python3 -m venv $VIRTUAL_ENV
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
RUN pip install lief

View File

@ -0,0 +1,6 @@
function(check_arm32_assembly)
try_compile(HAVE_ARM32_ASM
${PROJECT_BINARY_DIR}/check_arm32_assembly
SOURCES ${PROJECT_SOURCE_DIR}/cmake/source_arm32.s
)
endfunction()

View File

@ -0,0 +1,18 @@
include_guard(GLOBAL)
include(CheckCSourceCompiles)
function(check_memory_sanitizer output)
set(CMAKE_TRY_COMPILE_TARGET_TYPE STATIC_LIBRARY)
check_c_source_compiles("
#if defined(__has_feature)
# if __has_feature(memory_sanitizer)
/* MemorySanitizer is enabled. */
# elif
# error \"MemorySanitizer is disabled.\"
# endif
#else
# error \"__has_feature is not defined.\"
#endif
" HAVE_MSAN)
set(${output} ${HAVE_MSAN} PARENT_SCOPE)
endfunction()

View File

@ -0,0 +1,10 @@
function(check_string_option_value option)
get_property(expected_values CACHE ${option} PROPERTY STRINGS)
if(expected_values)
if(${option} IN_LIST expected_values)
return()
endif()
message(FATAL_ERROR "${option} value is \"${${option}}\", but must be one of ${expected_values}.")
endif()
message(AUTHOR_WARNING "The STRINGS property must be set before invoking `check_string_option_value' function.")
endfunction()

View File

@ -0,0 +1,14 @@
include(CheckCSourceCompiles)
function(check_x86_64_assembly)
check_c_source_compiles("
#include <stdint.h>
int main()
{
uint64_t a = 11, tmp;
__asm__ __volatile__(\"movq $0x100000000,%1; mulq %%rsi\" : \"+a\"(a) : \"S\"(tmp) : \"cc\", \"%rdx\");
}
" HAVE_X86_64_ASM)
set(HAVE_X86_64_ASM ${HAVE_X86_64_ASM} PARENT_SCOPE)
endfunction()

View File

@ -0,0 +1,41 @@
if(CMAKE_HOST_APPLE)
find_program(BREW_COMMAND brew)
execute_process(
COMMAND ${BREW_COMMAND} --prefix valgrind
OUTPUT_VARIABLE valgrind_brew_prefix
ERROR_QUIET
OUTPUT_STRIP_TRAILING_WHITESPACE
)
endif()
set(hints_paths)
if(valgrind_brew_prefix)
set(hints_paths ${valgrind_brew_prefix}/include)
endif()
find_path(Valgrind_INCLUDE_DIR
NAMES valgrind/memcheck.h
HINTS ${hints_paths}
)
if(Valgrind_INCLUDE_DIR)
include(CheckCSourceCompiles)
set(CMAKE_REQUIRED_INCLUDES ${Valgrind_INCLUDE_DIR})
check_c_source_compiles("
#include <valgrind/memcheck.h>
#if defined(NVALGRIND)
# error \"Valgrind does not support this platform.\"
#endif
int main() {}
" Valgrind_WORKS)
endif()
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(Valgrind
REQUIRED_VARS Valgrind_INCLUDE_DIR Valgrind_WORKS
)
mark_as_advanced(
Valgrind_INCLUDE_DIR
)

View File

@ -0,0 +1,8 @@
function(generate_pkg_config_file in_file)
set(prefix ${CMAKE_INSTALL_PREFIX})
set(exec_prefix \${prefix})
set(libdir \${exec_prefix}/${CMAKE_INSTALL_LIBDIR})
set(includedir \${prefix}/${CMAKE_INSTALL_INCLUDEDIR})
set(PACKAGE_VERSION ${PROJECT_VERSION})
configure_file(${in_file} ${PROJECT_NAME}.pc @ONLY)
endfunction()

View File

@ -0,0 +1,24 @@
include(CheckCCompilerFlag)
function(secp256k1_check_c_flags_internal flags output)
string(MAKE_C_IDENTIFIER "${flags}" result)
string(TOUPPER "${result}" result)
set(result "C_SUPPORTS_${result}")
if(NOT MSVC)
set(CMAKE_REQUIRED_FLAGS "-Werror")
endif()
# This avoids running a linker.
set(CMAKE_TRY_COMPILE_TARGET_TYPE STATIC_LIBRARY)
check_c_compiler_flag("${flags}" ${result})
set(${output} ${${result}} PARENT_SCOPE)
endfunction()
# Append flags to the COMPILE_OPTIONS directory property if CC accepts them.
macro(try_append_c_flags)
secp256k1_check_c_flags_internal("${ARGV}" result)
if(result)
add_compile_options(${ARGV})
endif()
endmacro()

View File

@ -0,0 +1,3 @@
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)
set(CMAKE_C_COMPILER arm-linux-gnueabihf-gcc)

View File

@ -0,0 +1,5 @@
@PACKAGE_INIT@
include("${CMAKE_CURRENT_LIST_DIR}/@PROJECT_NAME@-targets.cmake")
check_required_components(@PROJECT_NAME@)

View File

@ -0,0 +1,9 @@
.syntax unified
.eabi_attribute 24, 1
.eabi_attribute 25, 1
.text
.global main
main:
ldr r0, =0x002A
mov r7, #1
swi 0

View File

@ -0,0 +1,3 @@
set(CMAKE_SYSTEM_NAME Windows)
set(CMAKE_SYSTEM_PROCESSOR x86_64)
set(CMAKE_C_COMPILER x86_64-w64-mingw32-gcc)

517
secp256k1/configure.ac Normal file
View File

@ -0,0 +1,517 @@
AC_PREREQ([2.60])
# The package (a.k.a. release) version is based on semantic versioning 2.0.0 of
# the API. All changes in experimental modules are treated as
# backwards-compatible and therefore at most increase the minor version.
define(_PKG_VERSION_MAJOR, 0)
define(_PKG_VERSION_MINOR, 7)
define(_PKG_VERSION_PATCH, 1)
define(_PKG_VERSION_IS_RELEASE, false)
# The library version is based on libtool versioning of the ABI. The set of
# rules for updating the version can be found here:
# https://www.gnu.org/software/libtool/manual/html_node/Updating-version-info.html
# All changes in experimental modules are treated as if they don't affect the
# interface and therefore only increase the revision.
define(_LIB_VERSION_CURRENT, 6)
define(_LIB_VERSION_REVISION, 1)
define(_LIB_VERSION_AGE, 0)
AC_INIT([libsecp256k1],m4_join([.], _PKG_VERSION_MAJOR, _PKG_VERSION_MINOR, _PKG_VERSION_PATCH)m4_if(_PKG_VERSION_IS_RELEASE, [true], [], [-dev]),[https://github.com/bitcoin-core/secp256k1/issues],[libsecp256k1],[https://github.com/bitcoin-core/secp256k1])
AC_CONFIG_AUX_DIR([build-aux])
AC_CONFIG_MACRO_DIR([build-aux/m4])
AC_CANONICAL_HOST
# Require Automake 1.11.2 for AM_PROG_AR
AM_INIT_AUTOMAKE([1.11.2 foreign subdir-objects])
# Make the compilation flags quiet unless V=1 is used.
m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])])
if test "${CFLAGS+set}" = "set"; then
CFLAGS_overridden=yes
else
CFLAGS_overridden=no
fi
AC_PROG_CC
AM_PROG_AS
AM_PROG_AR
# Clear some cache variables as a workaround for a bug that appears due to a bad
# interaction between AM_PROG_AR and LT_INIT when combining MSVC's archiver lib.exe.
# https://debbugs.gnu.org/cgi/bugreport.cgi?bug=54421
AS_UNSET(ac_cv_prog_AR)
AS_UNSET(ac_cv_prog_ac_ct_AR)
LT_INIT([win32-dll])
build_windows=no
case $host_os in
*darwin*)
if test x$cross_compiling != xyes; then
AC_CHECK_PROG([BREW], brew, brew)
if test x$BREW = xbrew; then
# These Homebrew packages may be keg-only, meaning that they won't be found
# in expected paths because they may conflict with system files. Ask
# Homebrew where each one is located, then adjust paths accordingly.
if $BREW list --versions valgrind >/dev/null; then
valgrind_prefix=$($BREW --prefix valgrind 2>/dev/null)
VALGRIND_CPPFLAGS="-I$valgrind_prefix/include"
fi
else
AC_CHECK_PROG([PORT], port, port)
# If homebrew isn't installed and macports is, add the macports default paths
# as a last resort.
if test x$PORT = xport; then
CPPFLAGS="$CPPFLAGS -isystem /opt/local/include"
LDFLAGS="$LDFLAGS -L/opt/local/lib"
fi
fi
fi
;;
cygwin*|mingw*)
build_windows=yes
;;
esac
# Try if some desirable compiler flags are supported and append them to SECP_CFLAGS.
#
# These are our own flags, so we append them to our own SECP_CFLAGS variable (instead of CFLAGS) as
# recommended in the automake manual (Section "Flag Variables Ordering"). CFLAGS belongs to the user
# and we are not supposed to touch it. In the Makefile, we will need to ensure that SECP_CFLAGS
# is prepended to CFLAGS when invoking the compiler so that the user always has the last word (flag).
#
# Another advantage of not touching CFLAGS is that the contents of CFLAGS will be picked up by
# libtool for compiling helper executables. For example, when compiling for Windows, libtool will
# generate entire wrapper executables (instead of simple wrapper scripts as on Unix) to ensure
# proper operation of uninstalled programs linked by libtool against the uninstalled shared library.
# These executables are compiled from C source file for which our flags may not be appropriate,
# e.g., -std=c89 flag has lead to undesirable warnings in the past.
#
# TODO We should analogously not touch CPPFLAGS and LDFLAGS but currently there are no issues.
AC_DEFUN([SECP_TRY_APPEND_DEFAULT_CFLAGS], [
# GCC and compatible (incl. clang)
if test "x$GCC" = "xyes"; then
# Try to append -Werror to CFLAGS temporarily. Otherwise checks for some unsupported
# flags will succeed.
# Note that failure to append -Werror does not necessarily mean that -Werror is not
# supported. The compiler may already be warning about something unrelated, for example
# about some path issue. If that is the case, -Werror cannot be used because all
# of those warnings would be turned into errors.
SECP_TRY_APPEND_DEFAULT_CFLAGS_saved_CFLAGS="$CFLAGS"
SECP_TRY_APPEND_CFLAGS([-Werror], CFLAGS)
SECP_TRY_APPEND_CFLAGS([-std=c89 -pedantic -Wno-long-long -Wnested-externs -Wshadow -Wstrict-prototypes -Wundef], $1) # GCC >= 3.0, -Wlong-long is implied by -pedantic.
SECP_TRY_APPEND_CFLAGS([-Wno-overlength-strings], $1) # GCC >= 4.2, -Woverlength-strings is implied by -pedantic.
SECP_TRY_APPEND_CFLAGS([-Wall], $1) # GCC >= 2.95 and probably many other compilers
SECP_TRY_APPEND_CFLAGS([-Wno-unused-function], $1) # GCC >= 3.0, -Wunused-function is implied by -Wall.
SECP_TRY_APPEND_CFLAGS([-Wextra], $1) # GCC >= 3.4, this is the newer name of -W, which we don't use because older GCCs will warn about unused functions.
SECP_TRY_APPEND_CFLAGS([-Wcast-align], $1) # GCC >= 2.95
SECP_TRY_APPEND_CFLAGS([-Wcast-align=strict], $1) # GCC >= 8.0
SECP_TRY_APPEND_CFLAGS([-Wconditional-uninitialized], $1) # Clang >= 3.0 only
SECP_TRY_APPEND_CFLAGS([-Wreserved-identifier], $1) # Clang >= 13.0 only
CFLAGS="$SECP_TRY_APPEND_DEFAULT_CFLAGS_saved_CFLAGS"
fi
# MSVC
# Assume MSVC if we're building for Windows but not with GCC or compatible;
# libtool makes the same assumption internally.
# Note that "/opt" and "-opt" are equivalent for MSVC; we use "-opt" because "/opt" looks like a path.
if test x"$GCC" != x"yes" && test x"$build_windows" = x"yes"; then
SECP_TRY_APPEND_CFLAGS([-W3], $1) # Production quality warning level.
SECP_TRY_APPEND_CFLAGS([-wd4146], $1) # Disable warning C4146 "unary minus operator applied to unsigned type, result still unsigned".
SECP_TRY_APPEND_CFLAGS([-wd4244], $1) # Disable warning C4244 "'conversion' conversion from 'type1' to 'type2', possible loss of data".
SECP_TRY_APPEND_CFLAGS([-wd4267], $1) # Disable warning C4267 "'var' : conversion from 'size_t' to 'type', possible loss of data".
# Eliminate deprecation warnings for the older, less secure functions.
CPPFLAGS="-D_CRT_SECURE_NO_WARNINGS $CPPFLAGS"
fi
])
SECP_TRY_APPEND_DEFAULT_CFLAGS(SECP_CFLAGS)
###
### Define config arguments
###
# In dev mode, we enable all binaries and modules by default but individual options can still be overridden explicitly.
# Check for dev mode first because SECP_SET_DEFAULT needs enable_dev_mode set.
AC_ARG_ENABLE(dev_mode, [], [],
[enable_dev_mode=no])
AC_ARG_ENABLE(benchmark,
AS_HELP_STRING([--enable-benchmark],[compile benchmark [default=yes]]), [],
[SECP_SET_DEFAULT([enable_benchmark], [yes], [yes])])
AC_ARG_ENABLE(coverage,
AS_HELP_STRING([--enable-coverage],[enable compiler flags to support kcov coverage analysis [default=no]]), [],
[SECP_SET_DEFAULT([enable_coverage], [no], [no])])
AC_ARG_ENABLE(tests,
AS_HELP_STRING([--enable-tests],[compile tests [default=yes]]), [],
[SECP_SET_DEFAULT([enable_tests], [yes], [yes])])
AC_ARG_ENABLE(ctime_tests,
AS_HELP_STRING([--enable-ctime-tests],[compile constant-time tests [default=yes if valgrind enabled]]), [],
[SECP_SET_DEFAULT([enable_ctime_tests], [auto], [auto])])
AC_ARG_ENABLE(experimental,
AS_HELP_STRING([--enable-experimental],[allow experimental configure options [default=no]]), [],
[SECP_SET_DEFAULT([enable_experimental], [no], [yes])])
AC_ARG_ENABLE(exhaustive_tests,
AS_HELP_STRING([--enable-exhaustive-tests],[compile exhaustive tests [default=yes]]), [],
[SECP_SET_DEFAULT([enable_exhaustive_tests], [yes], [yes])])
AC_ARG_ENABLE(examples,
AS_HELP_STRING([--enable-examples],[compile the examples [default=no]]), [],
[SECP_SET_DEFAULT([enable_examples], [no], [yes])])
AC_ARG_ENABLE(module_ecdh,
AS_HELP_STRING([--enable-module-ecdh],[enable ECDH module [default=yes]]), [],
[SECP_SET_DEFAULT([enable_module_ecdh], [yes], [yes])])
AC_ARG_ENABLE(module_recovery,
AS_HELP_STRING([--enable-module-recovery],[enable ECDSA pubkey recovery module [default=no]]), [],
[SECP_SET_DEFAULT([enable_module_recovery], [no], [yes])])
AC_ARG_ENABLE(module_extrakeys,
AS_HELP_STRING([--enable-module-extrakeys],[enable extrakeys module [default=yes]]), [],
[SECP_SET_DEFAULT([enable_module_extrakeys], [yes], [yes])])
AC_ARG_ENABLE(module_schnorrsig,
AS_HELP_STRING([--enable-module-schnorrsig],[enable schnorrsig module [default=yes]]), [],
[SECP_SET_DEFAULT([enable_module_schnorrsig], [yes], [yes])])
AC_ARG_ENABLE(module_musig,
AS_HELP_STRING([--enable-module-musig],[enable MuSig2 module [default=yes]]), [],
[SECP_SET_DEFAULT([enable_module_musig], [yes], [yes])])
AC_ARG_ENABLE(module_ellswift,
AS_HELP_STRING([--enable-module-ellswift],[enable ElligatorSwift module [default=yes]]), [],
[SECP_SET_DEFAULT([enable_module_ellswift], [yes], [yes])])
AC_ARG_ENABLE(external_default_callbacks,
AS_HELP_STRING([--enable-external-default-callbacks],[enable external default callback functions [default=no]]), [],
[SECP_SET_DEFAULT([enable_external_default_callbacks], [no], [no])])
# Test-only override of the (autodetected by the C code) "widemul" setting.
# Legal values are:
# * int64 (for [u]int64_t),
# * int128 (for [unsigned] __int128),
# * int128_struct (for int128 implemented as a structure),
# * and auto (the default).
AC_ARG_WITH([test-override-wide-multiply], [] ,[set_widemul=$withval], [set_widemul=auto])
AC_ARG_WITH([asm], [AS_HELP_STRING([--with-asm=x86_64|arm32|no|auto],
[assembly to use (experimental: arm32) [default=auto]])],[req_asm=$withval], [req_asm=auto])
AC_ARG_WITH([ecmult-window], [AS_HELP_STRING([--with-ecmult-window=SIZE],
[window size for ecmult precomputation for verification, specified as integer in range [2..24].]
[Larger values result in possibly better performance at the cost of an exponentially larger precomputed table.]
[The table will store 2^(SIZE-1) * 64 bytes of data but can be larger in memory due to platform-specific padding and alignment.]
[A window size larger than 15 will require you delete the prebuilt precomputed_ecmult.c file so that it can be rebuilt.]
[For very large window sizes, use "make -j 1" to reduce memory use during compilation.]
[The default value is a reasonable setting for desktop machines (currently 15). [default=15]]
)],
[set_ecmult_window=$withval], [set_ecmult_window=15])
AC_ARG_WITH([ecmult-gen-kb], [AS_HELP_STRING([--with-ecmult-gen-kb=2|22|86],
[The size of the precomputed table for signing in multiples of 1024 bytes (on typical platforms).]
[Larger values result in possibly better signing/keygeneration performance at the cost of a larger table.]
[The default value is a reasonable setting for desktop machines (currently 86). [default=86]]
)],
[set_ecmult_gen_kb=$withval], [set_ecmult_gen_kb=86])
AC_ARG_WITH([valgrind], [AS_HELP_STRING([--with-valgrind=yes|no|auto],
[Build with extra checks for running inside Valgrind [default=auto]]
)],
[req_valgrind=$withval], [req_valgrind=auto])
###
### Handle config options (except for modules)
###
if test x"$req_valgrind" = x"no"; then
enable_valgrind=no
else
SECP_VALGRIND_CHECK
if test x"$has_valgrind" != x"yes"; then
if test x"$req_valgrind" = x"yes"; then
AC_MSG_ERROR([Valgrind support explicitly requested but valgrind/memcheck.h header not available])
fi
enable_valgrind=no
else
enable_valgrind=yes
fi
fi
if test x"$enable_ctime_tests" = x"auto"; then
enable_ctime_tests=$enable_valgrind
fi
print_msan_notice=no
if test x"$enable_ctime_tests" = x"yes"; then
SECP_MSAN_CHECK
# MSan on Clang >=16 reports uninitialized memory in function parameters and return values, even if
# the uninitialized variable is never actually "used". This is called "eager" checking, and it's
# sounds like good idea for normal use of MSan. However, it yields many false positives in the
# ctime_tests because many return values depend on secret (i.e., "uninitialized") values, and
# we're only interested in detecting branches (which count as "uses") on secret data.
if test x"$msan_enabled" = x"yes"; then
SECP_TRY_APPEND_CFLAGS([-fno-sanitize-memory-param-retval], SECP_CFLAGS)
print_msan_notice=yes
fi
fi
if test x"$enable_coverage" = x"yes"; then
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DCOVERAGE=1"
SECP_CFLAGS="-O0 --coverage $SECP_CFLAGS"
# If coverage is enabled, and the user has not overridden CFLAGS,
# override Autoconf's value "-g -O2" with "-g". Otherwise we'd end up
# with "-O0 --coverage -g -O2".
if test "$CFLAGS_overridden" = "no"; then
CFLAGS="-g"
fi
LDFLAGS="--coverage $LDFLAGS"
else
# Most likely the CFLAGS already contain -O2 because that is autoconf's default.
# We still add it here because passing it twice is not an issue, and handling
# this case would just add unnecessary complexity (see #896).
SECP_CFLAGS="-O2 $SECP_CFLAGS"
fi
if test x"$req_asm" = x"auto"; then
SECP_X86_64_ASM_CHECK
if test x"$has_x86_64_asm" = x"yes"; then
set_asm=x86_64
fi
if test x"$set_asm" = x; then
set_asm=no
fi
else
set_asm=$req_asm
case $set_asm in
x86_64)
SECP_X86_64_ASM_CHECK
if test x"$has_x86_64_asm" != x"yes"; then
AC_MSG_ERROR([x86_64 assembly requested but not available])
fi
;;
arm32)
SECP_ARM32_ASM_CHECK
if test x"$has_arm32_asm" != x"yes"; then
AC_MSG_ERROR([ARM32 assembly requested but not available])
fi
;;
no)
;;
*)
AC_MSG_ERROR([invalid assembly selection])
;;
esac
fi
# Select assembly
enable_external_asm=no
case $set_asm in
x86_64)
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DUSE_ASM_X86_64=1"
;;
arm32)
enable_external_asm=yes
;;
no)
;;
*)
AC_MSG_ERROR([invalid assembly selection])
;;
esac
if test x"$enable_external_asm" = x"yes"; then
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DUSE_EXTERNAL_ASM=1"
fi
# Select wide multiplication implementation
case $set_widemul in
int128_struct)
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DUSE_FORCE_WIDEMUL_INT128_STRUCT=1"
;;
int128)
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DUSE_FORCE_WIDEMUL_INT128=1"
;;
int64)
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DUSE_FORCE_WIDEMUL_INT64=1"
;;
auto)
;;
*)
AC_MSG_ERROR([invalid wide multiplication implementation])
;;
esac
error_window_size=['window size for ecmult precomputation not an integer in range [2..24]']
case $set_ecmult_window in
''|*[[!0-9]]*)
# no valid integer
AC_MSG_ERROR($error_window_size)
;;
*)
if test "$set_ecmult_window" -lt 2 -o "$set_ecmult_window" -gt 24 ; then
# not in range
AC_MSG_ERROR($error_window_size)
fi
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DECMULT_WINDOW_SIZE=$set_ecmult_window"
;;
esac
case $set_ecmult_gen_kb in
2)
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DCOMB_BLOCKS=2 -DCOMB_TEETH=5"
;;
22)
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DCOMB_BLOCKS=11 -DCOMB_TEETH=6"
;;
86)
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DCOMB_BLOCKS=43 -DCOMB_TEETH=6"
;;
*)
AC_MSG_ERROR(['ecmult gen table size not 2, 22 or 86'])
;;
esac
if test x"$enable_valgrind" = x"yes"; then
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES $VALGRIND_CPPFLAGS -DVALGRIND"
fi
# Add -Werror and similar flags passed from the outside (for testing, e.g., in CI).
# We don't want to set the user variable CFLAGS in CI because this would disable
# autoconf's logic for setting default CFLAGS, which we would like to test in CI.
SECP_CFLAGS="$SECP_CFLAGS $WERROR_CFLAGS"
###
### Handle module options
###
# Processing must be done in a reverse topological sorting of the dependency graph
# (dependent module first).
if test x"$enable_module_ellswift" = x"yes"; then
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DENABLE_MODULE_ELLSWIFT=1"
fi
if test x"$enable_module_musig" = x"yes"; then
if test x"$enable_module_schnorrsig" = x"no"; then
AC_MSG_ERROR([Module dependency error: You have disabled the schnorrsig module explicitly, but it is required by the musig module.])
fi
enable_module_schnorrsig=yes
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DENABLE_MODULE_MUSIG=1"
fi
if test x"$enable_module_schnorrsig" = x"yes"; then
if test x"$enable_module_extrakeys" = x"no"; then
AC_MSG_ERROR([Module dependency error: You have disabled the extrakeys module explicitly, but it is required by the schnorrsig module.])
fi
enable_module_extrakeys=yes
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DENABLE_MODULE_SCHNORRSIG=1"
fi
if test x"$enable_module_extrakeys" = x"yes"; then
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DENABLE_MODULE_EXTRAKEYS=1"
fi
if test x"$enable_module_recovery" = x"yes"; then
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DENABLE_MODULE_RECOVERY=1"
fi
if test x"$enable_module_ecdh" = x"yes"; then
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DENABLE_MODULE_ECDH=1"
fi
if test x"$enable_external_default_callbacks" = x"yes"; then
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DUSE_EXTERNAL_DEFAULT_CALLBACKS=1"
fi
###
### Check for --enable-experimental if necessary
###
if test x"$enable_experimental" = x"no"; then
if test x"$set_asm" = x"arm32"; then
AC_MSG_ERROR([ARM32 assembly is experimental. Use --enable-experimental to allow.])
fi
fi
###
### Generate output
###
AC_CONFIG_FILES([Makefile libsecp256k1.pc])
AC_SUBST(SECP_CFLAGS)
AC_SUBST(SECP_CONFIG_DEFINES)
AM_CONDITIONAL([ENABLE_COVERAGE], [test x"$enable_coverage" = x"yes"])
AM_CONDITIONAL([USE_TESTS], [test x"$enable_tests" != x"no"])
AM_CONDITIONAL([USE_CTIME_TESTS], [test x"$enable_ctime_tests" = x"yes"])
AM_CONDITIONAL([USE_EXHAUSTIVE_TESTS], [test x"$enable_exhaustive_tests" != x"no"])
AM_CONDITIONAL([USE_EXAMPLES], [test x"$enable_examples" != x"no"])
AM_CONDITIONAL([USE_BENCHMARK], [test x"$enable_benchmark" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_EXTRAKEYS], [test x"$enable_module_extrakeys" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_SCHNORRSIG], [test x"$enable_module_schnorrsig" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_MUSIG], [test x"$enable_module_musig" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_ELLSWIFT], [test x"$enable_module_ellswift" = x"yes"])
AM_CONDITIONAL([USE_EXTERNAL_ASM], [test x"$enable_external_asm" = x"yes"])
AM_CONDITIONAL([USE_ASM_ARM], [test x"$set_asm" = x"arm32"])
AM_CONDITIONAL([BUILD_WINDOWS], [test "$build_windows" = "yes"])
AC_SUBST(LIB_VERSION_CURRENT, _LIB_VERSION_CURRENT)
AC_SUBST(LIB_VERSION_REVISION, _LIB_VERSION_REVISION)
AC_SUBST(LIB_VERSION_AGE, _LIB_VERSION_AGE)
AC_OUTPUT
echo
echo "Build Options:"
echo " with external callbacks = $enable_external_default_callbacks"
echo " with benchmarks = $enable_benchmark"
echo " with tests = $enable_tests"
echo " with exhaustive tests = $enable_exhaustive_tests"
echo " with ctime tests = $enable_ctime_tests"
echo " with coverage = $enable_coverage"
echo " with examples = $enable_examples"
echo " module ecdh = $enable_module_ecdh"
echo " module recovery = $enable_module_recovery"
echo " module extrakeys = $enable_module_extrakeys"
echo " module schnorrsig = $enable_module_schnorrsig"
echo " module musig = $enable_module_musig"
echo " module ellswift = $enable_module_ellswift"
echo
echo " asm = $set_asm"
echo " ecmult window size = $set_ecmult_window"
echo " ecmult gen table size = $set_ecmult_gen_kb KiB"
# Hide test-only options unless they're used.
if test x"$set_widemul" != xauto; then
echo " wide multiplication = $set_widemul"
fi
echo
echo " valgrind = $enable_valgrind"
echo " CC = $CC"
echo " CPPFLAGS = $CPPFLAGS"
echo " SECP_CFLAGS = $SECP_CFLAGS"
echo " CFLAGS = $CFLAGS"
echo " LDFLAGS = $LDFLAGS"
if test x"$print_msan_notice" = x"yes"; then
echo
echo "Note:"
echo " MemorySanitizer detected, tried to add -fno-sanitize-memory-param-retval to SECP_CFLAGS"
echo " to avoid false positives in ctime_tests. Pass --disable-ctime-tests to avoid this."
fi
if test x"$enable_experimental" = x"yes"; then
echo
echo "WARNING: Experimental build"
echo " Experimental features do not have stable APIs or properties, and may not be safe for"
echo " production use."
fi

View File

@ -0,0 +1,148 @@
/***********************************************************************
* Copyright (c) 2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#include <string.h>
#include "lax_der_parsing.h"
int ecdsa_signature_parse_der_lax(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) {
size_t rpos, rlen, spos, slen;
size_t pos = 0;
size_t lenbyte;
unsigned char tmpsig[64] = {0};
int overflow = 0;
/* Hack to initialize sig with a correctly-parsed but invalid signature. */
secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
/* Sequence tag byte */
if (pos == inputlen || input[pos] != 0x30) {
return 0;
}
pos++;
/* Sequence length bytes */
if (pos == inputlen) {
return 0;
}
lenbyte = input[pos++];
if (lenbyte & 0x80) {
lenbyte -= 0x80;
if (lenbyte > inputlen - pos) {
return 0;
}
pos += lenbyte;
}
/* Integer tag byte for R */
if (pos == inputlen || input[pos] != 0x02) {
return 0;
}
pos++;
/* Integer length for R */
if (pos == inputlen) {
return 0;
}
lenbyte = input[pos++];
if (lenbyte & 0x80) {
lenbyte -= 0x80;
if (lenbyte > inputlen - pos) {
return 0;
}
while (lenbyte > 0 && input[pos] == 0) {
pos++;
lenbyte--;
}
if (lenbyte >= sizeof(size_t)) {
return 0;
}
rlen = 0;
while (lenbyte > 0) {
rlen = (rlen << 8) + input[pos];
pos++;
lenbyte--;
}
} else {
rlen = lenbyte;
}
if (rlen > inputlen - pos) {
return 0;
}
rpos = pos;
pos += rlen;
/* Integer tag byte for S */
if (pos == inputlen || input[pos] != 0x02) {
return 0;
}
pos++;
/* Integer length for S */
if (pos == inputlen) {
return 0;
}
lenbyte = input[pos++];
if (lenbyte & 0x80) {
lenbyte -= 0x80;
if (lenbyte > inputlen - pos) {
return 0;
}
while (lenbyte > 0 && input[pos] == 0) {
pos++;
lenbyte--;
}
if (lenbyte >= sizeof(size_t)) {
return 0;
}
slen = 0;
while (lenbyte > 0) {
slen = (slen << 8) + input[pos];
pos++;
lenbyte--;
}
} else {
slen = lenbyte;
}
if (slen > inputlen - pos) {
return 0;
}
spos = pos;
/* Ignore leading zeroes in R */
while (rlen > 0 && input[rpos] == 0) {
rlen--;
rpos++;
}
/* Copy R value */
if (rlen > 32) {
overflow = 1;
} else if (rlen) {
memcpy(tmpsig + 32 - rlen, input + rpos, rlen);
}
/* Ignore leading zeroes in S */
while (slen > 0 && input[spos] == 0) {
slen--;
spos++;
}
/* Copy S value */
if (slen > 32) {
overflow = 1;
} else if (slen) {
memcpy(tmpsig + 64 - slen, input + spos, slen);
}
if (!overflow) {
overflow = !secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
}
if (overflow) {
memset(tmpsig, 0, 64);
secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
}
return 1;
}

View File

@ -0,0 +1,97 @@
/***********************************************************************
* Copyright (c) 2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
/****
* Please do not link this file directly. It is not part of the libsecp256k1
* project and does not promise any stability in its API, functionality or
* presence. Projects which use this code should instead copy this header
* and its accompanying .c file directly into their codebase.
****/
/* This file defines a function that parses DER with various errors and
* violations. This is not a part of the library itself, because the allowed
* violations are chosen arbitrarily and do not follow or establish any
* standard.
*
* In many places it matters that different implementations do not only accept
* the same set of valid signatures, but also reject the same set of signatures.
* The only means to accomplish that is by strictly obeying a standard, and not
* accepting anything else.
*
* Nonetheless, sometimes there is a need for compatibility with systems that
* use signatures which do not strictly obey DER. The snippet below shows how
* certain violations are easily supported. You may need to adapt it.
*
* Do not use this for new systems. Use well-defined DER or compact signatures
* instead if you have the choice (see secp256k1_ecdsa_signature_parse_der and
* secp256k1_ecdsa_signature_parse_compact).
*
* The supported violations are:
* - All numbers are parsed as nonnegative integers, even though X.609-0207
* section 8.3.3 specifies that integers are always encoded as two's
* complement.
* - Integers can have length 0, even though section 8.3.1 says they can't.
* - Integers with overly long padding are accepted, violation section
* 8.3.2.
* - 127-byte long length descriptors are accepted, even though section
* 8.1.3.5.c says that they are not.
* - Trailing garbage data inside or after the signature is ignored.
* - The length descriptor of the sequence is ignored.
*
* Compared to for example OpenSSL, many violations are NOT supported:
* - Using overly long tag descriptors for the sequence or integers inside,
* violating section 8.1.2.2.
* - Encoding primitive integers as constructed values, violating section
* 8.3.1.
*/
#ifndef SECP256K1_CONTRIB_LAX_DER_PARSING_H
#define SECP256K1_CONTRIB_LAX_DER_PARSING_H
/* #include secp256k1.h only when it hasn't been included yet.
This enables this file to be #included directly in other project
files (such as tests.c) without the need to set an explicit -I flag,
which would be necessary to locate secp256k1.h. */
#ifndef SECP256K1_H
#include <secp256k1.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
/** Parse a signature in "lax DER" format
*
* Returns: 1 when the signature could be parsed, 0 otherwise.
* Args: ctx: a secp256k1 context object
* Out: sig: pointer to a signature object
* In: input: pointer to the signature to be parsed
* inputlen: the length of the array pointed to be input
*
* This function will accept any valid DER encoded signature, even if the
* encoded numbers are out of range. In addition, it will accept signatures
* which violate the DER spec in various ways. Its purpose is to allow
* validation of the Bitcoin blockchain, which includes non-DER signatures
* from before the network rules were updated to enforce DER. Note that
* the set of supported violations is a strict subset of what OpenSSL will
* accept.
*
* After the call, sig will always be initialized. If parsing failed or the
* encoded numbers are out of range, signature validation with it is
* guaranteed to fail for every message and public key.
*/
int ecdsa_signature_parse_der_lax(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature* sig,
const unsigned char *input,
size_t inputlen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_CONTRIB_LAX_DER_PARSING_H */

View File

@ -0,0 +1,112 @@
/***********************************************************************
* Copyright (c) 2014, 2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#include <string.h>
#include "lax_der_privatekey_parsing.h"
int ec_privkey_import_der(const secp256k1_context* ctx, unsigned char *out32, const unsigned char *privkey, size_t privkeylen) {
const unsigned char *end = privkey + privkeylen;
int lenb = 0;
int len = 0;
memset(out32, 0, 32);
/* sequence header */
if (end < privkey+1 || *privkey != 0x30) {
return 0;
}
privkey++;
/* sequence length constructor */
if (end < privkey+1 || !(*privkey & 0x80)) {
return 0;
}
lenb = *privkey & ~0x80; privkey++;
if (lenb < 1 || lenb > 2) {
return 0;
}
if (end < privkey+lenb) {
return 0;
}
/* sequence length */
len = privkey[lenb-1] | (lenb > 1 ? privkey[lenb-2] << 8 : 0);
privkey += lenb;
if (end < privkey+len) {
return 0;
}
/* sequence element 0: version number (=1) */
if (end < privkey+3 || privkey[0] != 0x02 || privkey[1] != 0x01 || privkey[2] != 0x01) {
return 0;
}
privkey += 3;
/* sequence element 1: octet string, up to 32 bytes */
if (end < privkey+2 || privkey[0] != 0x04 || privkey[1] > 0x20 || end < privkey+2+privkey[1]) {
return 0;
}
if (privkey[1]) memcpy(out32 + 32 - privkey[1], privkey + 2, privkey[1]);
if (!secp256k1_ec_seckey_verify(ctx, out32)) {
memset(out32, 0, 32);
return 0;
}
return 1;
}
int ec_privkey_export_der(const secp256k1_context *ctx, unsigned char *privkey, size_t *privkeylen, const unsigned char *key32, int compressed) {
secp256k1_pubkey pubkey;
size_t pubkeylen = 0;
if (!secp256k1_ec_pubkey_create(ctx, &pubkey, key32)) {
*privkeylen = 0;
return 0;
}
if (compressed) {
static const unsigned char begin[] = {
0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20
};
static const unsigned char middle[] = {
0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00
};
unsigned char *ptr = privkey;
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
memcpy(ptr, key32, 32); ptr += 32;
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
pubkeylen = 33;
secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED);
ptr += pubkeylen;
*privkeylen = ptr - privkey;
} else {
static const unsigned char begin[] = {
0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20
};
static const unsigned char middle[] = {
0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11,
0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10,
0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00
};
unsigned char *ptr = privkey;
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
memcpy(ptr, key32, 32); ptr += 32;
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
pubkeylen = 65;
secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
ptr += pubkeylen;
*privkeylen = ptr - privkey;
}
return 1;
}

View File

@ -0,0 +1,95 @@
/***********************************************************************
* Copyright (c) 2014, 2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
/****
* Please do not link this file directly. It is not part of the libsecp256k1
* project and does not promise any stability in its API, functionality or
* presence. Projects which use this code should instead copy this header
* and its accompanying .c file directly into their codebase.
****/
/* This file contains code snippets that parse DER private keys with
* various errors and violations. This is not a part of the library
* itself, because the allowed violations are chosen arbitrarily and
* do not follow or establish any standard.
*
* It also contains code to serialize private keys in a compatible
* manner.
*
* These functions are meant for compatibility with applications
* that require BER encoded keys. When working with secp256k1-specific
* code, the simple 32-byte private keys normally used by the
* library are sufficient.
*/
#ifndef SECP256K1_CONTRIB_BER_PRIVATEKEY_H
#define SECP256K1_CONTRIB_BER_PRIVATEKEY_H
/* #include secp256k1.h only when it hasn't been included yet.
This enables this file to be #included directly in other project
files (such as tests.c) without the need to set an explicit -I flag,
which would be necessary to locate secp256k1.h. */
#ifndef SECP256K1_H
#include <secp256k1.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
/** Export a private key in DER format.
*
* Returns: 1 if the private key was valid.
* Args: ctx: pointer to a context object (not secp256k1_context_static).
* Out: privkey: pointer to an array for storing the private key in BER.
* Should have space for 279 bytes, and cannot be NULL.
* privkeylen: Pointer to an int where the length of the private key in
* privkey will be stored.
* In: seckey: pointer to a 32-byte secret key to export.
* compressed: 1 if the key should be exported in
* compressed format, 0 otherwise
*
* This function is purely meant for compatibility with applications that
* require BER encoded keys. When working with secp256k1-specific code, the
* simple 32-byte private keys are sufficient.
*
* Note that this function does not guarantee correct DER output. It is
* guaranteed to be parsable by secp256k1_ec_privkey_import_der
*/
SECP256K1_WARN_UNUSED_RESULT int ec_privkey_export_der(
const secp256k1_context* ctx,
unsigned char *privkey,
size_t *privkeylen,
const unsigned char *seckey,
int compressed
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Import a private key in DER format.
* Returns: 1 if a private key was extracted.
* Args: ctx: pointer to a context object (cannot be NULL).
* Out: seckey: pointer to a 32-byte array for storing the private key.
* (cannot be NULL).
* In: privkey: pointer to a private key in DER format (cannot be NULL).
* privkeylen: length of the DER private key pointed to be privkey.
*
* This function will accept more than just strict DER, and even allow some BER
* violations. The public key stored inside the DER-encoded private key is not
* verified for correctness, nor are the curve parameters. Use this function
* only if you know in advance it is supposed to contain a secp256k1 private
* key.
*/
SECP256K1_WARN_UNUSED_RESULT int ec_privkey_import_der(
const secp256k1_context* ctx,
unsigned char *seckey,
const unsigned char *privkey,
size_t privkeylen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_CONTRIB_BER_PRIVATEKEY_H */

483
secp256k1/doc/ellswift.md Normal file
View File

@ -0,0 +1,483 @@
# ElligatorSwift for secp256k1 explained
In this document we explain how the `ellswift` module implementation is related to the
construction in the
["SwiftEC: Shalluevan de Woestijne Indifferentiable Function To Elliptic Curves"](https://eprint.iacr.org/2022/759)
paper by Jorge Chávez-Saab, Francisco Rodríguez-Henríquez, and Mehdi Tibouchi.
* [1. Introduction](#1-introduction)
* [2. The decoding function](#2-the-decoding-function)
+ [2.1 Decoding for `secp256k1`](#21-decoding-for-secp256k1)
* [3. The encoding function](#3-the-encoding-function)
+ [3.1 Switching to *v, w* coordinates](#31-switching-to-v-w-coordinates)
+ [3.2 Avoiding computing all inverses](#32-avoiding-computing-all-inverses)
+ [3.3 Finding the inverse](#33-finding-the-inverse)
+ [3.4 Dealing with special cases](#34-dealing-with-special-cases)
+ [3.5 Encoding for `secp256k1`](#35-encoding-for-secp256k1)
* [4. Encoding and decoding full *(x, y)* coordinates](#4-encoding-and-decoding-full-x-y-coordinates)
+ [4.1 Full *(x, y)* coordinates for `secp256k1`](#41-full-x-y-coordinates-for-secp256k1)
## 1. Introduction
The `ellswift` module effectively introduces a new 64-byte public key format, with the property
that (uniformly random) public keys can be encoded as 64-byte arrays which are computationally
indistinguishable from uniform byte arrays. The module provides functions to convert public keys
from and to this format, as well as convenience functions for key generation and ECDH that operate
directly on ellswift-encoded keys.
The encoding consists of the concatenation of two (32-byte big endian) encoded field elements $u$
and $t.$ Together they encode an x-coordinate on the curve $x$, or (see further) a full point $(x, y)$ on
the curve.
**Decoding** consists of decoding the field elements $u$ and $t$ (values above the field size $p$
are taken modulo $p$), and then evaluating $F_u(t)$, which for every $u$ and $t$ results in a valid
x-coordinate on the curve. The functions $F_u$ will be defined in [Section 2](#2-the-decoding-function).
**Encoding** a given $x$ coordinate is conceptually done as follows:
* Loop:
* Pick a uniformly random field element $u.$
* Compute the set $L = F_u^{-1}(x)$ of $t$ values for which $F_u(t) = x$, which may have up to *8* elements.
* With probability $1 - \dfrac{\\#L}{8}$, restart the loop.
* Select a uniformly random $t \in L$ and return $(u, t).$
This is the *ElligatorSwift* algorithm, here given for just x-coordinates. An extension to full
$(x, y)$ points will be given in [Section 4](#4-encoding-and-decoding-full-x-y-coordinates).
The algorithm finds a uniformly random $(u, t)$ among (almost all) those
for which $F_u(t) = x.$ Section 3.2 in the paper proves that the number of such encodings for
almost all x-coordinates on the curve (all but at most 39) is close to two times the field size
(specifically, it lies in the range $2q \pm (22\sqrt{q} + O(1))$, where $q$ is the size of the field).
## 2. The decoding function
First some definitions:
* $\mathbb{F}$ is the finite field of size $q$, of characteristic 5 or more, and $q \equiv 1 \mod 3.$
* For `secp256k1`, $q = 2^{256} - 2^{32} - 977$, which satisfies that requirement.
* Let $E$ be the elliptic curve of points $(x, y) \in \mathbb{F}^2$ for which $y^2 = x^3 + ax + b$, with $a$ and $b$
public constants, for which $\Delta_E = -16(4a^3 + 27b^2)$ is a square, and at least one of $(-b \pm \sqrt{-3 \Delta_E} / 36)/2$ is a square.
This implies that the order of $E$ is either odd, or a multiple of *4*.
If $a=0$, this condition is always fulfilled.
* For `secp256k1`, $a=0$ and $b=7.$
* Let the function $g(x) = x^3 + ax + b$, so the $E$ curve equation is also $y^2 = g(x).$
* Let the function $h(x) = 3x^3 + 4a.$
* Define $V$ as the set of solutions $(x_1, x_2, x_3, z)$ to $z^2 = g(x_1)g(x_2)g(x_3).$
* Define $S_u$ as the set of solutions $(X, Y)$ to $X^2 + h(u)Y^2 = -g(u)$ and $Y \neq 0.$
* $P_u$ is a function from $\mathbb{F}$ to $S_u$ that will be defined below.
* $\psi_u$ is a function from $S_u$ to $V$ that will be defined below.
**Note**: In the paper:
* $F_u$ corresponds to $F_{0,u}$ there.
* $P_u(t)$ is called $P$ there.
* All $S_u$ sets together correspond to $S$ there.
* All $\psi_u$ functions together (operating on elements of $S$) correspond to $\psi$ there.
Note that for $V$, the left hand side of the equation $z^2$ is square, and thus the right
hand must also be square. As multiplying non-squares results in a square in $\mathbb{F}$,
out of the three right-hand side factors an even number must be non-squares.
This implies that exactly *1* or exactly *3* out of
$\\{g(x_1), g(x_2), g(x_3)\\}$ must be square, and thus that for any $(x_1,x_2,x_3,z) \in V$,
at least one of $\\{x_1, x_2, x_3\\}$ must be a valid x-coordinate on $E.$ There is one exception
to this, namely when $z=0$, but even then one of the three values is a valid x-coordinate.
**Define** the decoding function $F_u(t)$ as:
* Let $(x_1, x_2, x_3, z) = \psi_u(P_u(t)).$
* Return the first element $x$ of $(x_3, x_2, x_1)$ which is a valid x-coordinate on $E$ (i.e., $g(x)$ is square).
$P_u(t) = (X(u, t), Y(u, t))$, where:
$$
\begin{array}{lcl}
X(u, t) & = & \left\\{\begin{array}{ll}
\dfrac{g(u) - t^2}{2t} & a = 0 \\
\dfrac{g(u) + h(u)(Y_0(u) - X_0(u)t)^2}{X_0(u)(1 + h(u)t^2)} & a \neq 0
\end{array}\right. \\
Y(u, t) & = & \left\\{\begin{array}{ll}
\dfrac{X(u, t) + t}{u \sqrt{-3}} = \dfrac{g(u) + t^2}{2tu\sqrt{-3}} & a = 0 \\
Y_0(u) + t(X(u, t) - X_0(u)) & a \neq 0
\end{array}\right.
\end{array}
$$
$P_u(t)$ is defined:
* For $a=0$, unless:
* $u = 0$ or $t = 0$ (division by zero)
* $g(u) = -t^2$ (would give $Y=0$).
* For $a \neq 0$, unless:
* $X_0(u) = 0$ or $h(u)t^2 = -1$ (division by zero)
* $Y_0(u) (1 - h(u)t^2) = 2X_0(u)t$ (would give $Y=0$).
The functions $X_0(u)$ and $Y_0(u)$ are defined in Appendix A of the paper, and depend on various properties of $E.$
The function $\psi_u$ is the same for all curves: $\psi_u(X, Y) = (x_1, x_2, x_3, z)$, where:
$$
\begin{array}{lcl}
x_1 & = & \dfrac{X}{2Y} - \dfrac{u}{2} && \\
x_2 & = & -\dfrac{X}{2Y} - \dfrac{u}{2} && \\
x_3 & = & u + 4Y^2 && \\
z & = & \dfrac{g(x_3)}{2Y}(u^2 + ux_1 + x_1^2 + a) = \dfrac{-g(u)g(x_3)}{8Y^3}
\end{array}
$$
### 2.1 Decoding for `secp256k1`
Put together and specialized for $a=0$ curves, decoding $(u, t)$ to an x-coordinate is:
**Define** $F_u(t)$ as:
* Let $X = \dfrac{u^3 + b - t^2}{2t}.$
* Let $Y = \dfrac{X + t}{u\sqrt{-3}}.$
* Return the first $x$ in $(u + 4Y^2, \dfrac{-X}{2Y} - \dfrac{u}{2}, \dfrac{X}{2Y} - \dfrac{u}{2})$ for which $g(x)$ is square.
To make sure that every input decodes to a valid x-coordinate, we remap the inputs in case
$P_u$ is not defined (when $u=0$, $t=0$, or $g(u) = -t^2$):
**Define** $F_u(t)$ as:
* Let $u'=u$ if $u \neq 0$; $1$ otherwise (guaranteeing $u' \neq 0$).
* Let $t'=t$ if $t \neq 0$; $1$ otherwise (guaranteeing $t' \neq 0$).
* Let $t''=t'$ if $g(u') \neq -t'^2$; $2t'$ otherwise (guaranteeing $t'' \neq 0$ and $g(u') \neq -t''^2$).
* Let $X = \dfrac{u'^3 + b - t''^2}{2t''}.$
* Let $Y = \dfrac{X + t''}{u'\sqrt{-3}}.$
* Return the first $x$ in $(u' + 4Y^2, \dfrac{-X}{2Y} - \dfrac{u'}{2}, \dfrac{X}{2Y} - \dfrac{u'}{2})$ for which $x^3 + b$ is square.
The choices here are not strictly necessary. Just returning a fixed constant in any of the undefined cases would suffice,
but the approach here is simple enough and gives fairly uniform output even in these cases.
**Note**: in the paper these conditions result in $\infty$ as output, due to the use of projective coordinates there.
We wish to avoid the need for callers to deal with this special case.
This is implemented in `secp256k1_ellswift_xswiftec_frac_var` (which decodes to an x-coordinate represented as a fraction), and
in `secp256k1_ellswift_xswiftec_var` (which outputs the actual x-coordinate).
## 3. The encoding function
To implement $F_u^{-1}(x)$, the function to find the set of inverses $t$ for which $F_u(t) = x$, we have to reverse the process:
* Find all the $(X, Y) \in S_u$ that could have given rise to $x$, through the $x_1$, $x_2$, or $x_3$ formulas in $\psi_u.$
* Map those $(X, Y)$ solutions to $t$ values using $P_u^{-1}(X, Y).$
* For each of the found $t$ values, verify that $F_u(t) = x.$
* Return the remaining $t$ values.
The function $P_u^{-1}$, which finds $t$ given $(X, Y) \in S_u$, is significantly simpler than $P_u:$
$$
P_u^{-1}(X, Y) = \left\\{\begin{array}{ll}
Yu\sqrt{-3} - X & a = 0 \\
\dfrac{Y-Y_0(u)}{X-X_0(u)} & a \neq 0 \land X \neq X_0(u) \\
\dfrac{-X_0(u)}{h(u)Y_0(u)} & a \neq 0 \land X = X_0(u) \land Y = Y_0(u)
\end{array}\right.
$$
The third step above, verifying that $F_u(t) = x$, is necessary because for the $(X, Y)$ values found through the $x_1$ and $x_2$ expressions,
it is possible that decoding through $\psi_u(X, Y)$ yields a valid $x_3$ on the curve, which would take precedence over the
$x_1$ or $x_2$ decoding. These $(X, Y)$ solutions must be rejected.
Since we know that exactly one or exactly three out of $\\{x_1, x_2, x_3\\}$ are valid x-coordinates for any $t$,
the case where either $x_1$ or $x_2$ is valid and in addition also $x_3$ is valid must mean that all three are valid.
This means that instead of checking whether $x_3$ is on the curve, it is also possible to check whether the other one out of
$x_1$ and $x_2$ is on the curve. This is significantly simpler, as it turns out.
Observe that $\psi_u$ guarantees that $x_1 + x_2 = -u.$ So given either $x = x_1$ or $x = x_2$, the other one of the two can be computed as
$-u - x.$ Thus, when encoding $x$ through the $x_1$ or $x_2$ expressions, one can simply check whether $g(-u-x)$ is a square,
and if so, not include the corresponding $t$ values in the returned set. As this does not need $X$, $Y$, or $t$, this condition can be determined
before those values are computed.
It is not possible that an encoding found through the $x_1$ expression decodes to a different valid x-coordinate using $x_2$ (which would
take precedence), for the same reason: if both $x_1$ and $x_2$ decodings were valid, $x_3$ would be valid as well, and thus take
precedence over both. Because of this, the $g(-u-x)$ being square test for $x_1$ and $x_2$ is the only test necessary to guarantee the found $t$
values round-trip back to the input $x$ correctly. This is the reason for choosing the $(x_3, x_2, x_1)$ precedence order in the decoder;
any order which does not place $x_3$ first requires more complicated round-trip checks in the encoder.
### 3.1 Switching to *v, w* coordinates
Before working out the formulas for all this, we switch to different variables for $S_u.$ Let $v = (X/Y - u)/2$, and
$w = 2Y.$ Or in the other direction, $X = w(u/2 + v)$ and $Y = w/2:$
* $S_u'$ becomes the set of $(v, w)$ for which $w^2 (u^2 + uv + v^2 + a) = -g(u)$ and $w \neq 0.$
* For $a=0$ curves, $P_u^{-1}$ can be stated for $(v,w)$ as $P_u^{'-1}(v, w) = w\left(\frac{\sqrt{-3}-1}{2}u - v\right).$
* $\psi_u$ can be stated for $(v, w)$ as $\psi_u'(v, w) = (x_1, x_2, x_3, z)$, where
$$
\begin{array}{lcl}
x_1 & = & v \\
x_2 & = & -u - v \\
x_3 & = & u + w^2 \\
z & = & \dfrac{g(x_3)}{w}(u^2 + uv + v^2 + a) = \dfrac{-g(u)g(x_3)}{w^3}
\end{array}
$$
We can now write the expressions for finding $(v, w)$ given $x$ explicitly, by solving each of the $\\{x_1, x_2, x_3\\}$
expressions for $v$ or $w$, and using the $S_u'$ equation to find the other variable:
* Assuming $x = x_1$, we find $v = x$ and $w = \pm\sqrt{-g(u)/(u^2 + uv + v^2 + a)}$ (two solutions).
* Assuming $x = x_2$, we find $v = -u-x$ and $w = \pm\sqrt{-g(u)/(u^2 + uv + v^2 + a)}$ (two solutions).
* Assuming $x = x_3$, we find $w = \pm\sqrt{x-u}$ and $v = -u/2 \pm \sqrt{-w^2(4g(u) + w^2h(u))}/(2w^2)$ (four solutions).
### 3.2 Avoiding computing all inverses
The *ElligatorSwift* algorithm as stated in Section 1 requires the computation of $L = F_u^{-1}(x)$ (the
set of all $t$ such that $(u, t)$ decode to $x$) in full. This is unnecessary.
Observe that the procedure of restarting with probability $(1 - \frac{\\#L}{8})$ and otherwise returning a
uniformly random element from $L$ is actually equivalent to always padding $L$ with $\bot$ values up to length 8,
picking a uniformly random element from that, restarting whenever $\bot$ is picked:
**Define** *ElligatorSwift(x)* as:
* Loop:
* Pick a uniformly random field element $u.$
* Compute the set $L = F_u^{-1}(x).$
* Let $T$ be the 8-element vector consisting of the elements of $L$, plus $8 - \\#L$ times $\\{\bot\\}.$
* Select a uniformly random $t \in T.$
* If $t \neq \bot$, return $(u, t)$; restart loop otherwise.
Now notice that the order of elements in $T$ does not matter, as all we do is pick a uniformly
random element in it, so we do not need to have all $\bot$ values at the end.
As we have 8 distinct formulas for finding $(v, w)$ (taking the variants due to $\pm$ into account),
we can associate every index in $T$ with exactly one of those formulas, making sure that:
* Formulas that yield no solutions (due to division by zero or non-existing square roots) or invalid solutions are made to return $\bot.$
* For the $x_1$ and $x_2$ cases, if $g(-u-x)$ is a square, $\bot$ is returned instead (the round-trip check).
* In case multiple formulas would return the same non- $\bot$ result, all but one of those must be turned into $\bot$ to avoid biasing those.
The last condition above only occurs with negligible probability for cryptographically-sized curves, but is interesting
to take into account as it allows exhaustive testing in small groups. See [Section 3.4](#34-dealing-with-special-cases)
for an analysis of all the negligible cases.
If we define $T = (G_{0,u}(x), G_{1,u}(x), \ldots, G_{7,u}(x))$, with each $G_{i,u}$ matching one of the formulas,
the loop can be simplified to only compute one of the inverses instead of all of them:
**Define** *ElligatorSwift(x)* as:
* Loop:
* Pick a uniformly random field element $u.$
* Pick a uniformly random integer $c$ in $[0,8).$
* Let $t = G_{c,u}(x).$
* If $t \neq \bot$, return $(u, t)$; restart loop otherwise.
This is implemented in `secp256k1_ellswift_xelligatorswift_var`.
### 3.3 Finding the inverse
To implement $G_{c,u}$, we map $c=0$ to the $x_1$ formula, $c=1$ to the $x_2$ formula, and $c=2$ and $c=3$ to the $x_3$ formula.
Those are then repeated as $c=4$ through $c=7$ for the other sign of $w$ (noting that in each formula, $w$ is a square root of some expression).
Ignoring the negligible cases, we get:
**Define** $G_{c,u}(x)$ as:
* If $c \in \\{0, 1, 4, 5\\}$ (for $x_1$ and $x_2$ formulas):
* If $g(-u-x)$ is square, return $\bot$ (as $x_3$ would be valid and take precedence).
* If $c \in \\{0, 4\\}$ (the $x_1$ formula) let $v = x$, otherwise let $v = -u-x$ (the $x_2$ formula)
* Let $s = -g(u)/(u^2 + uv + v^2 + a)$ (using $s = w^2$ in what follows).
* Otherwise, when $c \in \\{2, 3, 6, 7\\}$ (for $x_3$ formulas):
* Let $s = x-u.$
* Let $r = \sqrt{-s(4g(u) + sh(u))}.$
* Let $v = (r/s - u)/2$ if $c \in \\{3, 7\\}$; $(-r/s - u)/2$ otherwise.
* Let $w = \sqrt{s}.$
* Depending on $c:$
* If $c \in \\{0, 1, 2, 3\\}:$ return $P_u^{'-1}(v, w).$
* If $c \in \\{4, 5, 6, 7\\}:$ return $P_u^{'-1}(v, -w).$
Whenever a square root of a non-square is taken, $\bot$ is returned; for both square roots this happens with roughly
50% on random inputs. Similarly, when a division by 0 would occur, $\bot$ is returned as well; this will only happen
with negligible probability. A division by 0 in the first branch in fact cannot occur at all, because $u^2 + uv + v^2 + a = 0$
implies $g(-u-x) = g(x)$ which would mean the $g(-u-x)$ is square condition has triggered
and $\bot$ would have been returned already.
**Note**: In the paper, the $case$ variable corresponds roughly to the $c$ above, but only takes on 4 possible values (1 to 4).
The conditional negation of $w$ at the end is done randomly, which is equivalent, but makes testing harder. We choose to
have the $G_{c,u}$ be deterministic, and capture all choices in $c.$
Now observe that the $c \in \\{1, 5\\}$ and $c \in \\{3, 7\\}$ conditions effectively perform the same $v \rightarrow -u-v$
transformation. Furthermore, that transformation has no effect on $s$ in the first branch
as $u^2 + ux + x^2 + a = u^2 + u(-u-x) + (-u-x)^2 + a.$ Thus we can extract it out and move it down:
**Define** $G_{c,u}(x)$ as:
* If $c \in \\{0, 1, 4, 5\\}:$
* If $g(-u-x)$ is square, return $\bot.$
* Let $s = -g(u)/(u^2 + ux + x^2 + a).$
* Let $v = x.$
* Otherwise, when $c \in \\{2, 3, 6, 7\\}:$
* Let $s = x-u.$
* Let $r = \sqrt{-s(4g(u) + sh(u))}.$
* Let $v = (r/s - u)/2.$
* Let $w = \sqrt{s}.$
* Depending on $c:$
* If $c \in \\{0, 2\\}:$ return $P_u^{'-1}(v, w).$
* If $c \in \\{1, 3\\}:$ return $P_u^{'-1}(-u-v, w).$
* If $c \in \\{4, 6\\}:$ return $P_u^{'-1}(v, -w).$
* If $c \in \\{5, 7\\}:$ return $P_u^{'-1}(-u-v, -w).$
This shows there will always be exactly 0, 4, or 8 $t$ values for a given $(u, x)$ input.
There can be 0, 1, or 2 $(v, w)$ pairs before invoking $P_u^{'-1}$, and each results in 4 distinct $t$ values.
### 3.4 Dealing with special cases
As mentioned before there are a few cases to deal with which only happen in a negligibly small subset of inputs.
For cryptographically sized fields, if only random inputs are going to be considered, it is unnecessary to deal with these. Still, for completeness
we analyse them here. They generally fall into two categories: cases in which the encoder would produce $t$ values that
do not decode back to $x$ (or at least cannot guarantee that they do), and cases in which the encoder might produce the same
$t$ value for multiple $c$ inputs (thereby biasing that encoding):
* In the branch for $x_1$ and $x_2$ (where $c \in \\{0, 1, 4, 5\\}$):
* When $g(u) = 0$, we would have $s=w=Y=0$, which is not on $S_u.$ This is only possible on even-ordered curves.
Excluding this also removes the one condition under which the simplified check for $x_3$ on the curve
fails (namely when $g(x_1)=g(x_2)=0$ but $g(x_3)$ is not square).
This does exclude some valid encodings: when both $g(u)=0$ and $u^2+ux+x^2+a=0$ (also implying $g(x)=0$),
the $S_u'$ equation degenerates to $0 = 0$, and many valid $t$ values may exist. Yet, these cannot be targeted uniformly by the
encoder anyway as there will generally be more than 8.
* When $g(x) = 0$, the same $t$ would be produced as in the $x_3$ branch (where $c \in \\{2, 3, 6, 7\\}$) which we give precedence
as it can deal with $g(u)=0$.
This is again only possible on even-ordered curves.
* In the branch for $x_3$ (where $c \in \\{2, 3, 6, 7\\}$):
* When $s=0$, a division by zero would occur.
* When $v = -u-v$ and $c \in \\{3, 7\\}$, the same $t$ would be returned as in the $c \in \\{2, 6\\}$ cases.
It is equivalent to checking whether $r=0$.
This cannot occur in the $x_1$ or $x_2$ branches, as it would trigger the $g(-u-x)$ is square condition.
A similar concern for $w = -w$ does not exist, as $w=0$ is already impossible in both branches: in the first
it requires $g(u)=0$ which is already outlawed on even-ordered curves and impossible on others; in the second it would trigger division by zero.
* Curve-specific special cases also exist that need to be rejected, because they result in $(u,t)$ which is invalid to the decoder, or because of division by zero in the encoder:
* For $a=0$ curves, when $u=0$ or when $t=0$. The latter can only be reached by the encoder when $g(u)=0$, which requires an even-ordered curve.
* For $a \neq 0$ curves, when $X_0(u)=0$, when $h(u)t^2 = -1$, or when $w(u + 2v) = 2X_0(u)$ while also either $w \neq 2Y_0(u)$ or $h(u)=0$.
**Define** a version of $G_{c,u}(x)$ which deals with all these cases:
* If $a=0$ and $u=0$, return $\bot.$
* If $a \neq 0$ and $X_0(u)=0$, return $\bot.$
* If $c \in \\{0, 1, 4, 5\\}:$
* If $g(u) = 0$ or $g(x) = 0$, return $\bot$ (even curves only).
* If $g(-u-x)$ is square, return $\bot.$
* Let $s = -g(u)/(u^2 + ux + x^2 + a)$ (cannot cause division by zero).
* Let $v = x.$
* Otherwise, when $c \in \\{2, 3, 6, 7\\}:$
* Let $s = x-u.$
* Let $r = \sqrt{-s(4g(u) + sh(u))}$; return $\bot$ if not square.
* If $c \in \\{3, 7\\}$ and $r=0$, return $\bot.$
* If $s = 0$, return $\bot.$
* Let $v = (r/s - u)/2.$
* Let $w = \sqrt{s}$; return $\bot$ if not square.
* If $a \neq 0$ and $w(u+2v) = 2X_0(u)$ and either $w \neq 2Y_0(u)$ or $h(u) = 0$, return $\bot.$
* Depending on $c:$
* If $c \in \\{0, 2\\}$, let $t = P_u^{'-1}(v, w).$
* If $c \in \\{1, 3\\}$, let $t = P_u^{'-1}(-u-v, w).$
* If $c \in \\{4, 6\\}$, let $t = P_u^{'-1}(v, -w).$
* If $c \in \\{5, 7\\}$, let $t = P_u^{'-1}(-u-v, -w).$
* If $a=0$ and $t=0$, return $\bot$ (even curves only).
* If $a \neq 0$ and $h(u)t^2 = -1$, return $\bot.$
* Return $t.$
Given any $u$, using this algorithm over all $x$ and $c$ values, every $t$ value will be reached exactly once,
for an $x$ for which $F_u(t) = x$ holds, except for these cases that will not be reached:
* All cases where $P_u(t)$ is not defined:
* For $a=0$ curves, when $u=0$, $t=0$, or $g(u) = -t^2.$
* For $a \neq 0$ curves, when $h(u)t^2 = -1$, $X_0(u) = 0$, or $Y_0(u) (1 - h(u) t^2) = 2X_0(u)t.$
* When $g(u)=0$, the potentially many $t$ values that decode to an $x$ satisfying $g(x)=0$ using the $x_2$ formula. These were excluded by the $g(u)=0$ condition in the $c \in \\{0, 1, 4, 5\\}$ branch.
These cases form a negligible subset of all $(u, t)$ for cryptographically sized curves.
### 3.5 Encoding for `secp256k1`
Specialized for odd-ordered $a=0$ curves:
**Define** $G_{c,u}(x)$ as:
* If $u=0$, return $\bot.$
* If $c \in \\{0, 1, 4, 5\\}:$
* If $(-u-x)^3 + b$ is square, return $\bot$
* Let $s = -(u^3 + b)/(u^2 + ux + x^2)$ (cannot cause division by 0).
* Let $v = x.$
* Otherwise, when $c \in \\{2, 3, 6, 7\\}:$
* Let $s = x-u.$
* Let $r = \sqrt{-s(4(u^3 + b) + 3su^2)}$; return $\bot$ if not square.
* If $c \in \\{3, 7\\}$ and $r=0$, return $\bot.$
* If $s = 0$, return $\bot.$
* Let $v = (r/s - u)/2.$
* Let $w = \sqrt{s}$; return $\bot$ if not square.
* Depending on $c:$
* If $c \in \\{0, 2\\}:$ return $w(\frac{\sqrt{-3}-1}{2}u - v).$
* If $c \in \\{1, 3\\}:$ return $w(\frac{\sqrt{-3}+1}{2}u + v).$
* If $c \in \\{4, 6\\}:$ return $w(\frac{-\sqrt{-3}+1}{2}u + v).$
* If $c \in \\{5, 7\\}:$ return $w(\frac{-\sqrt{-3}-1}{2}u - v).$
This is implemented in `secp256k1_ellswift_xswiftec_inv_var`.
And the x-only ElligatorSwift encoding algorithm is still:
**Define** *ElligatorSwift(x)* as:
* Loop:
* Pick a uniformly random field element $u.$
* Pick a uniformly random integer $c$ in $[0,8).$
* Let $t = G_{c,u}(x).$
* If $t \neq \bot$, return $(u, t)$; restart loop otherwise.
Note that this logic does not take the remapped $u=0$, $t=0$, and $g(u) = -t^2$ cases into account; it just avoids them.
While it is not impossible to make the encoder target them, this would increase the maximum number of $t$ values for a given $(u, x)$
combination beyond 8, and thereby slow down the ElligatorSwift loop proportionally, for a negligible gain in uniformity.
## 4. Encoding and decoding full *(x, y)* coordinates
So far we have only addressed encoding and decoding x-coordinates, but in some cases an encoding
for full points with $(x, y)$ coordinates is desirable. It is possible to encode this information
in $t$ as well.
Note that for any $(X, Y) \in S_u$, $(\pm X, \pm Y)$ are all on $S_u.$ Moreover, all of these are
mapped to the same x-coordinate. Negating $X$ or negating $Y$ just results in $x_1$ and $x_2$
being swapped, and does not affect $x_3.$ This will not change the outcome x-coordinate as the order
of $x_1$ and $x_2$ only matters if both were to be valid, and in that case $x_3$ would be used instead.
Still, these four $(X, Y)$ combinations all correspond to distinct $t$ values, so we can encode
the sign of the y-coordinate in the sign of $X$ or the sign of $Y.$ They correspond to the
four distinct $P_u^{'-1}$ calls in the definition of $G_{u,c}.$
**Note**: In the paper, the sign of the y coordinate is encoded in a separately-coded bit.
To encode the sign of $y$ in the sign of $Y:$
**Define** *Decode(u, t)* for full $(x, y)$ as:
* Let $(X, Y) = P_u(t).$
* Let $x$ be the first value in $(u + 4Y^2, \frac{-X}{2Y} - \frac{u}{2}, \frac{X}{2Y} - \frac{u}{2})$ for which $g(x)$ is square.
* Let $y = \sqrt{g(x)}.$
* If $sign(y) = sign(Y)$, return $(x, y)$; otherwise return $(x, -y).$
And encoding would be done using a $G_{c,u}(x, y)$ function defined as:
**Define** $G_{c,u}(x, y)$ as:
* If $c \in \\{0, 1\\}:$
* If $g(u) = 0$ or $g(x) = 0$, return $\bot$ (even curves only).
* If $g(-u-x)$ is square, return $\bot.$
* Let $s = -g(u)/(u^2 + ux + x^2 + a)$ (cannot cause division by zero).
* Let $v = x.$
* Otherwise, when $c \in \\{2, 3\\}:$
* Let $s = x-u.$
* Let $r = \sqrt{-s(4g(u) + sh(u))}$; return $\bot$ if not square.
* If $c = 3$ and $r = 0$, return $\bot.$
* Let $v = (r/s - u)/2.$
* Let $w = \sqrt{s}$; return $\bot$ if not square.
* Let $w' = w$ if $sign(w/2) = sign(y)$; $-w$ otherwise.
* Depending on $c:$
* If $c \in \\{0, 2\\}:$ return $P_u^{'-1}(v, w').$
* If $c \in \\{1, 3\\}:$ return $P_u^{'-1}(-u-v, w').$
Note that $c$ now only ranges $[0,4)$, as the sign of $w'$ is decided based on that of $y$, rather than on $c.$
This change makes some valid encodings unreachable: when $y = 0$ and $sign(Y) \neq sign(0)$.
In the above logic, $sign$ can be implemented in several ways, such as parity of the integer representation
of the input field element (for prime-sized fields) or the quadratic residuosity (for fields where
$-1$ is not square). The choice does not matter, as long as it only takes on two possible values, and for $x \neq 0$ it holds that $sign(x) \neq sign(-x)$.
### 4.1 Full *(x, y)* coordinates for `secp256k1`
For $a=0$ curves, there is another option. Note that for those,
the $P_u(t)$ function translates negations of $t$ to negations of (both) $X$ and $Y.$ Thus, we can use $sign(t)$ to
encode the y-coordinate directly. Combined with the earlier remapping to guarantee all inputs land on the curve, we get
as decoder:
**Define** *Decode(u, t)* as:
* Let $u'=u$ if $u \neq 0$; $1$ otherwise.
* Let $t'=t$ if $t \neq 0$; $1$ otherwise.
* Let $t''=t'$ if $u'^3 + b + t'^2 \neq 0$; $2t'$ otherwise.
* Let $X = \dfrac{u'^3 + b - t''^2}{2t''}.$
* Let $Y = \dfrac{X + t''}{u'\sqrt{-3}}.$
* Let $x$ be the first element of $(u' + 4Y^2, \frac{-X}{2Y} - \frac{u'}{2}, \frac{X}{2Y} - \frac{u'}{2})$ for which $g(x)$ is square.
* Let $y = \sqrt{g(x)}.$
* Return $(x, y)$ if $sign(y) = sign(t)$; $(x, -y)$ otherwise.
This is implemented in `secp256k1_ellswift_swiftec_var`. The used $sign(x)$ function is the parity of $x$ when represented as in integer in $[0,q).$
The corresponding encoder would invoke the x-only one, but negating the output $t$ if $sign(t) \neq sign(y).$
This is implemented in `secp256k1_ellswift_elligatorswift_var`.
Note that this is only intended for encoding points where both the x-coordinate and y-coordinate are unpredictable. When encoding x-only points
where the y-coordinate is implicitly even (or implicitly square, or implicitly in $[0,q/2]$), the encoder in
[Section 3.5](#35-encoding-for-secp256k1) must be used, or a bias is reintroduced that undoes all the benefit of using ElligatorSwift
in the first place.

54
secp256k1/doc/musig.md Normal file
View File

@ -0,0 +1,54 @@
Notes on the musig module API
===========================
The following sections contain additional notes on the API of the musig module (`include/secp256k1_musig.h`).
A usage example can be found in `examples/musig.c`.
## API misuse
The musig API is designed with a focus on misuse resistance.
However, due to the interactive nature of the MuSig protocol, there are additional failure modes that are not present in regular (single-party) Schnorr signature creation.
While the results can be catastrophic (e.g. leaking of the secret key), it is unfortunately not possible for the musig implementation to prevent all such failure modes.
Therefore, users of the musig module must take great care to make sure of the following:
1. A unique nonce per signing session is generated in `secp256k1_musig_nonce_gen`.
See the corresponding comment in `include/secp256k1_musig.h` for how to ensure that.
2. The `secp256k1_musig_secnonce` structure is never copied or serialized.
See also the comment on `secp256k1_musig_secnonce` in `include/secp256k1_musig.h`.
3. Opaque data structures are never written to or read from directly.
Instead, only the provided accessor functions are used.
## Key Aggregation and (Taproot) Tweaking
Given a set of public keys, the aggregate public key is computed with `secp256k1_musig_pubkey_agg`.
A plain tweak can be added to the resulting public key with `secp256k1_ec_pubkey_tweak_add` by setting the `tweak32` argument to the hash defined in BIP 32. Similarly, a Taproot tweak can be added with `secp256k1_xonly_pubkey_tweak_add` by setting the `tweak32` argument to the TapTweak hash defined in BIP 341.
Both types of tweaking can be combined and invoked multiple times if the specific application requires it.
## Signing
This is covered by `examples/musig.c`.
Essentially, the protocol proceeds in the following steps:
1. Generate a keypair with `secp256k1_keypair_create` and obtain the public key with `secp256k1_keypair_pub`.
2. Call `secp256k1_musig_pubkey_agg` with the pubkeys of all participants.
3. Optionally add a (Taproot) tweak with `secp256k1_musig_pubkey_xonly_tweak_add` and a plain tweak with `secp256k1_musig_pubkey_ec_tweak_add`.
4. Generate a pair of secret and public nonce with `secp256k1_musig_nonce_gen` and send the public nonce to the other signers.
5. Someone (not necessarily the signer) aggregates the public nonces with `secp256k1_musig_nonce_agg` and sends it to the signers.
6. Process the aggregate nonce with `secp256k1_musig_nonce_process`.
7. Create a partial signature with `secp256k1_musig_partial_sign`.
8. Verify the partial signatures (optional in some scenarios) with `secp256k1_musig_partial_sig_verify`.
9. Someone (not necessarily the signer) obtains all partial signatures and aggregates them into the final Schnorr signature using `secp256k1_musig_partial_sig_agg`.
The aggregate signature can be verified with `secp256k1_schnorrsig_verify`.
Steps 1 through 5 above can occur before or after the signers are aware of the message to be signed.
Whenever possible, it is recommended to generate the nonces only after the message is known.
This provides enhanced defense-in-depth measures, protecting against potential API misuse in certain scenarios.
However, it does require two rounds of communication during the signing process.
The alternative, generating the nonces in a pre-processing step before the message is known, eliminates these additional protective measures but allows for non-interactive signing.
Similarly, the API supports an alternative protocol flow where generating the aggregate key (steps 1 to 3) is allowed to happen after exchanging nonces (steps 4 to 5).
## Verification
A participant who wants to verify the partial signatures, but does not sign itself may do so using the above instructions except that the verifier skips steps 1, 4 and 7.

View File

@ -0,0 +1,94 @@
# Release process
This document outlines the process for releasing versions of the form `$MAJOR.$MINOR.$PATCH`.
We distinguish between two types of releases: *regular* and *maintenance* releases.
Regular releases are releases of a new major or minor version as well as patches of the most recent release.
Maintenance releases, on the other hand, are required for patches of older releases.
You should coordinate with the other maintainers on the release date, if possible.
This date will be part of the release entry in [CHANGELOG.md](../CHANGELOG.md) and it should match the dates of the remaining steps in the release process (including the date of the tag and the GitHub release).
It is best if the maintainers are present during the release, so they can help ensure that the process is followed correctly and, in the case of a regular release, they are aware that they should not modify the master branch between merging the PR in step 1 and the PR in step 3.
This process also assumes that there will be no minor releases for old major releases.
We aim to cut a regular release every 3-4 months, approximately twice as frequent as major Bitcoin Core releases. Every second release should be published one month before the feature freeze of the next major Bitcoin Core release, allowing sufficient time to update the library in Core.
## Sanity checks
Perform these checks when reviewing the release PR (see below):
1. Ensure `make distcheck` doesn't fail.
```shell
./autogen.sh && ./configure --enable-dev-mode && make distcheck
```
2. Check installation with autotools:
```shell
dir=$(mktemp -d)
./autogen.sh && ./configure --prefix=$dir && make clean && make install && ls -RlAh $dir
gcc -o ecdsa examples/ecdsa.c $(PKG_CONFIG_PATH=$dir/lib/pkgconfig pkg-config --cflags --libs libsecp256k1) -Wl,-rpath,"$dir/lib" && ./ecdsa
```
3. Check installation with CMake:
```shell
dir=$(mktemp -d)
build=$(mktemp -d)
cmake -B $build -DCMAKE_INSTALL_PREFIX=$dir && cmake --build $build && cmake --install $build && ls -RlAh $dir
gcc -o ecdsa examples/ecdsa.c -I $dir/include -L $dir/lib*/ -l secp256k1 -Wl,-rpath,"$dir/lib",-rpath,"$dir/lib64" && ./ecdsa
```
4. Use the [`check-abi.sh`](/tools/check-abi.sh) tool to verify that there are no unexpected ABI incompatibilities and that the version number and the release notes accurately reflect all potential ABI changes. To run this tool, the `abi-dumper` and `abi-compliance-checker` packages are required.
```shell
tools/check-abi.sh
```
## Regular release
1. Open a PR to the master branch with a commit (using message `"release: prepare for $MAJOR.$MINOR.$PATCH"`, for example) that
* finalizes the release notes in [CHANGELOG.md](../CHANGELOG.md) by
* adding a section for the release (make sure that the version number is a link to a diff between the previous and new version),
* removing the `[Unreleased]` section header,
* ensuring that the release notes are not missing entries (check the `needs-changelog` label on github), and
* including an entry for `### ABI Compatibility` if it doesn't exist,
* sets `_PKG_VERSION_IS_RELEASE` to `true` in `configure.ac`, and,
* if this is not a patch release,
* updates `_PKG_VERSION_*` and `_LIB_VERSION_*` in `configure.ac`, and
* updates `project(libsecp256k1 VERSION ...)` and `${PROJECT_NAME}_LIB_VERSION_*` in `CMakeLists.txt`.
2. Perform the [sanity checks](#sanity-checks) on the PR branch.
3. After the PR is merged, tag the commit, and push the tag:
```
RELEASE_COMMIT=<merge commit of step 1>
git tag -s v$MAJOR.$MINOR.$PATCH -m "libsecp256k1 $MAJOR.$MINOR.$PATCH" $RELEASE_COMMIT
git push git@github.com:bitcoin-core/secp256k1.git v$MAJOR.$MINOR.$PATCH
```
4. Open a PR to the master branch with a commit (using message `"release cleanup: bump version after $MAJOR.$MINOR.$PATCH"`, for example) that
* sets `_PKG_VERSION_IS_RELEASE` to `false` and increments `_PKG_VERSION_PATCH` and `_LIB_VERSION_REVISION` in `configure.ac`,
* increments the `$PATCH` component of `project(libsecp256k1 VERSION ...)` and `${PROJECT_NAME}_LIB_VERSION_REVISION` in `CMakeLists.txt`, and
* adds an `[Unreleased]` section header to the [CHANGELOG.md](../CHANGELOG.md).
If other maintainers are not present to approve the PR, it can be merged without ACKs.
5. Create a new GitHub release with a link to the corresponding entry in [CHANGELOG.md](../CHANGELOG.md).
6. Send an announcement email to the bitcoin-dev mailing list.
## Maintenance release
Note that bug fixes need to be backported only to releases for which no compatible release without the bug exists.
1. If there's no maintenance branch `$MAJOR.$MINOR`, create one:
```
git checkout -b $MAJOR.$MINOR v$MAJOR.$MINOR.$((PATCH - 1))
git push git@github.com:bitcoin-core/secp256k1.git $MAJOR.$MINOR
```
2. Open a pull request to the `$MAJOR.$MINOR` branch that
* includes the bug fixes,
* finalizes the release notes similar to a regular release,
* increments `_PKG_VERSION_PATCH` and `_LIB_VERSION_REVISION` in `configure.ac`
and the `$PATCH` component of `project(libsecp256k1 VERSION ...)` and `${PROJECT_NAME}_LIB_VERSION_REVISION` in `CMakeLists.txt`
(with commit message `"release: bump versions for $MAJOR.$MINOR.$PATCH"`, for example).
3. Perform the [sanity checks](#sanity-checks) on the PR branch.
4. After the PRs are merged, update the release branch, tag the commit, and push the tag:
```
git checkout $MAJOR.$MINOR && git pull
git tag -s v$MAJOR.$MINOR.$PATCH -m "libsecp256k1 $MAJOR.$MINOR.$PATCH"
git push git@github.com:bitcoin-core/secp256k1.git v$MAJOR.$MINOR.$PATCH
```
6. Create a new GitHub release with a link to the corresponding entry in [CHANGELOG.md](../CHANGELOG.md).
7. Send an announcement email to the bitcoin-dev mailing list.
8. Open PR to the master branch that includes a commit (with commit message `"release notes: add $MAJOR.$MINOR.$PATCH"`, for example) that adds release notes to [CHANGELOG.md](../CHANGELOG.md).

View File

@ -0,0 +1,819 @@
# The safegcd implementation in libsecp256k1 explained
This document explains the modular inverse and Jacobi symbol implementations in the `src/modinv*.h` files.
It is based on the paper
["Fast constant-time gcd computation and modular inversion"](https://gcd.cr.yp.to/papers.html#safegcd)
by Daniel J. Bernstein and Bo-Yin Yang. The references below are for the Date: 2019.04.13 version.
The actual implementation is in C of course, but for demonstration purposes Python3 is used here.
Most implementation aspects and optimizations are explained, except those that depend on the specific
number representation used in the C code.
## 1. Computing the Greatest Common Divisor (GCD) using divsteps
The algorithm from the paper (section 11), at a very high level, is this:
```python
def gcd(f, g):
"""Compute the GCD of an odd integer f and another integer g."""
assert f & 1 # require f to be odd
delta = 1 # additional state variable
while g != 0:
assert f & 1 # f will be odd in every iteration
if delta > 0 and g & 1:
delta, f, g = 1 - delta, g, (g - f) // 2
elif g & 1:
delta, f, g = 1 + delta, f, (g + f) // 2
else:
delta, f, g = 1 + delta, f, (g ) // 2
return abs(f)
```
It computes the greatest common divisor of an odd integer *f* and any integer *g*. Its inner loop
keeps rewriting the variables *f* and *g* alongside a state variable *&delta;* that starts at *1*, until
*g=0* is reached. At that point, *|f|* gives the GCD. Each of the transitions in the loop is called a
"division step" (referred to as divstep in what follows).
For example, *gcd(21, 14)* would be computed as:
- Start with *&delta;=1 f=21 g=14*
- Take the third branch: *&delta;=2 f=21 g=7*
- Take the first branch: *&delta;=-1 f=7 g=-7*
- Take the second branch: *&delta;=0 f=7 g=0*
- The answer *|f| = 7*.
Why it works:
- Divsteps can be decomposed into two steps (see paragraph 8.2 in the paper):
- (a) If *g* is odd, replace *(f,g)* with *(g,g-f)* or (f,g+f), resulting in an even *g*.
- (b) Replace *(f,g)* with *(f,g/2)* (where *g* is guaranteed to be even).
- Neither of those two operations change the GCD:
- For (a), assume *gcd(f,g)=c*, then it must be the case that *f=a&thinsp;c* and *g=b&thinsp;c* for some integers *a*
and *b*. As *(g,g-f)=(b&thinsp;c,(b-a)c)* and *(f,f+g)=(a&thinsp;c,(a+b)c)*, the result clearly still has
common factor *c*. Reasoning in the other direction shows that no common factor can be added by
doing so either.
- For (b), we know that *f* is odd, so *gcd(f,g)* clearly has no factor *2*, and we can remove
it from *g*.
- The algorithm will eventually converge to *g=0*. This is proven in the paper (see theorem G.3).
- It follows that eventually we find a final value *f'* for which *gcd(f,g) = gcd(f',0)*. As the
gcd of *f'* and *0* is *|f'|* by definition, that is our answer.
Compared to more [traditional GCD algorithms](https://en.wikipedia.org/wiki/Euclidean_algorithm), this one has the property of only ever looking at
the low-order bits of the variables to decide the next steps, and being easy to make
constant-time (in more low-level languages than Python). The *&delta;* parameter is necessary to
guide the algorithm towards shrinking the numbers' magnitudes without explicitly needing to look
at high order bits.
Properties that will become important later:
- Performing more divsteps than needed is not a problem, as *f* does not change anymore after *g=0*.
- Only even numbers are divided by *2*. This means that when reasoning about it algebraically we
do not need to worry about rounding.
- At every point during the algorithm's execution the next *N* steps only depend on the bottom *N*
bits of *f* and *g*, and on *&delta;*.
## 2. From GCDs to modular inverses
We want an algorithm to compute the inverse *a* of *x* modulo *M*, i.e. the number a such that *a&thinsp;x=1
mod M*. This inverse only exists if the GCD of *x* and *M* is *1*, but that is always the case if *M* is
prime and *0 < x < M*. In what follows, assume that the modular inverse exists.
It turns out this inverse can be computed as a side effect of computing the GCD by keeping track
of how the internal variables can be written as linear combinations of the inputs at every step
(see the [extended Euclidean algorithm](https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm)).
Since the GCD is *1*, such an algorithm will compute numbers *a* and *b* such that a&thinsp;x + b&thinsp;M = 1*.
Taking that expression *mod M* gives *a&thinsp;x mod M = 1*, and we see that *a* is the modular inverse of *x
mod M*.
A similar approach can be used to calculate modular inverses using the divsteps-based GCD
algorithm shown above, if the modulus *M* is odd. To do so, compute *gcd(f=M,g=x)*, while keeping
track of extra variables *d* and *e*, for which at every step *d = f/x (mod M)* and *e = g/x (mod M)*.
*f/x* here means the number which multiplied with *x* gives *f mod M*. As *f* and *g* are initialized to *M*
and *x* respectively, *d* and *e* just start off being *0* (*M/x mod M = 0/x mod M = 0*) and *1* (*x/x mod M
= 1*).
```python
def div2(M, x):
"""Helper routine to compute x/2 mod M (where M is odd)."""
assert M & 1
if x & 1: # If x is odd, make it even by adding M.
x += M
# x must be even now, so a clean division by 2 is possible.
return x // 2
def modinv(M, x):
"""Compute the inverse of x mod M (given that it exists, and M is odd)."""
assert M & 1
delta, f, g, d, e = 1, M, x, 0, 1
while g != 0:
# Note that while division by two for f and g is only ever done on even inputs, this is
# not true for d and e, so we need the div2 helper function.
if delta > 0 and g & 1:
delta, f, g, d, e = 1 - delta, g, (g - f) // 2, e, div2(M, e - d)
elif g & 1:
delta, f, g, d, e = 1 + delta, f, (g + f) // 2, d, div2(M, e + d)
else:
delta, f, g, d, e = 1 + delta, f, (g ) // 2, d, div2(M, e )
# Verify that the invariants d=f/x mod M, e=g/x mod M are maintained.
assert f % M == (d * x) % M
assert g % M == (e * x) % M
assert f == 1 or f == -1 # |f| is the GCD, it must be 1
# Because of invariant d = f/x (mod M), 1/x = d/f (mod M). As |f|=1, d/f = d*f.
return (d * f) % M
```
Also note that this approach to track *d* and *e* throughout the computation to determine the inverse
is different from the paper. There (see paragraph 12.1 in the paper) a transition matrix for the
entire computation is determined (see section 3 below) and the inverse is computed from that.
The approach here avoids the need for 2x2 matrix multiplications of various sizes, and appears to
be faster at the level of optimization we're able to do in C.
## 3. Batching multiple divsteps
Every divstep can be expressed as a matrix multiplication, applying a transition matrix *(1/2 t)*
to both vectors *[f, g]* and *[d, e]* (see paragraph 8.1 in the paper):
```
t = [ u, v ]
[ q, r ]
[ out_f ] = (1/2 * t) * [ in_f ]
[ out_g ] = [ in_g ]
[ out_d ] = (1/2 * t) * [ in_d ] (mod M)
[ out_e ] [ in_e ]
```
where *(u, v, q, r)* is *(0, 2, -1, 1)*, *(2, 0, 1, 1)*, or *(2, 0, 0, 1)*, depending on which branch is
taken. As above, the resulting *f* and *g* are always integers.
Performing multiple divsteps corresponds to a multiplication with the product of all the
individual divsteps' transition matrices. As each transition matrix consists of integers
divided by *2*, the product of these matrices will consist of integers divided by *2<sup>N</sup>* (see also
theorem 9.2 in the paper). These divisions are expensive when updating *d* and *e*, so we delay
them: we compute the integer coefficients of the combined transition matrix scaled by *2<sup>N</sup>*, and
do one division by *2<sup>N</sup>* as a final step:
```python
def divsteps_n_matrix(delta, f, g):
"""Compute delta and transition matrix t after N divsteps (multiplied by 2^N)."""
u, v, q, r = 1, 0, 0, 1 # start with identity matrix
for _ in range(N):
if delta > 0 and g & 1:
delta, f, g, u, v, q, r = 1 - delta, g, (g - f) // 2, 2*q, 2*r, q-u, r-v
elif g & 1:
delta, f, g, u, v, q, r = 1 + delta, f, (g + f) // 2, 2*u, 2*v, q+u, r+v
else:
delta, f, g, u, v, q, r = 1 + delta, f, (g ) // 2, 2*u, 2*v, q , r
return delta, (u, v, q, r)
```
As the branches in the divsteps are completely determined by the bottom *N* bits of *f* and *g*, this
function to compute the transition matrix only needs to see those bottom bits. Furthermore all
intermediate results and outputs fit in *(N+1)*-bit numbers (unsigned for *f* and *g*; signed for *u*, *v*,
*q*, and *r*) (see also paragraph 8.3 in the paper). This means that an implementation using 64-bit
integers could set *N=62* and compute the full transition matrix for 62 steps at once without any
big integer arithmetic at all. This is the reason why this algorithm is efficient: it only needs
to update the full-size *f*, *g*, *d*, and *e* numbers once every *N* steps.
We still need functions to compute:
```
[ out_f ] = (1/2^N * [ u, v ]) * [ in_f ]
[ out_g ] ( [ q, r ]) [ in_g ]
[ out_d ] = (1/2^N * [ u, v ]) * [ in_d ] (mod M)
[ out_e ] ( [ q, r ]) [ in_e ]
```
Because the divsteps transformation only ever divides even numbers by two, the result of *t&thinsp;[f,g]* is always even. When *t* is a composition of *N* divsteps, it follows that the resulting *f*
and *g* will be multiple of *2<sup>N</sup>*, and division by *2<sup>N</sup>* is simply shifting them down:
```python
def update_fg(f, g, t):
"""Multiply matrix t/2^N with [f, g]."""
u, v, q, r = t
cf, cg = u*f + v*g, q*f + r*g
# (t / 2^N) should cleanly apply to [f,g] so the result of t*[f,g] should have N zero
# bottom bits.
assert cf % 2**N == 0
assert cg % 2**N == 0
return cf >> N, cg >> N
```
The same is not true for *d* and *e*, and we need an equivalent of the `div2` function for division by *2<sup>N</sup> mod M*.
This is easy if we have precomputed *1/M mod 2<sup>N</sup>* (which always exists for odd *M*):
```python
def div2n(M, Mi, x):
"""Compute x/2^N mod M, given Mi = 1/M mod 2^N."""
assert (M * Mi) % 2**N == 1
# Find a factor m such that m*M has the same bottom N bits as x. We want:
# (m * M) mod 2^N = x mod 2^N
# <=> m mod 2^N = (x / M) mod 2^N
# <=> m mod 2^N = (x * Mi) mod 2^N
m = (Mi * x) % 2**N
# Subtract that multiple from x, cancelling its bottom N bits.
x -= m * M
# Now a clean division by 2^N is possible.
assert x % 2**N == 0
return (x >> N) % M
def update_de(d, e, t, M, Mi):
"""Multiply matrix t/2^N with [d, e], modulo M."""
u, v, q, r = t
cd, ce = u*d + v*e, q*d + r*e
return div2n(M, Mi, cd), div2n(M, Mi, ce)
```
With all of those, we can write a version of `modinv` that performs *N* divsteps at once:
```python3
def modinv(M, Mi, x):
"""Compute the modular inverse of x mod M, given Mi=1/M mod 2^N."""
assert M & 1
delta, f, g, d, e = 1, M, x, 0, 1
while g != 0:
# Compute the delta and transition matrix t for the next N divsteps (this only needs
# (N+1)-bit signed integer arithmetic).
delta, t = divsteps_n_matrix(delta, f % 2**N, g % 2**N)
# Apply the transition matrix t to [f, g]:
f, g = update_fg(f, g, t)
# Apply the transition matrix t to [d, e]:
d, e = update_de(d, e, t, M, Mi)
return (d * f) % M
```
This means that in practice we'll always perform a multiple of *N* divsteps. This is not a problem
because once *g=0*, further divsteps do not affect *f*, *g*, *d*, or *e* anymore (only *&delta;* keeps
increasing). For variable time code such excess iterations will be mostly optimized away in later
sections.
## 4. Avoiding modulus operations
So far, there are two places where we compute a remainder of big numbers modulo *M*: at the end of
`div2n` in every `update_de`, and at the very end of `modinv` after potentially negating *d* due to the
sign of *f*. These are relatively expensive operations when done generically.
To deal with the modulus operation in `div2n`, we simply stop requiring *d* and *e* to be in range
*[0,M)* all the time. Let's start by inlining `div2n` into `update_de`, and dropping the modulus
operation at the end:
```python
def update_de(d, e, t, M, Mi):
"""Multiply matrix t/2^N with [d, e] mod M, given Mi=1/M mod 2^N."""
u, v, q, r = t
cd, ce = u*d + v*e, q*d + r*e
# Cancel out bottom N bits of cd and ce.
md = -((Mi * cd) % 2**N)
me = -((Mi * ce) % 2**N)
cd += md * M
ce += me * M
# And cleanly divide by 2**N.
return cd >> N, ce >> N
```
Let's look at bounds on the ranges of these numbers. It can be shown that *|u|+|v|* and *|q|+|r|*
never exceed *2<sup>N</sup>* (see paragraph 8.3 in the paper), and thus a multiplication with *t* will have
outputs whose absolute values are at most *2<sup>N</sup>* times the maximum absolute input value. In case the
inputs *d* and *e* are in *(-M,M)*, which is certainly true for the initial values *d=0* and *e=1* assuming
*M > 1*, the multiplication results in numbers in range *(-2<sup>N</sup>M,2<sup>N</sup>M)*. Subtracting less than *2<sup>N</sup>*
times *M* to cancel out *N* bits brings that up to *(-2<sup>N+1</sup>M,2<sup>N</sup>M)*, and
dividing by *2<sup>N</sup>* at the end takes it to *(-2M,M)*. Another application of `update_de` would take that
to *(-3M,2M)*, and so forth. This progressive expansion of the variables' ranges can be
counteracted by incrementing *d* and *e* by *M* whenever they're negative:
```python
...
if d < 0:
d += M
if e < 0:
e += M
cd, ce = u*d + v*e, q*d + r*e
# Cancel out bottom N bits of cd and ce.
...
```
With inputs in *(-2M,M)*, they will first be shifted into range *(-M,M)*, which means that the
output will again be in *(-2M,M)*, and this remains the case regardless of how many `update_de`
invocations there are. In what follows, we will try to make this more efficient.
Note that increasing *d* by *M* is equal to incrementing *cd* by *u&thinsp;M* and *ce* by *q&thinsp;M*. Similarly,
increasing *e* by *M* is equal to incrementing *cd* by *v&thinsp;M* and *ce* by *r&thinsp;M*. So we could instead write:
```python
...
cd, ce = u*d + v*e, q*d + r*e
# Perform the equivalent of incrementing d, e by M when they're negative.
if d < 0:
cd += u*M
ce += q*M
if e < 0:
cd += v*M
ce += r*M
# Cancel out bottom N bits of cd and ce.
md = -((Mi * cd) % 2**N)
me = -((Mi * ce) % 2**N)
cd += md * M
ce += me * M
...
```
Now note that we have two steps of corrections to *cd* and *ce* that add multiples of *M*: this
increment, and the decrement that cancels out bottom bits. The second one depends on the first
one, but they can still be efficiently combined by only computing the bottom bits of *cd* and *ce*
at first, and using that to compute the final *md*, *me* values:
```python
def update_de(d, e, t, M, Mi):
"""Multiply matrix t/2^N with [d, e], modulo M."""
u, v, q, r = t
md, me = 0, 0
# Compute what multiples of M to add to cd and ce.
if d < 0:
md += u
me += q
if e < 0:
md += v
me += r
# Compute bottom N bits of t*[d,e] + M*[md,me].
cd, ce = (u*d + v*e + md*M) % 2**N, (q*d + r*e + me*M) % 2**N
# Correct md and me such that the bottom N bits of t*[d,e] + M*[md,me] are zero.
md -= (Mi * cd) % 2**N
me -= (Mi * ce) % 2**N
# Do the full computation.
cd, ce = u*d + v*e + md*M, q*d + r*e + me*M
# And cleanly divide by 2**N.
return cd >> N, ce >> N
```
One last optimization: we can avoid the *md&thinsp;M* and *me&thinsp;M* multiplications in the bottom bits of *cd*
and *ce* by moving them to the *md* and *me* correction:
```python
...
# Compute bottom N bits of t*[d,e].
cd, ce = (u*d + v*e) % 2**N, (q*d + r*e) % 2**N
# Correct md and me such that the bottom N bits of t*[d,e]+M*[md,me] are zero.
# Note that this is not the same as {md = (-Mi * cd) % 2**N} etc. That would also result in N
# zero bottom bits, but isn't guaranteed to be a reduction of [0,2^N) compared to the
# previous md and me values, and thus would violate our bounds analysis.
md -= (Mi*cd + md) % 2**N
me -= (Mi*ce + me) % 2**N
...
```
The resulting function takes *d* and *e* in range *(-2M,M)* as inputs, and outputs values in the same
range. That also means that the *d* value at the end of `modinv` will be in that range, while we want
a result in *[0,M)*. To do that, we need a normalization function. It's easy to integrate the
conditional negation of *d* (based on the sign of *f*) into it as well:
```python
def normalize(sign, v, M):
"""Compute sign*v mod M, where v is in range (-2*M,M); output in [0,M)."""
assert sign == 1 or sign == -1
# v in (-2*M,M)
if v < 0:
v += M
# v in (-M,M). Now multiply v with sign (which can only be 1 or -1).
if sign == -1:
v = -v
# v in (-M,M)
if v < 0:
v += M
# v in [0,M)
return v
```
And calling it in `modinv` is simply:
```python
...
return normalize(f, d, M)
```
## 5. Constant-time operation
The primary selling point of the algorithm is fast constant-time operation. What code flow still
depends on the input data so far?
- the number of iterations of the while *g &ne; 0* loop in `modinv`
- the branches inside `divsteps_n_matrix`
- the sign checks in `update_de`
- the sign checks in `normalize`
To make the while loop in `modinv` constant time it can be replaced with a constant number of
iterations. The paper proves (Theorem 11.2) that *741* divsteps are sufficient for any *256*-bit
inputs, and [safegcd-bounds](https://github.com/sipa/safegcd-bounds) shows that the slightly better bound *724* is
sufficient even. Given that every loop iteration performs *N* divsteps, it will run a total of
*&lceil;724/N&rceil;* times.
To deal with the branches in `divsteps_n_matrix` we will replace them with constant-time bitwise
operations (and hope the C compiler isn't smart enough to turn them back into branches; see
`ctime_tests.c` for automated tests that this isn't the case). To do so, observe that a
divstep can be written instead as (compare to the inner loop of `gcd` in section 1).
```python
x = -f if delta > 0 else f # set x equal to (input) -f or f
if g & 1:
g += x # set g to (input) g-f or g+f
if delta > 0:
delta = -delta
f += g # set f to (input) g (note that g was set to g-f before)
delta += 1
g >>= 1
```
To convert the above to bitwise operations, we rely on a trick to negate conditionally: per the
definition of negative numbers in two's complement, (*-v == ~v + 1*) holds for every number *v*. As
*-1* in two's complement is all *1* bits, bitflipping can be expressed as xor with *-1*. It follows
that *-v == (v ^ -1) - (-1)*. Thus, if we have a variable *c* that takes on values *0* or *-1*, then
*(v ^ c) - c* is *v* if *c=0* and *-v* if *c=-1*.
Using this we can write:
```python
x = -f if delta > 0 else f
```
in constant-time form as:
```python
c1 = (-delta) >> 63
# Conditionally negate f based on c1:
x = (f ^ c1) - c1
```
To use that trick, we need a helper mask variable *c1* that resolves the condition *&delta;>0* to *-1*
(if true) or *0* (if false). We compute *c1* using right shifting, which is equivalent to dividing by
the specified power of *2* and rounding down (in Python, and also in C under the assumption of a typical two's complement system; see
`assumptions.h` for tests that this is the case). Right shifting by *63* thus maps all
numbers in range *[-2<sup>63</sup>,0)* to *-1*, and numbers in range *[0,2<sup>63</sup>)* to *0*.
Using the facts that *x&0=0* and *x&(-1)=x* (on two's complement systems again), we can write:
```python
if g & 1:
g += x
```
as:
```python
# Compute c2=0 if g is even and c2=-1 if g is odd.
c2 = -(g & 1)
# This masks out x if g is even, and leaves x be if g is odd.
g += x & c2
```
Using the conditional negation trick again we can write:
```python
if g & 1:
if delta > 0:
delta = -delta
```
as:
```python
# Compute c3=-1 if g is odd and delta>0, and 0 otherwise.
c3 = c1 & c2
# Conditionally negate delta based on c3:
delta = (delta ^ c3) - c3
```
Finally:
```python
if g & 1:
if delta > 0:
f += g
```
becomes:
```python
f += g & c3
```
It turns out that this can be implemented more efficiently by applying the substitution
*&eta;=-&delta;*. In this representation, negating *&delta;* corresponds to negating *&eta;*, and incrementing
*&delta;* corresponds to decrementing *&eta;*. This allows us to remove the negation in the *c1*
computation:
```python
# Compute a mask c1 for eta < 0, and compute the conditional negation x of f:
c1 = eta >> 63
x = (f ^ c1) - c1
# Compute a mask c2 for odd g, and conditionally add x to g:
c2 = -(g & 1)
g += x & c2
# Compute a mask c for (eta < 0) and odd (input) g, and use it to conditionally negate eta,
# and add g to f:
c3 = c1 & c2
eta = (eta ^ c3) - c3
f += g & c3
# Incrementing delta corresponds to decrementing eta.
eta -= 1
g >>= 1
```
A variant of divsteps with better worst-case performance can be used instead: starting *&delta;* at
*1/2* instead of *1*. This reduces the worst case number of iterations to *590* for *256*-bit inputs
(which can be shown using convex hull analysis). In this case, the substitution *&zeta;=-(&delta;+1/2)*
is used instead to keep the variable integral. Incrementing *&delta;* by *1* still translates to
decrementing *&zeta;* by *1*, but negating *&delta;* now corresponds to going from *&zeta;* to *-(&zeta;+1)*, or
*~&zeta;*. Doing that conditionally based on *c3* is simply:
```python
...
c3 = c1 & c2
zeta ^= c3
...
```
By replacing the loop in `divsteps_n_matrix` with a variant of the divstep code above (extended to
also apply all *f* operations to *u*, *v* and all *g* operations to *q*, *r*), a constant-time version of
`divsteps_n_matrix` is obtained. The full code will be in section 7.
These bit fiddling tricks can also be used to make the conditional negations and additions in
`update_de` and `normalize` constant-time.
## 6. Variable-time optimizations
In section 5, we modified the `divsteps_n_matrix` function (and a few others) to be constant time.
Constant time operations are only necessary when computing modular inverses of secret data. In
other cases, it slows down calculations unnecessarily. In this section, we will construct a
faster non-constant time `divsteps_n_matrix` function.
To do so, first consider yet another way of writing the inner loop of divstep operations in
`gcd` from section 1. This decomposition is also explained in the paper in section 8.2. We use
the original version with initial *&delta;=1* and *&eta;=-&delta;* here.
```python
for _ in range(N):
if g & 1 and eta < 0:
eta, f, g = -eta, g, -f
if g & 1:
g += f
eta -= 1
g >>= 1
```
Whenever *g* is even, the loop only shifts *g* down and decreases *&eta;*. When *g* ends in multiple zero
bits, these iterations can be consolidated into one step. This requires counting the bottom zero
bits efficiently, which is possible on most platforms; it is abstracted here as the function
`count_trailing_zeros`.
```python
def count_trailing_zeros(v):
"""
When v is zero, consider all N zero bits as "trailing".
For a non-zero value v, find z such that v=(d<<z) for some odd d.
"""
if v == 0:
return N
else:
return (v & -v).bit_length() - 1
i = N # divsteps left to do
while True:
# Get rid of all bottom zeros at once. In the first iteration, g may be odd and the following
# lines have no effect (until "if eta < 0").
zeros = min(i, count_trailing_zeros(g))
eta -= zeros
g >>= zeros
i -= zeros
if i == 0:
break
# We know g is odd now
if eta < 0:
eta, f, g = -eta, g, -f
g += f
# g is even now, and the eta decrement and g shift will happen in the next loop.
```
We can now remove multiple bottom *0* bits from *g* at once, but still need a full iteration whenever
there is a bottom *1* bit. In what follows, we will get rid of multiple *1* bits simultaneously as
well.
Observe that as long as *&eta; &geq; 0*, the loop does not modify *f*. Instead, it cancels out bottom
bits of *g* and shifts them out, and decreases *&eta;* and *i* accordingly - interrupting only when *&eta;*
becomes negative, or when *i* reaches *0*. Combined, this is equivalent to adding a multiple of *f* to
*g* to cancel out multiple bottom bits, and then shifting them out.
It is easy to find what that multiple is: we want a number *w* such that *g+w&thinsp;f* has a few bottom
zero bits. If that number of bits is *L*, we want *g+w&thinsp;f mod 2<sup>L</sup> = 0*, or *w = -g/f mod 2<sup>L</sup>*. Since *f*
is odd, such a *w* exists for any *L*. *L* cannot be more than *i* steps (as we'd finish the loop before
doing more) or more than *&eta;+1* steps (as we'd run `eta, f, g = -eta, g, -f` at that point), but
apart from that, we're only limited by the complexity of computing *w*.
This code demonstrates how to cancel up to 4 bits per step:
```python
NEGINV16 = [15, 5, 3, 9, 7, 13, 11, 1] # NEGINV16[n//2] = (-n)^-1 mod 16, for odd n
i = N
while True:
zeros = min(i, count_trailing_zeros(g))
eta -= zeros
g >>= zeros
i -= zeros
if i == 0:
break
# We know g is odd now
if eta < 0:
eta, f, g = -eta, g, -f
# Compute limit on number of bits to cancel
limit = min(min(eta + 1, i), 4)
# Compute w = -g/f mod 2**limit, using the table value for -1/f mod 2**4. Note that f is
# always odd, so its inverse modulo a power of two always exists.
w = (g * NEGINV16[(f & 15) // 2]) % (2**limit)
# As w = -g/f mod (2**limit), g+w*f mod 2**limit = 0 mod 2**limit.
g += w * f
assert g % (2**limit) == 0
# The next iteration will now shift out at least limit bottom zero bits from g.
```
By using a bigger table more bits can be cancelled at once. The table can also be implemented
as a formula. Several formulas are known for computing modular inverses modulo powers of two;
some can be found in Hacker's Delight second edition by Henry S. Warren, Jr. pages 245-247.
Here we need the negated modular inverse, which is a simple transformation of those:
- Instead of a 3-bit table:
- *-f* or *f ^ 6*
- Instead of a 4-bit table:
- *1 - f(f + 1)*
- *-(f + (((f + 1) & 4) << 1))*
- For larger tables the following technique can be used: if *w=-1/f mod 2<sup>L</sup>*, then *w(w&thinsp;f+2)* is
*-1/f mod 2<sup>2L</sup>*. This allows extending the previous formulas (or tables). In particular we
have this 6-bit function (based on the 3-bit function above):
- *f(f<sup>2</sup> - 2)*
This loop, again extended to also handle *u*, *v*, *q*, and *r* alongside *f* and *g*, placed in
`divsteps_n_matrix`, gives a significantly faster, but non-constant time version.
## 7. Final Python version
All together we need the following functions:
- A way to compute the transition matrix in constant time, using the `divsteps_n_matrix` function
from section 2, but with its loop replaced by a variant of the constant-time divstep from
section 5, extended to handle *u*, *v*, *q*, *r*:
```python
def divsteps_n_matrix(zeta, f, g):
"""Compute zeta and transition matrix t after N divsteps (multiplied by 2^N)."""
u, v, q, r = 1, 0, 0, 1 # start with identity matrix
for _ in range(N):
c1 = zeta >> 63
# Compute x, y, z as conditionally-negated versions of f, u, v.
x, y, z = (f ^ c1) - c1, (u ^ c1) - c1, (v ^ c1) - c1
c2 = -(g & 1)
# Conditionally add x, y, z to g, q, r.
g, q, r = g + (x & c2), q + (y & c2), r + (z & c2)
c1 &= c2 # reusing c1 here for the earlier c3 variable
zeta = (zeta ^ c1) - 1 # inlining the unconditional zeta decrement here
# Conditionally add g, q, r to f, u, v.
f, u, v = f + (g & c1), u + (q & c1), v + (r & c1)
# When shifting g down, don't shift q, r, as we construct a transition matrix multiplied
# by 2^N. Instead, shift f's coefficients u and v up.
g, u, v = g >> 1, u << 1, v << 1
return zeta, (u, v, q, r)
```
- The functions to update *f* and *g*, and *d* and *e*, from section 2 and section 4, with the constant-time
changes to `update_de` from section 5:
```python
def update_fg(f, g, t):
"""Multiply matrix t/2^N with [f, g]."""
u, v, q, r = t
cf, cg = u*f + v*g, q*f + r*g
return cf >> N, cg >> N
def update_de(d, e, t, M, Mi):
"""Multiply matrix t/2^N with [d, e], modulo M."""
u, v, q, r = t
d_sign, e_sign = d >> 257, e >> 257
md, me = (u & d_sign) + (v & e_sign), (q & d_sign) + (r & e_sign)
cd, ce = (u*d + v*e) % 2**N, (q*d + r*e) % 2**N
md -= (Mi*cd + md) % 2**N
me -= (Mi*ce + me) % 2**N
cd, ce = u*d + v*e + M*md, q*d + r*e + M*me
return cd >> N, ce >> N
```
- The `normalize` function from section 4, made constant time as well:
```python
def normalize(sign, v, M):
"""Compute sign*v mod M, where v in (-2*M,M); output in [0,M)."""
v_sign = v >> 257
# Conditionally add M to v.
v += M & v_sign
c = (sign - 1) >> 1
# Conditionally negate v.
v = (v ^ c) - c
v_sign = v >> 257
# Conditionally add M to v again.
v += M & v_sign
return v
```
- And finally the `modinv` function too, adapted to use *&zeta;* instead of *&delta;*, and using the fixed
iteration count from section 5:
```python
def modinv(M, Mi, x):
"""Compute the modular inverse of x mod M, given Mi=1/M mod 2^N."""
zeta, f, g, d, e = -1, M, x, 0, 1
for _ in range((590 + N - 1) // N):
zeta, t = divsteps_n_matrix(zeta, f % 2**N, g % 2**N)
f, g = update_fg(f, g, t)
d, e = update_de(d, e, t, M, Mi)
return normalize(f, d, M)
```
- To get a variable time version, replace the `divsteps_n_matrix` function with one that uses the
divsteps loop from section 5, and a `modinv` version that calls it without the fixed iteration
count:
```python
NEGINV16 = [15, 5, 3, 9, 7, 13, 11, 1] # NEGINV16[n//2] = (-n)^-1 mod 16, for odd n
def divsteps_n_matrix_var(eta, f, g):
"""Compute eta and transition matrix t after N divsteps (multiplied by 2^N)."""
u, v, q, r = 1, 0, 0, 1
i = N
while True:
zeros = min(i, count_trailing_zeros(g))
eta, i = eta - zeros, i - zeros
g, u, v = g >> zeros, u << zeros, v << zeros
if i == 0:
break
if eta < 0:
eta, f, u, v, g, q, r = -eta, g, q, r, -f, -u, -v
limit = min(min(eta + 1, i), 4)
w = (g * NEGINV16[(f & 15) // 2]) % (2**limit)
g, q, r = g + w*f, q + w*u, r + w*v
return eta, (u, v, q, r)
def modinv_var(M, Mi, x):
"""Compute the modular inverse of x mod M, given Mi = 1/M mod 2^N."""
eta, f, g, d, e = -1, M, x, 0, 1
while g != 0:
eta, t = divsteps_n_matrix_var(eta, f % 2**N, g % 2**N)
f, g = update_fg(f, g, t)
d, e = update_de(d, e, t, M, Mi)
return normalize(f, d, Mi)
```
## 8. From GCDs to Jacobi symbol
We can also use a similar approach to calculate Jacobi symbol *(x | M)* by keeping track of an
extra variable *j*, for which at every step *(x | M) = j (g | f)*. As we update *f* and *g*, we
make corresponding updates to *j* using
[properties of the Jacobi symbol](https://en.wikipedia.org/wiki/Jacobi_symbol#Properties):
* *((g/2) | f)* is either *(g | f)* or *-(g | f)*, depending on the value of *f mod 8* (negating if it's *3* or *5*).
* *(f | g)* is either *(g | f)* or *-(g | f)*, depending on *f mod 4* and *g mod 4* (negating if both are *3*).
These updates depend only on the values of *f* and *g* modulo *4* or *8*, and can thus be applied
very quickly, as long as we keep track of a few additional bits of *f* and *g*. Overall, this
calculation is slightly simpler than the one for the modular inverse because we no longer need to
keep track of *d* and *e*.
However, one difficulty of this approach is that the Jacobi symbol *(a | n)* is only defined for
positive odd integers *n*, whereas in the original safegcd algorithm, *f, g* can take negative
values. We resolve this by using the following modified steps:
```python
# Before
if delta > 0 and g & 1:
delta, f, g = 1 - delta, g, (g - f) // 2
# After
if delta > 0 and g & 1:
delta, f, g = 1 - delta, g, (g + f) // 2
```
The algorithm is still correct, since the changed divstep, called a "posdivstep" (see section 8.4
and E.5 in the paper) preserves *gcd(f, g)*. However, there's no proof that the modified algorithm
will converge. The justification for posdivsteps is completely empirical: in practice, it appears
that the vast majority of nonzero inputs converge to *f=g=gcd(f<sub>0</sub>, g<sub>0</sub>)* in a
number of steps proportional to their logarithm.
Note that:
- We require inputs to satisfy *gcd(x, M) = 1*, as otherwise *f=1* is not reached.
- We require inputs *x &neq; 0*, because applying posdivstep with *g=0* has no effect.
- We need to update the termination condition from *g=0* to *f=1*.
We account for the possibility of nonconvergence by only performing a bounded number of
posdivsteps, and then falling back to square-root based Jacobi calculation if a solution has not
yet been found.
The optimizations in sections 3-7 above are described in the context of the original divsteps, but
in the C implementation we also adapt most of them (not including "avoiding modulus operations",
since it's not necessary to track *d, e*, and "constant-time operation", since we never calculate
Jacobi symbols for secret data) to the posdivsteps version.

View File

@ -0,0 +1,31 @@
function(add_example name)
set(target_name ${name}_example)
add_executable(${target_name} ${name}.c)
target_include_directories(${target_name} PRIVATE
${PROJECT_SOURCE_DIR}/include
)
target_link_libraries(${target_name}
secp256k1
$<$<PLATFORM_ID:Windows>:bcrypt>
)
set(test_name ${name}_example)
add_test(NAME secp256k1_${test_name} COMMAND ${target_name})
endfunction()
add_example(ecdsa)
if(SECP256K1_ENABLE_MODULE_ECDH)
add_example(ecdh)
endif()
if(SECP256K1_ENABLE_MODULE_SCHNORRSIG)
add_example(schnorr)
endif()
if(SECP256K1_ENABLE_MODULE_ELLSWIFT)
add_example(ellswift)
endif()
if(SECP256K1_ENABLE_MODULE_MUSIG)
add_example(musig)
endif()

View File

@ -0,0 +1,121 @@
Creative Commons Legal Code
CC0 1.0 Universal
CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS
PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM
THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED
HEREUNDER.
Statement of Purpose
The laws of most jurisdictions throughout the world automatically confer
exclusive Copyright and Related Rights (defined below) upon the creator
and subsequent owner(s) (each and all, an "owner") of an original work of
authorship and/or a database (each, a "Work").
Certain owners wish to permanently relinquish those rights to a Work for
the purpose of contributing to a commons of creative, cultural and
scientific works ("Commons") that the public can reliably and without fear
of later claims of infringement build upon, modify, incorporate in other
works, reuse and redistribute as freely as possible in any form whatsoever
and for any purposes, including without limitation commercial purposes.
These owners may contribute to the Commons to promote the ideal of a free
culture and the further production of creative, cultural and scientific
works, or to gain reputation or greater distribution for their Work in
part through the use and efforts of others.
For these and/or other purposes and motivations, and without any
expectation of additional consideration or compensation, the person
associating CC0 with a Work (the "Affirmer"), to the extent that he or she
is an owner of Copyright and Related Rights in the Work, voluntarily
elects to apply CC0 to the Work and publicly distribute the Work under its
terms, with knowledge of his or her Copyright and Related Rights in the
Work and the meaning and intended legal effect of CC0 on those rights.
1. Copyright and Related Rights. A Work made available under CC0 may be
protected by copyright and related or neighboring rights ("Copyright and
Related Rights"). Copyright and Related Rights include, but are not
limited to, the following:
i. the right to reproduce, adapt, distribute, perform, display,
communicate, and translate a Work;
ii. moral rights retained by the original author(s) and/or performer(s);
iii. publicity and privacy rights pertaining to a person's image or
likeness depicted in a Work;
iv. rights protecting against unfair competition in regards to a Work,
subject to the limitations in paragraph 4(a), below;
v. rights protecting the extraction, dissemination, use and reuse of data
in a Work;
vi. database rights (such as those arising under Directive 96/9/EC of the
European Parliament and of the Council of 11 March 1996 on the legal
protection of databases, and under any national implementation
thereof, including any amended or successor version of such
directive); and
vii. other similar, equivalent or corresponding rights throughout the
world based on applicable law or treaty, and any national
implementations thereof.
2. Waiver. To the greatest extent permitted by, but not in contravention
of, applicable law, Affirmer hereby overtly, fully, permanently,
irrevocably and unconditionally waives, abandons, and surrenders all of
Affirmer's Copyright and Related Rights and associated claims and causes
of action, whether now known or unknown (including existing as well as
future claims and causes of action), in the Work (i) in all territories
worldwide, (ii) for the maximum duration provided by applicable law or
treaty (including future time extensions), (iii) in any current or future
medium and for any number of copies, and (iv) for any purpose whatsoever,
including without limitation commercial, advertising or promotional
purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each
member of the public at large and to the detriment of Affirmer's heirs and
successors, fully intending that such Waiver shall not be subject to
revocation, rescission, cancellation, termination, or any other legal or
equitable action to disrupt the quiet enjoyment of the Work by the public
as contemplated by Affirmer's express Statement of Purpose.
3. Public License Fallback. Should any part of the Waiver for any reason
be judged legally invalid or ineffective under applicable law, then the
Waiver shall be preserved to the maximum extent permitted taking into
account Affirmer's express Statement of Purpose. In addition, to the
extent the Waiver is so judged Affirmer hereby grants to each affected
person a royalty-free, non transferable, non sublicensable, non exclusive,
irrevocable and unconditional license to exercise Affirmer's Copyright and
Related Rights in the Work (i) in all territories worldwide, (ii) for the
maximum duration provided by applicable law or treaty (including future
time extensions), (iii) in any current or future medium and for any number
of copies, and (iv) for any purpose whatsoever, including without
limitation commercial, advertising or promotional purposes (the
"License"). The License shall be deemed effective as of the date CC0 was
applied by Affirmer to the Work. Should any part of the License for any
reason be judged legally invalid or ineffective under applicable law, such
partial invalidity or ineffectiveness shall not invalidate the remainder
of the License, and in such case Affirmer hereby affirms that he or she
will not (i) exercise any of his or her remaining Copyright and Related
Rights in the Work or (ii) assert any associated claims and causes of
action with respect to the Work, in either case contrary to Affirmer's
express Statement of Purpose.
4. Limitations and Disclaimers.
a. No trademark or patent rights held by Affirmer are waived, abandoned,
surrendered, licensed or otherwise affected by this document.
b. Affirmer offers the Work as-is and makes no representations or
warranties of any kind concerning the Work, express, implied,
statutory or otherwise, including without limitation warranties of
title, merchantability, fitness for a particular purpose, non
infringement, or the absence of latent or other defects, accuracy, or
the present or absence of errors, whether or not discoverable, all to
the greatest extent permissible under applicable law.
c. Affirmer disclaims responsibility for clearing rights of other persons
that may apply to the Work or any use thereof, including without
limitation any person's Copyright and Related Rights in the Work.
Further, Affirmer disclaims responsibility for obtaining any necessary
consents, permissions or other rights required for any use of the
Work.
d. Affirmer understands and acknowledges that Creative Commons is not a
party to this document and has no duty or obligation with respect to
this CC0 or use of the Work.

121
secp256k1/examples/ecdh.c Normal file
View File

@ -0,0 +1,121 @@
/*************************************************************************
* Written in 2020-2022 by Elichai Turkel *
* To the extent possible under law, the author(s) have dedicated all *
* copyright and related and neighboring rights to the software in this *
* file to the public domain worldwide. This software is distributed *
* without any warranty. For the CC0 Public Domain Dedication, see *
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
*************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <secp256k1.h>
#include <secp256k1_ecdh.h>
#include "examples_util.h"
int main(void) {
unsigned char seckey1[32];
unsigned char seckey2[32];
unsigned char compressed_pubkey1[33];
unsigned char compressed_pubkey2[33];
unsigned char shared_secret1[32];
unsigned char shared_secret2[32];
unsigned char randomize[32];
int return_val;
size_t len;
secp256k1_pubkey pubkey1;
secp256k1_pubkey pubkey2;
/* Before we can call actual API functions, we need to create a "context". */
secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
if (!fill_random(randomize, sizeof(randomize))) {
printf("Failed to generate randomness\n");
return EXIT_FAILURE;
}
/* Randomizing the context is recommended to protect against side-channel
* leakage See `secp256k1_context_randomize` in secp256k1.h for more
* information about it. This should never fail. */
return_val = secp256k1_context_randomize(ctx, randomize);
assert(return_val);
/*** Key Generation ***/
if (!fill_random(seckey1, sizeof(seckey1)) || !fill_random(seckey2, sizeof(seckey2))) {
printf("Failed to generate randomness\n");
return EXIT_FAILURE;
}
/* If the secret key is zero or out of range (greater than secp256k1's
* order), we fail. Note that the probability of this occurring is negligible
* with a properly functioning random number generator. */
if (!secp256k1_ec_seckey_verify(ctx, seckey1) || !secp256k1_ec_seckey_verify(ctx, seckey2)) {
printf("Generated secret key is invalid. This indicates an issue with the random number generator.\n");
return EXIT_FAILURE;
}
/* Public key creation using a valid context with a verified secret key should never fail */
return_val = secp256k1_ec_pubkey_create(ctx, &pubkey1, seckey1);
assert(return_val);
return_val = secp256k1_ec_pubkey_create(ctx, &pubkey2, seckey2);
assert(return_val);
/* Serialize pubkey1 in a compressed form (33 bytes), should always return 1 */
len = sizeof(compressed_pubkey1);
return_val = secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey1, &len, &pubkey1, SECP256K1_EC_COMPRESSED);
assert(return_val);
/* Should be the same size as the size of the output, because we passed a 33 byte array. */
assert(len == sizeof(compressed_pubkey1));
/* Serialize pubkey2 in a compressed form (33 bytes) */
len = sizeof(compressed_pubkey2);
return_val = secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey2, &len, &pubkey2, SECP256K1_EC_COMPRESSED);
assert(return_val);
/* Should be the same size as the size of the output, because we passed a 33 byte array. */
assert(len == sizeof(compressed_pubkey2));
/*** Creating the shared secret ***/
/* Perform ECDH with seckey1 and pubkey2. Should never fail with a verified
* seckey and valid pubkey */
return_val = secp256k1_ecdh(ctx, shared_secret1, &pubkey2, seckey1, NULL, NULL);
assert(return_val);
/* Perform ECDH with seckey2 and pubkey1. Should never fail with a verified
* seckey and valid pubkey */
return_val = secp256k1_ecdh(ctx, shared_secret2, &pubkey1, seckey2, NULL, NULL);
assert(return_val);
/* Both parties should end up with the same shared secret */
return_val = memcmp(shared_secret1, shared_secret2, sizeof(shared_secret1));
assert(return_val == 0);
printf("Secret Key1: ");
print_hex(seckey1, sizeof(seckey1));
printf("Compressed Pubkey1: ");
print_hex(compressed_pubkey1, sizeof(compressed_pubkey1));
printf("\nSecret Key2: ");
print_hex(seckey2, sizeof(seckey2));
printf("Compressed Pubkey2: ");
print_hex(compressed_pubkey2, sizeof(compressed_pubkey2));
printf("\nShared Secret: ");
print_hex(shared_secret1, sizeof(shared_secret1));
/* This will clear everything from the context and free the memory */
secp256k1_context_destroy(ctx);
/* It's best practice to try to clear secrets from memory after using them.
* This is done because some bugs can allow an attacker to leak memory, for
* example through "out of bounds" array access (see Heartbleed), or the OS
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
*
* Here we are preventing these writes from being optimized out, as any good compiler
* will remove any writes that aren't used. */
secure_erase(seckey1, sizeof(seckey1));
secure_erase(seckey2, sizeof(seckey2));
secure_erase(shared_secret1, sizeof(shared_secret1));
secure_erase(shared_secret2, sizeof(shared_secret2));
return EXIT_SUCCESS;
}

138
secp256k1/examples/ecdsa.c Normal file
View File

@ -0,0 +1,138 @@
/*************************************************************************
* Written in 2020-2022 by Elichai Turkel *
* To the extent possible under law, the author(s) have dedicated all *
* copyright and related and neighboring rights to the software in this *
* file to the public domain worldwide. This software is distributed *
* without any warranty. For the CC0 Public Domain Dedication, see *
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
*************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <secp256k1.h>
#include "examples_util.h"
int main(void) {
/* Instead of signing the message directly, we must sign a 32-byte hash.
* Here the message is "Hello, world!" and the hash function was SHA-256.
* An actual implementation should just call SHA-256, but this example
* hardcodes the output to avoid depending on an additional library.
* See https://bitcoin.stackexchange.com/questions/81115/if-someone-wanted-to-pretend-to-be-satoshi-by-posting-a-fake-signature-to-defrau/81116#81116 */
unsigned char msg_hash[32] = {
0x31, 0x5F, 0x5B, 0xDB, 0x76, 0xD0, 0x78, 0xC4,
0x3B, 0x8A, 0xC0, 0x06, 0x4E, 0x4A, 0x01, 0x64,
0x61, 0x2B, 0x1F, 0xCE, 0x77, 0xC8, 0x69, 0x34,
0x5B, 0xFC, 0x94, 0xC7, 0x58, 0x94, 0xED, 0xD3,
};
unsigned char seckey[32];
unsigned char randomize[32];
unsigned char compressed_pubkey[33];
unsigned char serialized_signature[64];
size_t len;
int is_signature_valid, is_signature_valid2;
int return_val;
secp256k1_pubkey pubkey;
secp256k1_ecdsa_signature sig;
/* Before we can call actual API functions, we need to create a "context". */
secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
if (!fill_random(randomize, sizeof(randomize))) {
printf("Failed to generate randomness\n");
return EXIT_FAILURE;
}
/* Randomizing the context is recommended to protect against side-channel
* leakage See `secp256k1_context_randomize` in secp256k1.h for more
* information about it. This should never fail. */
return_val = secp256k1_context_randomize(ctx, randomize);
assert(return_val);
/*** Key Generation ***/
if (!fill_random(seckey, sizeof(seckey))) {
printf("Failed to generate randomness\n");
return EXIT_FAILURE;
}
/* If the secret key is zero or out of range (greater than secp256k1's
* order), we fail. Note that the probability of this occurring is negligible
* with a properly functioning random number generator. */
if (!secp256k1_ec_seckey_verify(ctx, seckey)) {
printf("Generated secret key is invalid. This indicates an issue with the random number generator.\n");
return EXIT_FAILURE;
}
/* Public key creation using a valid context with a verified secret key should never fail */
return_val = secp256k1_ec_pubkey_create(ctx, &pubkey, seckey);
assert(return_val);
/* Serialize the pubkey in a compressed form(33 bytes). Should always return 1. */
len = sizeof(compressed_pubkey);
return_val = secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey, &len, &pubkey, SECP256K1_EC_COMPRESSED);
assert(return_val);
/* Should be the same size as the size of the output, because we passed a 33 byte array. */
assert(len == sizeof(compressed_pubkey));
/*** Signing ***/
/* Generate an ECDSA signature `noncefp` and `ndata` allows you to pass a
* custom nonce function, passing `NULL` will use the RFC-6979 safe default.
* Signing with a valid context, verified secret key
* and the default nonce function should never fail. */
return_val = secp256k1_ecdsa_sign(ctx, &sig, msg_hash, seckey, NULL, NULL);
assert(return_val);
/* Serialize the signature in a compact form. Should always return 1
* according to the documentation in secp256k1.h. */
return_val = secp256k1_ecdsa_signature_serialize_compact(ctx, serialized_signature, &sig);
assert(return_val);
/*** Verification ***/
/* Deserialize the signature. This will return 0 if the signature can't be parsed correctly. */
if (!secp256k1_ecdsa_signature_parse_compact(ctx, &sig, serialized_signature)) {
printf("Failed parsing the signature\n");
return EXIT_FAILURE;
}
/* Deserialize the public key. This will return 0 if the public key can't be parsed correctly. */
if (!secp256k1_ec_pubkey_parse(ctx, &pubkey, compressed_pubkey, sizeof(compressed_pubkey))) {
printf("Failed parsing the public key\n");
return EXIT_FAILURE;
}
/* Verify a signature. This will return 1 if it's valid and 0 if it's not. */
is_signature_valid = secp256k1_ecdsa_verify(ctx, &sig, msg_hash, &pubkey);
printf("Is the signature valid? %s\n", is_signature_valid ? "true" : "false");
printf("Secret Key: ");
print_hex(seckey, sizeof(seckey));
printf("Public Key: ");
print_hex(compressed_pubkey, sizeof(compressed_pubkey));
printf("Signature: ");
print_hex(serialized_signature, sizeof(serialized_signature));
/* This will clear everything from the context and free the memory */
secp256k1_context_destroy(ctx);
/* Bonus example: if all we need is signature verification (and no key
generation or signing), we don't need to use a context created via
secp256k1_context_create(). We can simply use the static (i.e., global)
context secp256k1_context_static. See its description in
include/secp256k1.h for details. */
is_signature_valid2 = secp256k1_ecdsa_verify(secp256k1_context_static,
&sig, msg_hash, &pubkey);
assert(is_signature_valid2 == is_signature_valid);
/* It's best practice to try to clear secrets from memory after using them.
* This is done because some bugs can allow an attacker to leak memory, for
* example through "out of bounds" array access (see Heartbleed), or the OS
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
*
* Here we are preventing these writes from being optimized out, as any good compiler
* will remove any writes that aren't used. */
secure_erase(seckey, sizeof(seckey));
return EXIT_SUCCESS;
}

View File

@ -0,0 +1,122 @@
/*************************************************************************
* Written in 2024 by Sebastian Falbesoner *
* To the extent possible under law, the author(s) have dedicated all *
* copyright and related and neighboring rights to the software in this *
* file to the public domain worldwide. This software is distributed *
* without any warranty. For the CC0 Public Domain Dedication, see *
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
*************************************************************************/
/** This file demonstrates how to use the ElligatorSwift module to perform
* a key exchange according to BIP 324. Additionally, see the documentation
* in include/secp256k1_ellswift.h and doc/ellswift.md.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <secp256k1.h>
#include <secp256k1_ellswift.h>
#include "examples_util.h"
int main(void) {
secp256k1_context* ctx;
unsigned char randomize[32];
unsigned char auxrand1[32];
unsigned char auxrand2[32];
unsigned char seckey1[32];
unsigned char seckey2[32];
unsigned char ellswift_pubkey1[64];
unsigned char ellswift_pubkey2[64];
unsigned char shared_secret1[32];
unsigned char shared_secret2[32];
int return_val;
/* Create a secp256k1 context */
ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
if (!fill_random(randomize, sizeof(randomize))) {
printf("Failed to generate randomness\n");
return EXIT_FAILURE;
}
/* Randomizing the context is recommended to protect against side-channel
* leakage. See `secp256k1_context_randomize` in secp256k1.h for more
* information about it. This should never fail. */
return_val = secp256k1_context_randomize(ctx, randomize);
assert(return_val);
/*** Generate secret keys ***/
if (!fill_random(seckey1, sizeof(seckey1)) || !fill_random(seckey2, sizeof(seckey2))) {
printf("Failed to generate randomness\n");
return EXIT_FAILURE;
}
/* If the secret key is zero or out of range (greater than secp256k1's
* order), we fail. Note that the probability of this occurring is negligible
* with a properly functioning random number generator. */
if (!secp256k1_ec_seckey_verify(ctx, seckey1) || !secp256k1_ec_seckey_verify(ctx, seckey2)) {
printf("Generated secret key is invalid. This indicates an issue with the random number generator.\n");
return EXIT_FAILURE;
}
/* Generate ElligatorSwift public keys. This should never fail with valid context and
verified secret keys. Note that providing additional randomness (fourth parameter) is
optional, but recommended. */
if (!fill_random(auxrand1, sizeof(auxrand1)) || !fill_random(auxrand2, sizeof(auxrand2))) {
printf("Failed to generate randomness\n");
return EXIT_FAILURE;
}
return_val = secp256k1_ellswift_create(ctx, ellswift_pubkey1, seckey1, auxrand1);
assert(return_val);
return_val = secp256k1_ellswift_create(ctx, ellswift_pubkey2, seckey2, auxrand2);
assert(return_val);
/*** Create the shared secret on each side ***/
/* Perform x-only ECDH with seckey1 and ellswift_pubkey2. Should never fail
* with a verified seckey and valid pubkey. Note that both parties pass both
* EllSwift pubkeys in the same order; the pubkey of the calling party is
* determined by the "party" boolean (sixth parameter). */
return_val = secp256k1_ellswift_xdh(ctx, shared_secret1, ellswift_pubkey1, ellswift_pubkey2,
seckey1, 0, secp256k1_ellswift_xdh_hash_function_bip324, NULL);
assert(return_val);
/* Perform x-only ECDH with seckey2 and ellswift_pubkey1. Should never fail
* with a verified seckey and valid pubkey. */
return_val = secp256k1_ellswift_xdh(ctx, shared_secret2, ellswift_pubkey1, ellswift_pubkey2,
seckey2, 1, secp256k1_ellswift_xdh_hash_function_bip324, NULL);
assert(return_val);
/* Both parties should end up with the same shared secret */
return_val = memcmp(shared_secret1, shared_secret2, sizeof(shared_secret1));
assert(return_val == 0);
printf( " Secret Key1: ");
print_hex(seckey1, sizeof(seckey1));
printf( "EllSwift Pubkey1: ");
print_hex(ellswift_pubkey1, sizeof(ellswift_pubkey1));
printf("\n Secret Key2: ");
print_hex(seckey2, sizeof(seckey2));
printf( "EllSwift Pubkey2: ");
print_hex(ellswift_pubkey2, sizeof(ellswift_pubkey2));
printf("\n Shared Secret: ");
print_hex(shared_secret1, sizeof(shared_secret1));
/* This will clear everything from the context and free the memory */
secp256k1_context_destroy(ctx);
/* It's best practice to try to clear secrets from memory after using them.
* This is done because some bugs can allow an attacker to leak memory, for
* example through "out of bounds" array access (see Heartbleed), or the OS
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
*
* Here we are preventing these writes from being optimized out, as any good compiler
* will remove any writes that aren't used. */
secure_erase(seckey1, sizeof(seckey1));
secure_erase(seckey2, sizeof(seckey2));
secure_erase(shared_secret1, sizeof(shared_secret1));
secure_erase(shared_secret2, sizeof(shared_secret2));
return EXIT_SUCCESS;
}

View File

@ -0,0 +1,108 @@
/*************************************************************************
* Copyright (c) 2020-2021 Elichai Turkel *
* Distributed under the CC0 software license, see the accompanying file *
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
*************************************************************************/
/*
* This file is an attempt at collecting best practice methods for obtaining randomness with different operating systems.
* It may be out-of-date. Consult the documentation of the operating system before considering to use the methods below.
*
* Platform randomness sources:
* Linux -> `getrandom(2)`(`sys/random.h`), if not available `/dev/urandom` should be used. http://man7.org/linux/man-pages/man2/getrandom.2.html, https://linux.die.net/man/4/urandom
* macOS -> `getentropy(2)`(`sys/random.h`), if not available `/dev/urandom` should be used. https://www.unix.com/man-page/mojave/2/getentropy, https://opensource.apple.com/source/xnu/xnu-517.12.7/bsd/man/man4/random.4.auto.html
* FreeBSD -> `getrandom(2)`(`sys/random.h`), if not available `kern.arandom` should be used. https://www.freebsd.org/cgi/man.cgi?query=getrandom, https://www.freebsd.org/cgi/man.cgi?query=random&sektion=4
* OpenBSD -> `getentropy(2)`(`unistd.h`), if not available `/dev/urandom` should be used. https://man.openbsd.org/getentropy, https://man.openbsd.org/urandom
* Windows -> `BCryptGenRandom`(`bcrypt.h`). https://docs.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
*/
#if defined(_WIN32)
/*
* The defined WIN32_NO_STATUS macro disables return code definitions in
* windows.h, which avoids "macro redefinition" MSVC warnings in ntstatus.h.
*/
#define WIN32_NO_STATUS
#include <windows.h>
#undef WIN32_NO_STATUS
#include <ntstatus.h>
#include <bcrypt.h>
#elif defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__)
#include <sys/random.h>
#elif defined(__OpenBSD__)
#include <unistd.h>
#else
#error "Couldn't identify the OS"
#endif
#include <stddef.h>
#include <limits.h>
#include <stdio.h>
/* Returns 1 on success, and 0 on failure. */
static int fill_random(unsigned char* data, size_t size) {
#if defined(_WIN32)
NTSTATUS res = BCryptGenRandom(NULL, data, size, BCRYPT_USE_SYSTEM_PREFERRED_RNG);
if (res != STATUS_SUCCESS || size > ULONG_MAX) {
return 0;
} else {
return 1;
}
#elif defined(__linux__) || defined(__FreeBSD__)
/* If `getrandom(2)` is not available you should fallback to /dev/urandom */
ssize_t res = getrandom(data, size, 0);
if (res < 0 || (size_t)res != size ) {
return 0;
} else {
return 1;
}
#elif defined(__APPLE__) || defined(__OpenBSD__)
/* If `getentropy(2)` is not available you should fallback to either
* `SecRandomCopyBytes` or /dev/urandom */
int res = getentropy(data, size);
if (res == 0) {
return 1;
} else {
return 0;
}
#endif
return 0;
}
static void print_hex(unsigned char* data, size_t size) {
size_t i;
printf("0x");
for (i = 0; i < size; i++) {
printf("%02x", data[i]);
}
printf("\n");
}
#if defined(_MSC_VER)
// For SecureZeroMemory
#include <Windows.h>
#endif
/* Cleanses memory to prevent leaking sensitive info. Won't be optimized out. */
static void secure_erase(void *ptr, size_t len) {
#if defined(_MSC_VER)
/* SecureZeroMemory is guaranteed not to be optimized out by MSVC. */
SecureZeroMemory(ptr, len);
#elif defined(__GNUC__)
/* We use a memory barrier that scares the compiler away from optimizing out the memset.
*
* Quoting Adam Langley <agl@google.com> in commit ad1907fe73334d6c696c8539646c21b11178f20f
* in BoringSSL (ISC License):
* As best as we can tell, this is sufficient to break any optimisations that
* might try to eliminate "superfluous" memsets.
* This method used in memzero_explicit() the Linux kernel, too. Its advantage is that it is
* pretty efficient, because the compiler can still implement the memset() efficiently,
* just not remove it entirely. See "Dead Store Elimination (Still) Considered Harmful" by
* Yang et al. (USENIX Security 2017) for more background.
*/
memset(ptr, 0, len);
__asm__ __volatile__("" : : "r"(ptr) : "memory");
#else
void *(*volatile const volatile_memset)(void *, int, size_t) = memset;
volatile_memset(ptr, 0, len);
#endif
}

261
secp256k1/examples/musig.c Normal file
View File

@ -0,0 +1,261 @@
/*************************************************************************
* To the extent possible under law, the author(s) have dedicated all *
* copyright and related and neighboring rights to the software in this *
* file to the public domain worldwide. This software is distributed *
* without any warranty. For the CC0 Public Domain Dedication, see *
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
*************************************************************************/
/** This file demonstrates how to use the MuSig module to create a
* 3-of-3 multisignature. Additionally, see the documentation in
* include/secp256k1_musig.h and doc/musig.md.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <secp256k1.h>
#include <secp256k1_extrakeys.h>
#include <secp256k1_musig.h>
#include <secp256k1_schnorrsig.h>
#include "examples_util.h"
struct signer_secrets {
secp256k1_keypair keypair;
secp256k1_musig_secnonce secnonce;
};
struct signer {
secp256k1_pubkey pubkey;
secp256k1_musig_pubnonce pubnonce;
secp256k1_musig_partial_sig partial_sig;
};
/* Number of public keys involved in creating the aggregate signature */
#define N_SIGNERS 3
/* Create a key pair, store it in signer_secrets->keypair and signer->pubkey */
static int create_keypair(const secp256k1_context* ctx, struct signer_secrets *signer_secrets, struct signer *signer) {
unsigned char seckey[32];
if (!fill_random(seckey, sizeof(seckey))) {
printf("Failed to generate randomness\n");
return 0;
}
/* Try to create a keypair with a valid context. This only fails if the
* secret key is zero or out of range (greater than secp256k1's order). Note
* that the probability of this occurring is negligible with a properly
* functioning random number generator. */
if (!secp256k1_keypair_create(ctx, &signer_secrets->keypair, seckey)) {
return 0;
}
if (!secp256k1_keypair_pub(ctx, &signer->pubkey, &signer_secrets->keypair)) {
return 0;
}
secure_erase(seckey, sizeof(seckey));
return 1;
}
/* Tweak the pubkey corresponding to the provided keyagg cache, update the cache
* and return the tweaked aggregate pk. */
static int tweak(const secp256k1_context* ctx, secp256k1_xonly_pubkey *agg_pk, secp256k1_musig_keyagg_cache *cache) {
secp256k1_pubkey output_pk;
/* For BIP 32 tweaking the plain_tweak is set to a hash as defined in BIP
* 32. */
unsigned char plain_tweak[32] = "this could be a BIP32 tweak....";
/* For Taproot tweaking the xonly_tweak is set to the TapTweak hash as
* defined in BIP 341 */
unsigned char xonly_tweak[32] = "this could be a Taproot tweak..";
/* Plain tweaking which, for example, allows deriving multiple child
* public keys from a single aggregate key using BIP32 */
if (!secp256k1_musig_pubkey_ec_tweak_add(ctx, NULL, cache, plain_tweak)) {
return 0;
}
/* Note that we did not provide an output_pk argument, because the
* resulting pk is also saved in the cache and so if one is just interested
* in signing, the output_pk argument is unnecessary. On the other hand, if
* one is not interested in signing, the same output_pk can be obtained by
* calling `secp256k1_musig_pubkey_get` right after key aggregation to get
* the full pubkey and then call `secp256k1_ec_pubkey_tweak_add`. */
/* Xonly tweaking which, for example, allows creating Taproot commitments */
if (!secp256k1_musig_pubkey_xonly_tweak_add(ctx, &output_pk, cache, xonly_tweak)) {
return 0;
}
/* Note that if we wouldn't care about signing, we can arrive at the same
* output_pk by providing the untweaked public key to
* `secp256k1_xonly_pubkey_tweak_add` (after converting it to an xonly pubkey
* if necessary with `secp256k1_xonly_pubkey_from_pubkey`). */
/* Now we convert the output_pk to an xonly pubkey to allow to later verify
* the Schnorr signature against it. For this purpose we can ignore the
* `pk_parity` output argument; we would need it if we would have to open
* the Taproot commitment. */
if (!secp256k1_xonly_pubkey_from_pubkey(ctx, agg_pk, NULL, &output_pk)) {
return 0;
}
return 1;
}
/* Sign a message hash with the given key pairs and store the result in sig */
static int sign(const secp256k1_context* ctx, struct signer_secrets *signer_secrets, struct signer *signer, const secp256k1_musig_keyagg_cache *cache, const unsigned char *msg32, unsigned char *sig64) {
int i;
const secp256k1_musig_pubnonce *pubnonces[N_SIGNERS];
const secp256k1_musig_partial_sig *partial_sigs[N_SIGNERS];
/* The same for all signers */
secp256k1_musig_session session;
secp256k1_musig_aggnonce agg_pubnonce;
for (i = 0; i < N_SIGNERS; i++) {
unsigned char seckey[32];
unsigned char session_secrand[32];
/* Create random session ID. It is absolutely necessary that the session ID
* is unique for every call of secp256k1_musig_nonce_gen. Otherwise
* it's trivial for an attacker to extract the secret key! */
if (!fill_random(session_secrand, sizeof(session_secrand))) {
return 0;
}
if (!secp256k1_keypair_sec(ctx, seckey, &signer_secrets[i].keypair)) {
return 0;
}
/* Initialize session and create secret nonce for signing and public
* nonce to send to the other signers. */
if (!secp256k1_musig_nonce_gen(ctx, &signer_secrets[i].secnonce, &signer[i].pubnonce, session_secrand, seckey, &signer[i].pubkey, msg32, NULL, NULL)) {
return 0;
}
pubnonces[i] = &signer[i].pubnonce;
secure_erase(seckey, sizeof(seckey));
}
/* Communication round 1: Every signer sends their pubnonce to the
* coordinator. The coordinator runs secp256k1_musig_nonce_agg and sends
* agg_pubnonce to each signer */
if (!secp256k1_musig_nonce_agg(ctx, &agg_pubnonce, pubnonces, N_SIGNERS)) {
return 0;
}
/* Every signer creates a partial signature */
for (i = 0; i < N_SIGNERS; i++) {
/* Initialize the signing session by processing the aggregate nonce */
if (!secp256k1_musig_nonce_process(ctx, &session, &agg_pubnonce, msg32, cache)) {
return 0;
}
/* partial_sign will clear the secnonce by setting it to 0. That's because
* you must _never_ reuse the secnonce (or use the same session_secrand to
* create a secnonce). If you do, you effectively reuse the nonce and
* leak the secret key. */
if (!secp256k1_musig_partial_sign(ctx, &signer[i].partial_sig, &signer_secrets[i].secnonce, &signer_secrets[i].keypair, cache, &session)) {
return 0;
}
partial_sigs[i] = &signer[i].partial_sig;
}
/* Communication round 2: Every signer sends their partial signature to the
* coordinator, who verifies the partial signatures and aggregates them. */
for (i = 0; i < N_SIGNERS; i++) {
/* To check whether signing was successful, it suffices to either verify
* the aggregate signature with the aggregate public key using
* secp256k1_schnorrsig_verify, or verify all partial signatures of all
* signers individually. Verifying the aggregate signature is cheaper but
* verifying the individual partial signatures has the advantage that it
* can be used to determine which of the partial signatures are invalid
* (if any), i.e., which of the partial signatures cause the aggregate
* signature to be invalid and thus the protocol run to fail. It's also
* fine to first verify the aggregate sig, and only verify the individual
* sigs if it does not work.
*/
if (!secp256k1_musig_partial_sig_verify(ctx, &signer[i].partial_sig, &signer[i].pubnonce, &signer[i].pubkey, cache, &session)) {
return 0;
}
}
return secp256k1_musig_partial_sig_agg(ctx, sig64, &session, partial_sigs, N_SIGNERS);
}
int main(void) {
secp256k1_context* ctx;
int i;
struct signer_secrets signer_secrets[N_SIGNERS];
struct signer signers[N_SIGNERS];
const secp256k1_pubkey *pubkeys_ptr[N_SIGNERS];
secp256k1_xonly_pubkey agg_pk;
secp256k1_musig_keyagg_cache cache;
unsigned char msg[32] = "this_could_be_the_hash_of_a_msg";
unsigned char sig[64];
/* Create a secp256k1 context */
ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
printf("Creating key pairs......");
fflush(stdout);
for (i = 0; i < N_SIGNERS; i++) {
if (!create_keypair(ctx, &signer_secrets[i], &signers[i])) {
printf("FAILED\n");
return EXIT_FAILURE;
}
pubkeys_ptr[i] = &signers[i].pubkey;
}
printf("ok\n");
/* The aggregate public key produced by secp256k1_musig_pubkey_agg depends
* on the order of the provided public keys. If there is no canonical order
* of the signers, the individual public keys can optionally be sorted with
* secp256k1_ec_pubkey_sort to ensure that the aggregate public key is
* independent of the order of signers. */
printf("Sorting public keys.....");
fflush(stdout);
if (!secp256k1_ec_pubkey_sort(ctx, pubkeys_ptr, N_SIGNERS)) {
printf("FAILED\n");
return EXIT_FAILURE;
}
printf("ok\n");
printf("Combining public keys...");
fflush(stdout);
/* If you just want to aggregate and not sign, you can call
* secp256k1_musig_pubkey_agg with the keyagg_cache argument set to NULL
* while providing a non-NULL agg_pk argument. */
if (!secp256k1_musig_pubkey_agg(ctx, NULL, &cache, pubkeys_ptr, N_SIGNERS)) {
printf("FAILED\n");
return EXIT_FAILURE;
}
printf("ok\n");
printf("Tweaking................");
fflush(stdout);
/* Optionally tweak the aggregate key */
if (!tweak(ctx, &agg_pk, &cache)) {
printf("FAILED\n");
return EXIT_FAILURE;
}
printf("ok\n");
printf("Signing message.........");
fflush(stdout);
if (!sign(ctx, signer_secrets, signers, &cache, msg, sig)) {
printf("FAILED\n");
return EXIT_FAILURE;
}
printf("ok\n");
printf("Verifying signature.....");
fflush(stdout);
if (!secp256k1_schnorrsig_verify(ctx, sig, msg, 32, &agg_pk)) {
printf("FAILED\n");
return EXIT_FAILURE;
}
printf("ok\n");
/* It's best practice to try to clear secrets from memory after using them.
* This is done because some bugs can allow an attacker to leak memory, for
* example through "out of bounds" array access (see Heartbleed), or the OS
* swapping them to disk. Hence, we overwrite secret key material with zeros.
*
* Here we are preventing these writes from being optimized out, as any good compiler
* will remove any writes that aren't used. */
for (i = 0; i < N_SIGNERS; i++) {
secure_erase(&signer_secrets[i], sizeof(signer_secrets[i]));
}
secp256k1_context_destroy(ctx);
return EXIT_SUCCESS;
}

View File

@ -0,0 +1,154 @@
/*************************************************************************
* Written in 2020-2022 by Elichai Turkel *
* To the extent possible under law, the author(s) have dedicated all *
* copyright and related and neighboring rights to the software in this *
* file to the public domain worldwide. This software is distributed *
* without any warranty. For the CC0 Public Domain Dedication, see *
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
*************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <secp256k1.h>
#include <secp256k1_extrakeys.h>
#include <secp256k1_schnorrsig.h>
#include "examples_util.h"
int main(void) {
unsigned char msg[] = {'H', 'e', 'l', 'l', 'o', ' ', 'W', 'o', 'r', 'l', 'd', '!'};
unsigned char msg_hash[32];
unsigned char tag[] = {'m', 'y', '_', 'f', 'a', 'n', 'c', 'y', '_', 'p', 'r', 'o', 't', 'o', 'c', 'o', 'l'};
unsigned char seckey[32];
unsigned char randomize[32];
unsigned char auxiliary_rand[32];
unsigned char serialized_pubkey[32];
unsigned char signature[64];
int is_signature_valid, is_signature_valid2;
int return_val;
secp256k1_xonly_pubkey pubkey;
secp256k1_keypair keypair;
/* Before we can call actual API functions, we need to create a "context". */
secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
if (!fill_random(randomize, sizeof(randomize))) {
printf("Failed to generate randomness\n");
return EXIT_FAILURE;
}
/* Randomizing the context is recommended to protect against side-channel
* leakage See `secp256k1_context_randomize` in secp256k1.h for more
* information about it. This should never fail. */
return_val = secp256k1_context_randomize(ctx, randomize);
assert(return_val);
/*** Key Generation ***/
if (!fill_random(seckey, sizeof(seckey))) {
printf("Failed to generate randomness\n");
return EXIT_FAILURE;
}
/* Try to create a keypair with a valid context. This only fails if the
* secret key is zero or out of range (greater than secp256k1's order). Note
* that the probability of this occurring is negligible with a properly
* functioning random number generator. */
if (!secp256k1_keypair_create(ctx, &keypair, seckey)) {
printf("Generated secret key is invalid. This indicates an issue with the random number generator.\n");
return EXIT_FAILURE;
}
/* Extract the X-only public key from the keypair. We pass NULL for
* `pk_parity` as the parity isn't needed for signing or verification.
* `secp256k1_keypair_xonly_pub` supports returning the parity for
* other use cases such as tests or verifying Taproot tweaks.
* This should never fail with a valid context and public key. */
return_val = secp256k1_keypair_xonly_pub(ctx, &pubkey, NULL, &keypair);
assert(return_val);
/* Serialize the public key. Should always return 1 for a valid public key. */
return_val = secp256k1_xonly_pubkey_serialize(ctx, serialized_pubkey, &pubkey);
assert(return_val);
/*** Signing ***/
/* Instead of signing (possibly very long) messages directly, we sign a
* 32-byte hash of the message in this example.
*
* We use secp256k1_tagged_sha256 to create this hash. This function expects
* a context-specific "tag", which restricts the context in which the signed
* messages should be considered valid. For example, if protocol A mandates
* to use the tag "my_fancy_protocol" and protocol B mandates to use the tag
* "my_boring_protocol", then signed messages from protocol A will never be
* valid in protocol B (and vice versa), even if keys are reused across
* protocols. This implements "domain separation", which is considered good
* practice. It avoids attacks in which users are tricked into signing a
* message that has intended consequences in the intended context (e.g.,
* protocol A) but would have unintended consequences if it were valid in
* some other context (e.g., protocol B). */
return_val = secp256k1_tagged_sha256(ctx, msg_hash, tag, sizeof(tag), msg, sizeof(msg));
assert(return_val);
/* Generate 32 bytes of randomness to use with BIP-340 schnorr signing. */
if (!fill_random(auxiliary_rand, sizeof(auxiliary_rand))) {
printf("Failed to generate randomness\n");
return EXIT_FAILURE;
}
/* Generate a Schnorr signature.
*
* We use the secp256k1_schnorrsig_sign32 function that provides a simple
* interface for signing 32-byte messages (which in our case is a hash of
* the actual message). BIP-340 recommends passing 32 bytes of randomness
* to the signing function to improve security against side-channel attacks.
* Signing with a valid context, a 32-byte message, a verified keypair, and
* any 32 bytes of auxiliary random data should never fail. */
return_val = secp256k1_schnorrsig_sign32(ctx, signature, msg_hash, &keypair, auxiliary_rand);
assert(return_val);
/*** Verification ***/
/* Deserialize the public key. This will return 0 if the public key can't
* be parsed correctly */
if (!secp256k1_xonly_pubkey_parse(ctx, &pubkey, serialized_pubkey)) {
printf("Failed parsing the public key\n");
return EXIT_FAILURE;
}
/* Compute the tagged hash on the received messages using the same tag as the signer. */
return_val = secp256k1_tagged_sha256(ctx, msg_hash, tag, sizeof(tag), msg, sizeof(msg));
assert(return_val);
/* Verify a signature. This will return 1 if it's valid and 0 if it's not. */
is_signature_valid = secp256k1_schnorrsig_verify(ctx, signature, msg_hash, 32, &pubkey);
printf("Is the signature valid? %s\n", is_signature_valid ? "true" : "false");
printf("Secret Key: ");
print_hex(seckey, sizeof(seckey));
printf("Public Key: ");
print_hex(serialized_pubkey, sizeof(serialized_pubkey));
printf("Signature: ");
print_hex(signature, sizeof(signature));
/* This will clear everything from the context and free the memory */
secp256k1_context_destroy(ctx);
/* Bonus example: if all we need is signature verification (and no key
generation or signing), we don't need to use a context created via
secp256k1_context_create(). We can simply use the static (i.e., global)
context secp256k1_context_static. See its description in
include/secp256k1.h for details. */
is_signature_valid2 = secp256k1_schnorrsig_verify(secp256k1_context_static,
signature, msg_hash, 32, &pubkey);
assert(is_signature_valid2 == is_signature_valid);
/* It's best practice to try to clear secrets from memory after using them.
* This is done because some bugs can allow an attacker to leak memory, for
* example through "out of bounds" array access (see Heartbleed), or the OS
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
*
* Here we are preventing these writes from being optimized out, as any good compiler
* will remove any writes that aren't used. */
secure_erase(seckey, sizeof(seckey));
return EXIT_SUCCESS;
}

View File

@ -0,0 +1,885 @@
#ifndef SECP256K1_H
#define SECP256K1_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stddef.h>
/** Unless explicitly stated all pointer arguments must not be NULL.
*
* The following rules specify the order of arguments in API calls:
*
* 1. Context pointers go first, followed by output arguments, combined
* output/input arguments, and finally input-only arguments.
* 2. Array lengths always immediately follow the argument whose length
* they describe, even if this violates rule 1.
* 3. Within the OUT/OUTIN/IN groups, pointers to data that is typically generated
* later go first. This means: signatures, public nonces, secret nonces,
* messages, public keys, secret keys, tweaks.
* 4. Arguments that are not data pointers go last, from more complex to less
* complex: function pointers, algorithm names, messages, void pointers,
* counts, flags, booleans.
* 5. Opaque data pointers follow the function pointer they are to be passed to.
*/
/** Opaque data structure that holds context information
*
* The primary purpose of context objects is to store randomization data for
* enhanced protection against side-channel leakage. This protection is only
* effective if the context is randomized after its creation. See
* secp256k1_context_create for creation of contexts and
* secp256k1_context_randomize for randomization.
*
* A secondary purpose of context objects is to store pointers to callback
* functions that the library will call when certain error states arise. See
* secp256k1_context_set_error_callback as well as
* secp256k1_context_set_illegal_callback for details. Future library versions
* may use context objects for additional purposes.
*
* A constructed context can safely be used from multiple threads
* simultaneously, but API calls that take a non-const pointer to a context
* need exclusive access to it. In particular this is the case for
* secp256k1_context_destroy, secp256k1_context_preallocated_destroy,
* and secp256k1_context_randomize.
*
* Regarding randomization, either do it once at creation time (in which case
* you do not need any locking for the other calls), or use a read-write lock.
*/
typedef struct secp256k1_context_struct secp256k1_context;
/** Opaque data structure that holds a parsed and valid public key.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 64 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage or transmission,
* use secp256k1_ec_pubkey_serialize and secp256k1_ec_pubkey_parse. To
* compare keys, use secp256k1_ec_pubkey_cmp.
*/
typedef struct secp256k1_pubkey {
unsigned char data[64];
} secp256k1_pubkey;
/** Opaque data structure that holds a parsed ECDSA signature.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 64 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage, transmission, or
* comparison, use the secp256k1_ecdsa_signature_serialize_* and
* secp256k1_ecdsa_signature_parse_* functions.
*/
typedef struct secp256k1_ecdsa_signature {
unsigned char data[64];
} secp256k1_ecdsa_signature;
/** A pointer to a function to deterministically generate a nonce.
*
* Returns: 1 if a nonce was successfully generated. 0 will cause signing to fail.
* Out: nonce32: pointer to a 32-byte array to be filled by the function.
* In: msg32: the 32-byte message hash being verified (will not be NULL)
* key32: pointer to a 32-byte secret key (will not be NULL)
* algo16: pointer to a 16-byte array describing the signature
* algorithm (will be NULL for ECDSA for compatibility).
* data: Arbitrary data pointer that is passed through.
* attempt: how many iterations we have tried to find a nonce.
* This will almost always be 0, but different attempt values
* are required to result in a different nonce.
*
* Except for test cases, this function should compute some cryptographic hash of
* the message, the algorithm, the key and the attempt.
*/
typedef int (*secp256k1_nonce_function)(
unsigned char *nonce32,
const unsigned char *msg32,
const unsigned char *key32,
const unsigned char *algo16,
void *data,
unsigned int attempt
);
# if !defined(SECP256K1_GNUC_PREREQ)
# if defined(__GNUC__)&&defined(__GNUC_MINOR__)
# define SECP256K1_GNUC_PREREQ(_maj,_min) \
((__GNUC__<<16)+__GNUC_MINOR__>=((_maj)<<16)+(_min))
# else
# define SECP256K1_GNUC_PREREQ(_maj,_min) 0
# endif
# endif
/* When this header is used at build-time the SECP256K1_BUILD define needs to be set
* to correctly setup export attributes and nullness checks. This is normally done
* by secp256k1.c but to guard against this header being included before secp256k1.c
* has had a chance to set the define (e.g. via test harnesses that just includes
* secp256k1.c) we set SECP256K1_NO_BUILD when this header is processed without the
* BUILD define so this condition can be caught.
*/
#ifndef SECP256K1_BUILD
# define SECP256K1_NO_BUILD
#endif
/* Symbol visibility. */
#if !defined(SECP256K1_API) && defined(SECP256K1_NO_API_VISIBILITY_ATTRIBUTES)
/* The user has requested that we don't specify visibility attributes in
* the public API.
*
* Since all our non-API declarations use the static qualifier, this means
* that the user can use -fvisibility=<value> to set the visibility of the
* API symbols. For instance, -fvisibility=hidden can be useful *even for
* the API symbols*, e.g., when building a static library which is linked
* into a shared library, and the latter should not re-export the
* libsecp256k1 API.
*
* While visibility is a concept that applies only to shared libraries,
* setting visibility will still make a difference when building a static
* library: the visibility settings will be stored in the static library,
* solely for the potential case that the static library will be linked into
* a shared library. In that case, the stored visibility settings will
* resurface and be honored for the shared library. */
# define SECP256K1_API extern
#endif
#if !defined(SECP256K1_API)
# if defined(SECP256K1_BUILD)
/* On Windows, assume a shared library only if explicitly requested.
* 1. If using Libtool, it defines DLL_EXPORT automatically.
* 2. In other cases, SECP256K1_DLL_EXPORT must be defined. */
# if defined(_WIN32) && (defined(SECP256K1_DLL_EXPORT) || defined(DLL_EXPORT))
/* GCC for Windows (e.g., MinGW) accepts the __declspec syntax for
* MSVC compatibility. A __declspec declaration implies (but is not
* exactly equivalent to) __attribute__ ((visibility("default"))),
* and so we actually want __declspec even on GCC, see "Microsoft
* Windows Function Attributes" in the GCC manual and the
* recommendations in https://gcc.gnu.org/wiki/Visibility . */
# define SECP256K1_API extern __declspec(dllexport)
/* Avoid __attribute__ ((visibility("default"))) on Windows to get rid
* of warnings when compiling with -flto due to a bug in GCC, see
* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=116478 . */
# elif !defined(_WIN32) && defined (__GNUC__) && (__GNUC__ >= 4)
# define SECP256K1_API extern __attribute__ ((visibility("default")))
# else
# define SECP256K1_API extern
# endif
# else
/* On Windows, SECP256K1_STATIC must be defined when consuming
* libsecp256k1 as a static library. Note that SECP256K1_STATIC is a
* "consumer-only" macro, and it has no meaning when building
* libsecp256k1. */
# if defined(_WIN32) && !defined(SECP256K1_STATIC)
# define SECP256K1_API extern __declspec(dllimport)
# else
# define SECP256K1_API extern
# endif
# endif
#endif
/* Warning attributes
* NONNULL is not used if SECP256K1_BUILD is set to avoid the compiler optimizing out
* some paranoid null checks. */
# if defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
# define SECP256K1_WARN_UNUSED_RESULT __attribute__ ((__warn_unused_result__))
# else
# define SECP256K1_WARN_UNUSED_RESULT
# endif
# if !defined(SECP256K1_BUILD) && defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
# define SECP256K1_ARG_NONNULL(_x) __attribute__ ((__nonnull__(_x)))
# else
# define SECP256K1_ARG_NONNULL(_x)
# endif
/* Attribute for marking functions, types, and variables as deprecated */
#if !defined(SECP256K1_BUILD) && defined(__has_attribute)
# if __has_attribute(__deprecated__)
# define SECP256K1_DEPRECATED(_msg) __attribute__ ((__deprecated__(_msg)))
# else
# define SECP256K1_DEPRECATED(_msg)
# endif
#else
# define SECP256K1_DEPRECATED(_msg)
#endif
/* All flags' lower 8 bits indicate what they're for. Do not use directly. */
#define SECP256K1_FLAGS_TYPE_MASK ((1 << 8) - 1)
#define SECP256K1_FLAGS_TYPE_CONTEXT (1 << 0)
#define SECP256K1_FLAGS_TYPE_COMPRESSION (1 << 1)
/* The higher bits contain the actual data. Do not use directly. */
#define SECP256K1_FLAGS_BIT_CONTEXT_VERIFY (1 << 8)
#define SECP256K1_FLAGS_BIT_CONTEXT_SIGN (1 << 9)
#define SECP256K1_FLAGS_BIT_CONTEXT_DECLASSIFY (1 << 10)
#define SECP256K1_FLAGS_BIT_COMPRESSION (1 << 8)
/** Context flags to pass to secp256k1_context_create, secp256k1_context_preallocated_size, and
* secp256k1_context_preallocated_create. */
#define SECP256K1_CONTEXT_NONE (SECP256K1_FLAGS_TYPE_CONTEXT)
/** Deprecated context flags. These flags are treated equivalent to SECP256K1_CONTEXT_NONE. */
#define SECP256K1_CONTEXT_VERIFY (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_VERIFY)
#define SECP256K1_CONTEXT_SIGN (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_SIGN)
/* Testing flag. Do not use. */
#define SECP256K1_CONTEXT_DECLASSIFY (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_DECLASSIFY)
/** Flag to pass to secp256k1_ec_pubkey_serialize. */
#define SECP256K1_EC_COMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION | SECP256K1_FLAGS_BIT_COMPRESSION)
#define SECP256K1_EC_UNCOMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION)
/** Prefix byte used to tag various encoded curvepoints for specific purposes */
#define SECP256K1_TAG_PUBKEY_EVEN 0x02
#define SECP256K1_TAG_PUBKEY_ODD 0x03
#define SECP256K1_TAG_PUBKEY_UNCOMPRESSED 0x04
#define SECP256K1_TAG_PUBKEY_HYBRID_EVEN 0x06
#define SECP256K1_TAG_PUBKEY_HYBRID_ODD 0x07
/** A built-in constant secp256k1 context object with static storage duration, to be
* used in conjunction with secp256k1_selftest.
*
* This context object offers *only limited functionality* , i.e., it cannot be used
* for API functions that perform computations involving secret keys, e.g., signing
* and public key generation. If this restriction applies to a specific API function,
* it is mentioned in its documentation. See secp256k1_context_create if you need a
* full context object that supports all functionality offered by the library.
*
* It is highly recommended to call secp256k1_selftest before using this context.
*/
SECP256K1_API const secp256k1_context * const secp256k1_context_static;
/** Deprecated alias for secp256k1_context_static. */
SECP256K1_API const secp256k1_context * const secp256k1_context_no_precomp
SECP256K1_DEPRECATED("Use secp256k1_context_static instead");
/** Perform basic self tests (to be used in conjunction with secp256k1_context_static)
*
* This function performs self tests that detect some serious usage errors and
* similar conditions, e.g., when the library is compiled for the wrong endianness.
* This is a last resort measure to be used in production. The performed tests are
* very rudimentary and are not intended as a replacement for running the test
* binaries.
*
* It is highly recommended to call this before using secp256k1_context_static.
* It is not necessary to call this function before using a context created with
* secp256k1_context_create (or secp256k1_context_preallocated_create), which will
* take care of performing the self tests.
*
* If the tests fail, this function will call the default error handler to abort the
* program (see secp256k1_context_set_error_callback).
*/
SECP256K1_API void secp256k1_selftest(void);
/** Create a secp256k1 context object (in dynamically allocated memory).
*
* This function uses malloc to allocate memory. It is guaranteed that malloc is
* called at most once for every call of this function. If you need to avoid dynamic
* memory allocation entirely, see secp256k1_context_static and the functions in
* secp256k1_preallocated.h.
*
* Returns: pointer to a newly created context object.
* In: flags: Always set to SECP256K1_CONTEXT_NONE (see below).
*
* The only valid non-deprecated flag in recent library versions is
* SECP256K1_CONTEXT_NONE, which will create a context sufficient for all functionality
* offered by the library. All other (deprecated) flags will be treated as equivalent
* to the SECP256K1_CONTEXT_NONE flag. Though the flags parameter primarily exists for
* historical reasons, future versions of the library may introduce new flags.
*
* If the context is intended to be used for API functions that perform computations
* involving secret keys, e.g., signing and public key generation, then it is highly
* recommended to call secp256k1_context_randomize on the context before calling
* those API functions. This will provide enhanced protection against side-channel
* leakage, see secp256k1_context_randomize for details.
*
* Do not create a new context object for each operation, as construction and
* randomization can take non-negligible time.
*/
SECP256K1_API secp256k1_context *secp256k1_context_create(
unsigned int flags
) SECP256K1_WARN_UNUSED_RESULT;
/** Copy a secp256k1 context object (into dynamically allocated memory).
*
* This function uses malloc to allocate memory. It is guaranteed that malloc is
* called at most once for every call of this function. If you need to avoid dynamic
* memory allocation entirely, see the functions in secp256k1_preallocated.h.
*
* Cloning secp256k1_context_static is not possible, and should not be emulated by
* the caller (e.g., using memcpy). Create a new context instead.
*
* Returns: pointer to a newly created context object.
* Args: ctx: pointer to a context to copy (not secp256k1_context_static).
*/
SECP256K1_API secp256k1_context *secp256k1_context_clone(
const secp256k1_context *ctx
) SECP256K1_ARG_NONNULL(1) SECP256K1_WARN_UNUSED_RESULT;
/** Destroy a secp256k1 context object (created in dynamically allocated memory).
*
* The context pointer may not be used afterwards.
*
* The context to destroy must have been created using secp256k1_context_create
* or secp256k1_context_clone. If the context has instead been created using
* secp256k1_context_preallocated_create or secp256k1_context_preallocated_clone, the
* behaviour is undefined. In that case, secp256k1_context_preallocated_destroy must
* be used instead.
*
* Args: ctx: pointer to a context to destroy, constructed using
* secp256k1_context_create or secp256k1_context_clone
* (i.e., not secp256k1_context_static).
*/
SECP256K1_API void secp256k1_context_destroy(
secp256k1_context *ctx
) SECP256K1_ARG_NONNULL(1);
/** Set a callback function to be called when an illegal argument is passed to
* an API call. It will only trigger for violations that are mentioned
* explicitly in the header.
*
* The philosophy is that these shouldn't be dealt with through a
* specific return value, as calling code should not have branches to deal with
* the case that this code itself is broken.
*
* On the other hand, during debug stage, one would want to be informed about
* such mistakes, and the default (crashing) may be inadvisable.
* When this callback is triggered, the API function called is guaranteed not
* to cause a crash, though its return value and output arguments are
* undefined.
*
* When this function has not been called (or called with fn==NULL), then the
* default handler will be used. The library provides a default handler which
* writes the message to stderr and calls abort. This default handler can be
* replaced at link time if the preprocessor macro
* USE_EXTERNAL_DEFAULT_CALLBACKS is defined, which is the case if the build
* has been configured with --enable-external-default-callbacks. Then the
* following two symbols must be provided to link against:
* - void secp256k1_default_illegal_callback_fn(const char *message, void *data);
* - void secp256k1_default_error_callback_fn(const char *message, void *data);
* The library can call these default handlers even before a proper callback data
* pointer could have been set using secp256k1_context_set_illegal_callback or
* secp256k1_context_set_error_callback, e.g., when the creation of a context
* fails. In this case, the corresponding default handler will be called with
* the data pointer argument set to NULL.
*
* Args: ctx: pointer to a context object.
* In: fun: pointer to a function to call when an illegal argument is
* passed to the API, taking a message and an opaque pointer.
* (NULL restores the default handler.)
* data: the opaque pointer to pass to fun above, must be NULL for the default handler.
*
* See also secp256k1_context_set_error_callback.
*/
SECP256K1_API void secp256k1_context_set_illegal_callback(
secp256k1_context *ctx,
void (*fun)(const char *message, void *data),
const void *data
) SECP256K1_ARG_NONNULL(1);
/** Set a callback function to be called when an internal consistency check
* fails.
*
* The default callback writes an error message to stderr and calls abort
* to abort the program.
*
* This can only trigger in case of a hardware failure, miscompilation,
* memory corruption, serious bug in the library, or other error would can
* otherwise result in undefined behaviour. It will not trigger due to mere
* incorrect usage of the API (see secp256k1_context_set_illegal_callback
* for that). After this callback returns, anything may happen, including
* crashing.
*
* Args: ctx: pointer to a context object.
* In: fun: pointer to a function to call when an internal error occurs,
* taking a message and an opaque pointer (NULL restores the
* default handler, see secp256k1_context_set_illegal_callback
* for details).
* data: the opaque pointer to pass to fun above, must be NULL for the default handler.
*
* See also secp256k1_context_set_illegal_callback.
*/
SECP256K1_API void secp256k1_context_set_error_callback(
secp256k1_context *ctx,
void (*fun)(const char *message, void *data),
const void *data
) SECP256K1_ARG_NONNULL(1);
/** Parse a variable-length public key into the pubkey object.
*
* Returns: 1 if the public key was fully valid.
* 0 if the public key could not be parsed or is invalid.
* Args: ctx: pointer to a context object.
* Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to a
* parsed version of input. If not, its value is undefined.
* In: input: pointer to a serialized public key
* inputlen: length of the array pointed to by input
*
* This function supports parsing compressed (33 bytes, header byte 0x02 or
* 0x03), uncompressed (65 bytes, header byte 0x04), or hybrid (65 bytes, header
* byte 0x06 or 0x07) format public keys.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_parse(
const secp256k1_context *ctx,
secp256k1_pubkey *pubkey,
const unsigned char *input,
size_t inputlen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize a pubkey object into a serialized byte sequence.
*
* Returns: 1 always.
* Args: ctx: pointer to a context object.
* Out: output: pointer to a 65-byte (if compressed==0) or 33-byte (if
* compressed==1) byte array to place the serialized key
* in.
* In/Out: outputlen: pointer to an integer which is initially set to the
* size of output, and is overwritten with the written
* size.
* In: pubkey: pointer to a secp256k1_pubkey containing an
* initialized public key.
* flags: SECP256K1_EC_COMPRESSED if serialization should be in
* compressed format, otherwise SECP256K1_EC_UNCOMPRESSED.
*/
SECP256K1_API int secp256k1_ec_pubkey_serialize(
const secp256k1_context *ctx,
unsigned char *output,
size_t *outputlen,
const secp256k1_pubkey *pubkey,
unsigned int flags
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Compare two public keys using lexicographic (of compressed serialization) order
*
* Returns: <0 if the first public key is less than the second
* >0 if the first public key is greater than the second
* 0 if the two public keys are equal
* Args: ctx: pointer to a context object
* In: pubkey1: first public key to compare
* pubkey2: second public key to compare
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_cmp(
const secp256k1_context *ctx,
const secp256k1_pubkey *pubkey1,
const secp256k1_pubkey *pubkey2
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Sort public keys using lexicographic (of compressed serialization) order
*
* Returns: 0 if the arguments are invalid. 1 otherwise.
*
* Args: ctx: pointer to a context object
* In: pubkeys: array of pointers to pubkeys to sort
* n_pubkeys: number of elements in the pubkeys array
*/
SECP256K1_API int secp256k1_ec_pubkey_sort(
const secp256k1_context *ctx,
const secp256k1_pubkey **pubkeys,
size_t n_pubkeys
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
/** Parse an ECDSA signature in compact (64 bytes) format.
*
* Returns: 1 when the signature could be parsed, 0 otherwise.
* Args: ctx: pointer to a context object
* Out: sig: pointer to a signature object
* In: input64: pointer to the 64-byte array to parse
*
* The signature must consist of a 32-byte big endian R value, followed by a
* 32-byte big endian S value. If R or S fall outside of [0..order-1], the
* encoding is invalid. R and S with value 0 are allowed in the encoding.
*
* After the call, sig will always be initialized. If parsing failed or R or
* S are zero, the resulting sig value is guaranteed to fail verification for
* any message and public key.
*/
SECP256K1_API int secp256k1_ecdsa_signature_parse_compact(
const secp256k1_context *ctx,
secp256k1_ecdsa_signature *sig,
const unsigned char *input64
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Parse a DER ECDSA signature.
*
* Returns: 1 when the signature could be parsed, 0 otherwise.
* Args: ctx: pointer to a context object
* Out: sig: pointer to a signature object
* In: input: pointer to the signature to be parsed
* inputlen: the length of the array pointed to be input
*
* This function will accept any valid DER encoded signature, even if the
* encoded numbers are out of range.
*
* After the call, sig will always be initialized. If parsing failed or the
* encoded numbers are out of range, signature verification with it is
* guaranteed to fail for every message and public key.
*/
SECP256K1_API int secp256k1_ecdsa_signature_parse_der(
const secp256k1_context *ctx,
secp256k1_ecdsa_signature *sig,
const unsigned char *input,
size_t inputlen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize an ECDSA signature in DER format.
*
* Returns: 1 if enough space was available to serialize, 0 otherwise
* Args: ctx: pointer to a context object
* Out: output: pointer to an array to store the DER serialization
* In/Out: outputlen: pointer to a length integer. Initially, this integer
* should be set to the length of output. After the call
* it will be set to the length of the serialization (even
* if 0 was returned).
* In: sig: pointer to an initialized signature object
*/
SECP256K1_API int secp256k1_ecdsa_signature_serialize_der(
const secp256k1_context *ctx,
unsigned char *output,
size_t *outputlen,
const secp256k1_ecdsa_signature *sig
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Serialize an ECDSA signature in compact (64 byte) format.
*
* Returns: 1
* Args: ctx: pointer to a context object
* Out: output64: pointer to a 64-byte array to store the compact serialization
* In: sig: pointer to an initialized signature object
*
* See secp256k1_ecdsa_signature_parse_compact for details about the encoding.
*/
SECP256K1_API int secp256k1_ecdsa_signature_serialize_compact(
const secp256k1_context *ctx,
unsigned char *output64,
const secp256k1_ecdsa_signature *sig
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Verify an ECDSA signature.
*
* Returns: 1: correct signature
* 0: incorrect or unparseable signature
* Args: ctx: pointer to a context object
* In: sig: the signature being verified.
* msghash32: the 32-byte message hash being verified.
* The verifier must make sure to apply a cryptographic
* hash function to the message by itself and not accept an
* msghash32 value directly. Otherwise, it would be easy to
* create a "valid" signature without knowledge of the
* secret key. See also
* https://bitcoin.stackexchange.com/a/81116/35586 for more
* background on this topic.
* pubkey: pointer to an initialized public key to verify with.
*
* To avoid accepting malleable signatures, only ECDSA signatures in lower-S
* form are accepted.
*
* If you need to accept ECDSA signatures from sources that do not obey this
* rule, apply secp256k1_ecdsa_signature_normalize to the signature prior to
* verification, but be aware that doing so results in malleable signatures.
*
* For details, see the comments for that function.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify(
const secp256k1_context *ctx,
const secp256k1_ecdsa_signature *sig,
const unsigned char *msghash32,
const secp256k1_pubkey *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Convert a signature to a normalized lower-S form.
*
* Returns: 1 if sigin was not normalized, 0 if it already was.
* Args: ctx: pointer to a context object
* Out: sigout: pointer to a signature to fill with the normalized form,
* or copy if the input was already normalized. (can be NULL if
* you're only interested in whether the input was already
* normalized).
* In: sigin: pointer to a signature to check/normalize (can be identical to sigout)
*
* With ECDSA a third-party can forge a second distinct signature of the same
* message, given a single initial signature, but without knowing the key. This
* is done by negating the S value modulo the order of the curve, 'flipping'
* the sign of the random point R which is not included in the signature.
*
* Forgery of the same message isn't universally problematic, but in systems
* where message malleability or uniqueness of signatures is important this can
* cause issues. This forgery can be blocked by all verifiers forcing signers
* to use a normalized form.
*
* The lower-S form reduces the size of signatures slightly on average when
* variable length encodings (such as DER) are used and is cheap to verify,
* making it a good choice. Security of always using lower-S is assured because
* anyone can trivially modify a signature after the fact to enforce this
* property anyway.
*
* The lower S value is always between 0x1 and
* 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0,
* inclusive.
*
* No other forms of ECDSA malleability are known and none seem likely, but
* there is no formal proof that ECDSA, even with this additional restriction,
* is free of other malleability. Commonly used serialization schemes will also
* accept various non-unique encodings, so care should be taken when this
* property is required for an application.
*
* The secp256k1_ecdsa_sign function will by default create signatures in the
* lower-S form, and secp256k1_ecdsa_verify will not accept others. In case
* signatures come from a system that cannot enforce this property,
* secp256k1_ecdsa_signature_normalize must be called before verification.
*/
SECP256K1_API int secp256k1_ecdsa_signature_normalize(
const secp256k1_context *ctx,
secp256k1_ecdsa_signature *sigout,
const secp256k1_ecdsa_signature *sigin
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(3);
/** An implementation of RFC6979 (using HMAC-SHA256) as nonce generation function.
* If a data pointer is passed, it is assumed to be a pointer to 32 bytes of
* extra entropy.
*/
SECP256K1_API const secp256k1_nonce_function secp256k1_nonce_function_rfc6979;
/** A default safe nonce generation function (currently equal to secp256k1_nonce_function_rfc6979). */
SECP256K1_API const secp256k1_nonce_function secp256k1_nonce_function_default;
/** Create an ECDSA signature.
*
* Returns: 1: signature created
* 0: the nonce generation function failed, or the secret key was invalid.
* Args: ctx: pointer to a context object (not secp256k1_context_static).
* Out: sig: pointer to an array where the signature will be placed.
* In: msghash32: the 32-byte message hash being signed.
* seckey: pointer to a 32-byte secret key.
* noncefp: pointer to a nonce generation function. If NULL,
* secp256k1_nonce_function_default is used.
* ndata: pointer to arbitrary data used by the nonce generation function
* (can be NULL). If it is non-NULL and
* secp256k1_nonce_function_default is used, then ndata must be a
* pointer to 32-bytes of additional data.
*
* The created signature is always in lower-S form. See
* secp256k1_ecdsa_signature_normalize for more details.
*/
SECP256K1_API int secp256k1_ecdsa_sign(
const secp256k1_context *ctx,
secp256k1_ecdsa_signature *sig,
const unsigned char *msghash32,
const unsigned char *seckey,
secp256k1_nonce_function noncefp,
const void *ndata
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Verify an elliptic curve secret key.
*
* A secret key is valid if it is not 0 and less than the secp256k1 curve order
* when interpreted as an integer (most significant byte first). The
* probability of choosing a 32-byte string uniformly at random which is an
* invalid secret key is negligible. However, if it does happen it should
* be assumed that the randomness source is severely broken and there should
* be no retry.
*
* Returns: 1: secret key is valid
* 0: secret key is invalid
* Args: ctx: pointer to a context object.
* In: seckey: pointer to a 32-byte secret key.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_verify(
const secp256k1_context *ctx,
const unsigned char *seckey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
/** Compute the public key for a secret key.
*
* Returns: 1: secret was valid, public key stores.
* 0: secret was invalid, try again.
* Args: ctx: pointer to a context object (not secp256k1_context_static).
* Out: pubkey: pointer to the created public key.
* In: seckey: pointer to a 32-byte secret key.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create(
const secp256k1_context *ctx,
secp256k1_pubkey *pubkey,
const unsigned char *seckey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Negates a secret key in place.
*
* Returns: 0 if the given secret key is invalid according to
* secp256k1_ec_seckey_verify. 1 otherwise
* Args: ctx: pointer to a context object
* In/Out: seckey: pointer to the 32-byte secret key to be negated. If the
* secret key is invalid according to
* secp256k1_ec_seckey_verify, this function returns 0 and
* seckey will be set to some unspecified value.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_negate(
const secp256k1_context *ctx,
unsigned char *seckey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
/** Negates a public key in place.
*
* Returns: 1 always
* Args: ctx: pointer to a context object
* In/Out: pubkey: pointer to the public key to be negated.
*/
SECP256K1_API int secp256k1_ec_pubkey_negate(
const secp256k1_context *ctx,
secp256k1_pubkey *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
/** Tweak a secret key by adding tweak to it.
*
* Returns: 0 if the arguments are invalid or the resulting secret key would be
* invalid (only when the tweak is the negation of the secret key). 1
* otherwise.
* Args: ctx: pointer to a context object.
* In/Out: seckey: pointer to a 32-byte secret key. If the secret key is
* invalid according to secp256k1_ec_seckey_verify, this
* function returns 0. seckey will be set to some unspecified
* value if this function returns 0.
* In: tweak32: pointer to a 32-byte tweak, which must be valid according to
* secp256k1_ec_seckey_verify or 32 zero bytes. For uniformly
* random 32-byte tweaks, the chance of being invalid is
* negligible (around 1 in 2^128).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_tweak_add(
const secp256k1_context *ctx,
unsigned char *seckey,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Tweak a public key by adding tweak times the generator to it.
*
* Returns: 0 if the arguments are invalid or the resulting public key would be
* invalid (only when the tweak is the negation of the corresponding
* secret key). 1 otherwise.
* Args: ctx: pointer to a context object.
* In/Out: pubkey: pointer to a public key object. pubkey will be set to an
* invalid value if this function returns 0.
* In: tweak32: pointer to a 32-byte tweak, which must be valid according to
* secp256k1_ec_seckey_verify or 32 zero bytes. For uniformly
* random 32-byte tweaks, the chance of being invalid is
* negligible (around 1 in 2^128).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_add(
const secp256k1_context *ctx,
secp256k1_pubkey *pubkey,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Tweak a secret key by multiplying it by a tweak.
*
* Returns: 0 if the arguments are invalid. 1 otherwise.
* Args: ctx: pointer to a context object.
* In/Out: seckey: pointer to a 32-byte secret key. If the secret key is
* invalid according to secp256k1_ec_seckey_verify, this
* function returns 0. seckey will be set to some unspecified
* value if this function returns 0.
* In: tweak32: pointer to a 32-byte tweak. If the tweak is invalid according to
* secp256k1_ec_seckey_verify, this function returns 0. For
* uniformly random 32-byte arrays the chance of being invalid
* is negligible (around 1 in 2^128).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_tweak_mul(
const secp256k1_context *ctx,
unsigned char *seckey,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Tweak a public key by multiplying it by a tweak value.
*
* Returns: 0 if the arguments are invalid. 1 otherwise.
* Args: ctx: pointer to a context object.
* In/Out: pubkey: pointer to a public key object. pubkey will be set to an
* invalid value if this function returns 0.
* In: tweak32: pointer to a 32-byte tweak. If the tweak is invalid according to
* secp256k1_ec_seckey_verify, this function returns 0. For
* uniformly random 32-byte arrays the chance of being invalid
* is negligible (around 1 in 2^128).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_mul(
const secp256k1_context *ctx,
secp256k1_pubkey *pubkey,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Randomizes the context to provide enhanced protection against side-channel leakage.
*
* Returns: 1: randomization successful
* 0: error
* Args: ctx: pointer to a context object (not secp256k1_context_static).
* In: seed32: pointer to a 32-byte random seed (NULL resets to initial state).
*
* While secp256k1 code is written and tested to be constant-time no matter what
* secret values are, it is possible that a compiler may output code which is not,
* and also that the CPU may not emit the same radio frequencies or draw the same
* amount of power for all values. Randomization of the context shields against
* side-channel observations which aim to exploit secret-dependent behaviour in
* certain computations which involve secret keys.
*
* It is highly recommended to call this function on contexts returned from
* secp256k1_context_create or secp256k1_context_clone (or from the corresponding
* functions in secp256k1_preallocated.h) before using these contexts to call API
* functions that perform computations involving secret keys, e.g., signing and
* public key generation. It is possible to call this function more than once on
* the same context, and doing so before every few computations involving secret
* keys is recommended as a defense-in-depth measure. Randomization of the static
* context secp256k1_context_static is not supported.
*
* Currently, the random seed is mainly used for blinding multiplications of a
* secret scalar with the elliptic curve base point. Multiplications of this
* kind are performed by exactly those API functions which are documented to
* require a context that is not secp256k1_context_static. As a rule of thumb,
* these are all functions which take a secret key (or a keypair) as an input.
* A notable exception to that rule is the ECDH module, which relies on a different
* kind of elliptic curve point multiplication and thus does not benefit from
* enhanced protection against side-channel leakage currently.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize(
secp256k1_context *ctx,
const unsigned char *seed32
) SECP256K1_ARG_NONNULL(1);
/** Add a number of public keys together.
*
* Returns: 1: the sum of the public keys is valid.
* 0: the sum of the public keys is not valid.
* Args: ctx: pointer to a context object.
* Out: out: pointer to a public key object for placing the resulting public key.
* In: ins: pointer to array of pointers to public keys.
* n: the number of public keys to add together (must be at least 1).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_combine(
const secp256k1_context *ctx,
secp256k1_pubkey *out,
const secp256k1_pubkey * const *ins,
size_t n
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Compute a tagged hash as defined in BIP-340.
*
* This is useful for creating a message hash and achieving domain separation
* through an application-specific tag. This function returns
* SHA256(SHA256(tag)||SHA256(tag)||msg). Therefore, tagged hash
* implementations optimized for a specific tag can precompute the SHA256 state
* after hashing the tag hashes.
*
* Returns: 1 always.
* Args: ctx: pointer to a context object
* Out: hash32: pointer to a 32-byte array to store the resulting hash
* In: tag: pointer to an array containing the tag
* taglen: length of the tag array
* msg: pointer to an array containing the message
* msglen: length of the message array
*/
SECP256K1_API int secp256k1_tagged_sha256(
const secp256k1_context *ctx,
unsigned char *hash32,
const unsigned char *tag,
size_t taglen,
const unsigned char *msg,
size_t msglen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(5);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_H */

View File

@ -0,0 +1,63 @@
#ifndef SECP256K1_ECDH_H
#define SECP256K1_ECDH_H
#include "secp256k1.h"
#ifdef __cplusplus
extern "C" {
#endif
/** A pointer to a function that hashes an EC point to obtain an ECDH secret
*
* Returns: 1 if the point was successfully hashed.
* 0 will cause secp256k1_ecdh to fail and return 0.
* Other return values are not allowed, and the behaviour of
* secp256k1_ecdh is undefined for other return values.
* Out: output: pointer to an array to be filled by the function
* In: x32: pointer to a 32-byte x coordinate
* y32: pointer to a 32-byte y coordinate
* data: arbitrary data pointer that is passed through
*/
typedef int (*secp256k1_ecdh_hash_function)(
unsigned char *output,
const unsigned char *x32,
const unsigned char *y32,
void *data
);
/** An implementation of SHA256 hash function that applies to compressed public key.
* Populates the output parameter with 32 bytes. */
SECP256K1_API const secp256k1_ecdh_hash_function secp256k1_ecdh_hash_function_sha256;
/** A default ECDH hash function (currently equal to secp256k1_ecdh_hash_function_sha256).
* Populates the output parameter with 32 bytes. */
SECP256K1_API const secp256k1_ecdh_hash_function secp256k1_ecdh_hash_function_default;
/** Compute an EC Diffie-Hellman secret in constant time
*
* Returns: 1: exponentiation was successful
* 0: scalar was invalid (zero or overflow) or hashfp returned 0
* Args: ctx: pointer to a context object.
* Out: output: pointer to an array to be filled by hashfp.
* In: pubkey: pointer to a secp256k1_pubkey containing an initialized public key.
* seckey: a 32-byte scalar with which to multiply the point.
* hashfp: pointer to a hash function. If NULL,
* secp256k1_ecdh_hash_function_sha256 is used
* (in which case, 32 bytes will be written to output).
* data: arbitrary data pointer that is passed through to hashfp
* (can be NULL for secp256k1_ecdh_hash_function_sha256).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdh(
const secp256k1_context *ctx,
unsigned char *output,
const secp256k1_pubkey *pubkey,
const unsigned char *seckey,
secp256k1_ecdh_hash_function hashfp,
void *data
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_ECDH_H */

View File

@ -0,0 +1,200 @@
#ifndef SECP256K1_ELLSWIFT_H
#define SECP256K1_ELLSWIFT_H
#include "secp256k1.h"
#ifdef __cplusplus
extern "C" {
#endif
/* This module provides an implementation of ElligatorSwift as well as a
* version of x-only ECDH using it (including compatibility with BIP324).
*
* ElligatorSwift is described in https://eprint.iacr.org/2022/759 by
* Chavez-Saab, Rodriguez-Henriquez, and Tibouchi. It permits encoding
* uniformly chosen public keys as 64-byte arrays which are indistinguishable
* from uniformly random arrays.
*
* Let f be the function from pairs of field elements to point X coordinates,
* defined as follows (all operations modulo p = 2^256 - 2^32 - 977)
* f(u,t):
* - Let C = 0xa2d2ba93507f1df233770c2a797962cc61f6d15da14ecd47d8d27ae1cd5f852,
* a square root of -3.
* - If u=0, set u=1 instead.
* - If t=0, set t=1 instead.
* - If u^3 + t^2 + 7 = 0, multiply t by 2.
* - Let X = (u^3 + 7 - t^2) / (2 * t)
* - Let Y = (X + t) / (C * u)
* - Return the first in [u + 4 * Y^2, (-X/Y - u) / 2, (X/Y - u) / 2] that is an
* X coordinate on the curve (at least one of them is, for any u and t).
*
* Then an ElligatorSwift encoding of x consists of the 32-byte big-endian
* encodings of field elements u and t concatenated, where f(u,t) = x.
* The encoding algorithm is described in the paper, and effectively picks a
* uniformly random pair (u,t) among those which encode x.
*
* If the Y coordinate is relevant, it is given the same parity as t.
*
* Changes w.r.t. the paper:
* - The u=0, t=0, and u^3+t^2+7=0 conditions result in decoding to the point
* at infinity in the paper. Here they are remapped to finite points.
* - The paper uses an additional encoding bit for the parity of y. Here the
* parity of t is used (negating t does not affect the decoded x coordinate,
* so this is possible).
*
* For mathematical background about the scheme, see the doc/ellswift.md file.
*/
/** A pointer to a function used by secp256k1_ellswift_xdh to hash the shared X
* coordinate along with the encoded public keys to a uniform shared secret.
*
* Returns: 1 if a shared secret was successfully computed.
* 0 will cause secp256k1_ellswift_xdh to fail and return 0.
* Other return values are not allowed, and the behaviour of
* secp256k1_ellswift_xdh is undefined for other return values.
* Out: output: pointer to an array to be filled by the function
* In: x32: pointer to the 32-byte serialized X coordinate
* of the resulting shared point (will not be NULL)
* ell_a64: pointer to the 64-byte encoded public key of party A
* (will not be NULL)
* ell_b64: pointer to the 64-byte encoded public key of party B
* (will not be NULL)
* data: arbitrary data pointer that is passed through
*/
typedef int (*secp256k1_ellswift_xdh_hash_function)(
unsigned char *output,
const unsigned char *x32,
const unsigned char *ell_a64,
const unsigned char *ell_b64,
void *data
);
/** An implementation of an secp256k1_ellswift_xdh_hash_function which uses
* SHA256(prefix64 || ell_a64 || ell_b64 || x32), where prefix64 is the 64-byte
* array pointed to by data. */
SECP256K1_API const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_prefix;
/** An implementation of an secp256k1_ellswift_xdh_hash_function compatible with
* BIP324. It returns H_tag(ell_a64 || ell_b64 || x32), where H_tag is the
* BIP340 tagged hash function with tag "bip324_ellswift_xonly_ecdh". Equivalent
* to secp256k1_ellswift_xdh_hash_function_prefix with prefix64 set to
* SHA256("bip324_ellswift_xonly_ecdh")||SHA256("bip324_ellswift_xonly_ecdh").
* The data argument is ignored. */
SECP256K1_API const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_bip324;
/** Construct a 64-byte ElligatorSwift encoding of a given pubkey.
*
* Returns: 1 always.
* Args: ctx: pointer to a context object
* Out: ell64: pointer to a 64-byte array to be filled
* In: pubkey: pointer to a secp256k1_pubkey containing an
* initialized public key
* rnd32: pointer to 32 bytes of randomness
*
* It is recommended that rnd32 consists of 32 uniformly random bytes, not
* known to any adversary trying to detect whether public keys are being
* encoded, though 16 bytes of randomness (padded to an array of 32 bytes,
* e.g., with zeros) suffice to make the result indistinguishable from
* uniform. The randomness in rnd32 must not be a deterministic function of
* the pubkey (it can be derived from the private key, though).
*
* It is not guaranteed that the computed encoding is stable across versions
* of the library, even if all arguments to this function (including rnd32)
* are the same.
*
* This function runs in variable time.
*/
SECP256K1_API int secp256k1_ellswift_encode(
const secp256k1_context *ctx,
unsigned char *ell64,
const secp256k1_pubkey *pubkey,
const unsigned char *rnd32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Decode a 64-bytes ElligatorSwift encoded public key.
*
* Returns: always 1
* Args: ctx: pointer to a context object
* Out: pubkey: pointer to a secp256k1_pubkey that will be filled
* In: ell64: pointer to a 64-byte array to decode
*
* This function runs in variable time.
*/
SECP256K1_API int secp256k1_ellswift_decode(
const secp256k1_context *ctx,
secp256k1_pubkey *pubkey,
const unsigned char *ell64
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Compute an ElligatorSwift public key for a secret key.
*
* Returns: 1: secret was valid, public key was stored.
* 0: secret was invalid, try again.
* Args: ctx: pointer to a context object
* Out: ell64: pointer to a 64-byte array to receive the ElligatorSwift
* public key
* In: seckey32: pointer to a 32-byte secret key
* auxrnd32: (optional) pointer to 32 bytes of randomness
*
* Constant time in seckey and auxrnd32, but not in the resulting public key.
*
* It is recommended that auxrnd32 contains 32 uniformly random bytes, though
* it is optional (and does result in encodings that are indistinguishable from
* uniform even without any auxrnd32). It differs from the (mandatory) rnd32
* argument to secp256k1_ellswift_encode in this regard.
*
* This function can be used instead of calling secp256k1_ec_pubkey_create
* followed by secp256k1_ellswift_encode. It is safer, as it uses the secret
* key as entropy for the encoding (supplemented with auxrnd32, if provided).
*
* Like secp256k1_ellswift_encode, this function does not guarantee that the
* computed encoding is stable across versions of the library, even if all
* arguments (including auxrnd32) are the same.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ellswift_create(
const secp256k1_context *ctx,
unsigned char *ell64,
const unsigned char *seckey32,
const unsigned char *auxrnd32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Given a private key, and ElligatorSwift public keys sent in both directions,
* compute a shared secret using x-only Elliptic Curve Diffie-Hellman (ECDH).
*
* Returns: 1: shared secret was successfully computed
* 0: secret was invalid or hashfp returned 0
* Args: ctx: pointer to a context object.
* Out: output: pointer to an array to be filled by hashfp.
* In: ell_a64: pointer to the 64-byte encoded public key of party A
* (will not be NULL)
* ell_b64: pointer to the 64-byte encoded public key of party B
* (will not be NULL)
* seckey32: pointer to our 32-byte secret key
* party: boolean indicating which party we are: zero if we are
* party A, non-zero if we are party B. seckey32 must be
* the private key corresponding to that party's ell_?64.
* This correspondence is not checked.
* hashfp: pointer to a hash function.
* data: arbitrary data pointer passed through to hashfp.
*
* Constant time in seckey32.
*
* This function is more efficient than decoding the public keys, and performing
* ECDH on them.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ellswift_xdh(
const secp256k1_context *ctx,
unsigned char *output,
const unsigned char *ell_a64,
const unsigned char *ell_b64,
const unsigned char *seckey32,
int party,
secp256k1_ellswift_xdh_hash_function hashfp,
void *data
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(7);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_ELLSWIFT_H */

View File

@ -0,0 +1,250 @@
#ifndef SECP256K1_EXTRAKEYS_H
#define SECP256K1_EXTRAKEYS_H
#include "secp256k1.h"
#ifdef __cplusplus
extern "C" {
#endif
/** Opaque data structure that holds a parsed and valid "x-only" public key.
* An x-only pubkey encodes a point whose Y coordinate is even. It is
* serialized using only its X coordinate (32 bytes). See BIP-340 for more
* information about x-only pubkeys.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 64 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage, transmission, use
* use secp256k1_xonly_pubkey_serialize and secp256k1_xonly_pubkey_parse. To
* compare keys, use secp256k1_xonly_pubkey_cmp.
*/
typedef struct secp256k1_xonly_pubkey {
unsigned char data[64];
} secp256k1_xonly_pubkey;
/** Opaque data structure that holds a keypair consisting of a secret and a
* public key.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 96 bytes in size, and can be safely copied/moved.
*/
typedef struct secp256k1_keypair {
unsigned char data[96];
} secp256k1_keypair;
/** Parse a 32-byte sequence into a xonly_pubkey object.
*
* Returns: 1 if the public key was fully valid.
* 0 if the public key could not be parsed or is invalid.
*
* Args: ctx: pointer to a context object.
* Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to a
* parsed version of input. If not, it's set to an invalid value.
* In: input32: pointer to a serialized xonly_pubkey.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_parse(
const secp256k1_context *ctx,
secp256k1_xonly_pubkey *pubkey,
const unsigned char *input32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize an xonly_pubkey object into a 32-byte sequence.
*
* Returns: 1 always.
*
* Args: ctx: pointer to a context object.
* Out: output32: pointer to a 32-byte array to place the serialized key in.
* In: pubkey: pointer to a secp256k1_xonly_pubkey containing an initialized public key.
*/
SECP256K1_API int secp256k1_xonly_pubkey_serialize(
const secp256k1_context *ctx,
unsigned char *output32,
const secp256k1_xonly_pubkey *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Compare two x-only public keys using lexicographic order
*
* Returns: <0 if the first public key is less than the second
* >0 if the first public key is greater than the second
* 0 if the two public keys are equal
* Args: ctx: pointer to a context object.
* In: pubkey1: first public key to compare
* pubkey2: second public key to compare
*/
SECP256K1_API int secp256k1_xonly_pubkey_cmp(
const secp256k1_context *ctx,
const secp256k1_xonly_pubkey *pk1,
const secp256k1_xonly_pubkey *pk2
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Converts a secp256k1_pubkey into a secp256k1_xonly_pubkey.
*
* Returns: 1 always.
*
* Args: ctx: pointer to a context object.
* Out: xonly_pubkey: pointer to an x-only public key object for placing the converted public key.
* pk_parity: Ignored if NULL. Otherwise, pointer to an integer that
* will be set to 1 if the point encoded by xonly_pubkey is
* the negation of the pubkey and set to 0 otherwise.
* In: pubkey: pointer to a public key that is converted.
*/
SECP256K1_API int secp256k1_xonly_pubkey_from_pubkey(
const secp256k1_context *ctx,
secp256k1_xonly_pubkey *xonly_pubkey,
int *pk_parity,
const secp256k1_pubkey *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4);
/** Tweak an x-only public key by adding the generator multiplied with tweak32
* to it.
*
* Note that the resulting point can not in general be represented by an x-only
* pubkey because it may have an odd Y coordinate. Instead, the output_pubkey
* is a normal secp256k1_pubkey.
*
* Returns: 0 if the arguments are invalid or the resulting public key would be
* invalid (only when the tweak is the negation of the corresponding
* secret key). 1 otherwise.
*
* Args: ctx: pointer to a context object.
* Out: output_pubkey: pointer to a public key to store the result. Will be set
* to an invalid value if this function returns 0.
* In: internal_pubkey: pointer to an x-only pubkey to apply the tweak to.
* tweak32: pointer to a 32-byte tweak, which must be valid
* according to secp256k1_ec_seckey_verify or 32 zero
* bytes. For uniformly random 32-byte tweaks, the chance of
* being invalid is negligible (around 1 in 2^128).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_tweak_add(
const secp256k1_context *ctx,
secp256k1_pubkey *output_pubkey,
const secp256k1_xonly_pubkey *internal_pubkey,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Checks that a tweaked pubkey is the result of calling
* secp256k1_xonly_pubkey_tweak_add with internal_pubkey and tweak32.
*
* The tweaked pubkey is represented by its 32-byte x-only serialization and
* its pk_parity, which can both be obtained by converting the result of
* tweak_add to a secp256k1_xonly_pubkey.
*
* Note that this alone does _not_ verify that the tweaked pubkey is a
* commitment. If the tweak is not chosen in a specific way, the tweaked pubkey
* can easily be the result of a different internal_pubkey and tweak.
*
* Returns: 0 if the arguments are invalid or the tweaked pubkey is not the
* result of tweaking the internal_pubkey with tweak32. 1 otherwise.
* Args: ctx: pointer to a context object.
* In: tweaked_pubkey32: pointer to a serialized xonly_pubkey.
* tweaked_pk_parity: the parity of the tweaked pubkey (whose serialization
* is passed in as tweaked_pubkey32). This must match the
* pk_parity value that is returned when calling
* secp256k1_xonly_pubkey with the tweaked pubkey, or
* this function will fail.
* internal_pubkey: pointer to an x-only public key object to apply the tweak to.
* tweak32: pointer to a 32-byte tweak.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_tweak_add_check(
const secp256k1_context *ctx,
const unsigned char *tweaked_pubkey32,
int tweaked_pk_parity,
const secp256k1_xonly_pubkey *internal_pubkey,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5);
/** Compute the keypair for a valid secret key.
*
* See the documentation of `secp256k1_ec_seckey_verify` for more information
* about the validity of secret keys.
*
* Returns: 1: secret key is valid
* 0: secret key is invalid
* Args: ctx: pointer to a context object (not secp256k1_context_static).
* Out: keypair: pointer to the created keypair.
* In: seckey: pointer to a 32-byte secret key.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_create(
const secp256k1_context *ctx,
secp256k1_keypair *keypair,
const unsigned char *seckey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Get the secret key from a keypair.
*
* Returns: 1 always.
* Args: ctx: pointer to a context object.
* Out: seckey: pointer to a 32-byte buffer for the secret key.
* In: keypair: pointer to a keypair.
*/
SECP256K1_API int secp256k1_keypair_sec(
const secp256k1_context *ctx,
unsigned char *seckey,
const secp256k1_keypair *keypair
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Get the public key from a keypair.
*
* Returns: 1 always.
* Args: ctx: pointer to a context object.
* Out: pubkey: pointer to a pubkey object, set to the keypair public key.
* In: keypair: pointer to a keypair.
*/
SECP256K1_API int secp256k1_keypair_pub(
const secp256k1_context *ctx,
secp256k1_pubkey *pubkey,
const secp256k1_keypair *keypair
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Get the x-only public key from a keypair.
*
* This is the same as calling secp256k1_keypair_pub and then
* secp256k1_xonly_pubkey_from_pubkey.
*
* Returns: 1 always.
* Args: ctx: pointer to a context object.
* Out: pubkey: pointer to an xonly_pubkey object, set to the keypair
* public key after converting it to an xonly_pubkey.
* pk_parity: Ignored if NULL. Otherwise, pointer to an integer that will be set to the
* pk_parity argument of secp256k1_xonly_pubkey_from_pubkey.
* In: keypair: pointer to a keypair.
*/
SECP256K1_API int secp256k1_keypair_xonly_pub(
const secp256k1_context *ctx,
secp256k1_xonly_pubkey *pubkey,
int *pk_parity,
const secp256k1_keypair *keypair
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4);
/** Tweak a keypair by adding tweak32 to the secret key and updating the public
* key accordingly.
*
* Calling this function and then secp256k1_keypair_pub results in the same
* public key as calling secp256k1_keypair_xonly_pub and then
* secp256k1_xonly_pubkey_tweak_add.
*
* Returns: 0 if the arguments are invalid or the resulting keypair would be
* invalid (only when the tweak is the negation of the keypair's
* secret key). 1 otherwise.
*
* Args: ctx: pointer to a context object.
* In/Out: keypair: pointer to a keypair to apply the tweak to. Will be set to
* an invalid value if this function returns 0.
* In: tweak32: pointer to a 32-byte tweak, which must be valid according to
* secp256k1_ec_seckey_verify or 32 zero bytes. For uniformly
* random 32-byte tweaks, the chance of being invalid is
* negligible (around 1 in 2^128).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_xonly_tweak_add(
const secp256k1_context *ctx,
secp256k1_keypair *keypair,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_EXTRAKEYS_H */

View File

@ -0,0 +1,588 @@
#ifndef SECP256K1_MUSIG_H
#define SECP256K1_MUSIG_H
#include "secp256k1_extrakeys.h"
#ifdef __cplusplus
extern "C" {
#endif
#include <stddef.h>
#include <stdint.h>
/** This module implements BIP 327 "MuSig2 for BIP340-compatible
* Multi-Signatures"
* (https://github.com/bitcoin/bips/blob/master/bip-0327.mediawiki)
* v1.0.0. You can find an example demonstrating the musig module in
* examples/musig.c.
*
* The module also supports BIP 341 ("Taproot") public key tweaking.
*
* It is recommended to read the documentation in this include file carefully.
* Further notes on API usage can be found in doc/musig.md
*
* Since the first version of MuSig is essentially replaced by MuSig2, we use
* MuSig, musig and MuSig2 synonymously unless noted otherwise.
*/
/** Opaque data structures
*
* The exact representation of data inside the opaque data structures is
* implementation defined and not guaranteed to be portable between different
* platforms or versions. With the exception of `secp256k1_musig_secnonce`, the
* data structures can be safely copied/moved. If you need to convert to a
* format suitable for storage, transmission, or comparison, use the
* corresponding serialization and parsing functions.
*/
/** Opaque data structure that caches information about public key aggregation.
*
* Guaranteed to be 197 bytes in size. No serialization and parsing functions
* (yet).
*/
typedef struct secp256k1_musig_keyagg_cache {
unsigned char data[197];
} secp256k1_musig_keyagg_cache;
/** Opaque data structure that holds a signer's _secret_ nonce.
*
* Guaranteed to be 132 bytes in size.
*
* WARNING: This structure MUST NOT be copied or read or written to directly. A
* signer who is online throughout the whole process and can keep this
* structure in memory can use the provided API functions for a safe standard
* workflow.
*
* Copying this data structure can result in nonce reuse which will leak the
* secret signing key.
*/
typedef struct secp256k1_musig_secnonce {
unsigned char data[132];
} secp256k1_musig_secnonce;
/** Opaque data structure that holds a signer's public nonce.
*
* Guaranteed to be 132 bytes in size. Serialized and parsed with
* `musig_pubnonce_serialize` and `musig_pubnonce_parse`.
*/
typedef struct secp256k1_musig_pubnonce {
unsigned char data[132];
} secp256k1_musig_pubnonce;
/** Opaque data structure that holds an aggregate public nonce.
*
* Guaranteed to be 132 bytes in size. Serialized and parsed with
* `musig_aggnonce_serialize` and `musig_aggnonce_parse`.
*/
typedef struct secp256k1_musig_aggnonce {
unsigned char data[132];
} secp256k1_musig_aggnonce;
/** Opaque data structure that holds a MuSig session.
*
* This structure is not required to be kept secret for the signing protocol to
* be secure. Guaranteed to be 133 bytes in size. No serialization and parsing
* functions (yet).
*/
typedef struct secp256k1_musig_session {
unsigned char data[133];
} secp256k1_musig_session;
/** Opaque data structure that holds a partial MuSig signature.
*
* Guaranteed to be 36 bytes in size. Serialized and parsed with
* `musig_partial_sig_serialize` and `musig_partial_sig_parse`.
*/
typedef struct secp256k1_musig_partial_sig {
unsigned char data[36];
} secp256k1_musig_partial_sig;
/** Parse a signer's public nonce.
*
* Returns: 1 when the nonce could be parsed, 0 otherwise.
* Args: ctx: pointer to a context object
* Out: nonce: pointer to a nonce object
* In: in66: pointer to the 66-byte nonce to be parsed
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_musig_pubnonce_parse(
const secp256k1_context *ctx,
secp256k1_musig_pubnonce *nonce,
const unsigned char *in66
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize a signer's public nonce
*
* Returns: 1 always
* Args: ctx: pointer to a context object
* Out: out66: pointer to a 66-byte array to store the serialized nonce
* In: nonce: pointer to the nonce
*/
SECP256K1_API int secp256k1_musig_pubnonce_serialize(
const secp256k1_context *ctx,
unsigned char *out66,
const secp256k1_musig_pubnonce *nonce
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Parse an aggregate public nonce.
*
* Returns: 1 when the nonce could be parsed, 0 otherwise.
* Args: ctx: pointer to a context object
* Out: nonce: pointer to a nonce object
* In: in66: pointer to the 66-byte nonce to be parsed
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_musig_aggnonce_parse(
const secp256k1_context *ctx,
secp256k1_musig_aggnonce *nonce,
const unsigned char *in66
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize an aggregate public nonce
*
* Returns: 1 always
* Args: ctx: pointer to a context object
* Out: out66: pointer to a 66-byte array to store the serialized nonce
* In: nonce: pointer to the nonce
*/
SECP256K1_API int secp256k1_musig_aggnonce_serialize(
const secp256k1_context *ctx,
unsigned char *out66,
const secp256k1_musig_aggnonce *nonce
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Parse a MuSig partial signature.
*
* Returns: 1 when the signature could be parsed, 0 otherwise.
* Args: ctx: pointer to a context object
* Out: sig: pointer to a signature object
* In: in32: pointer to the 32-byte signature to be parsed
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_musig_partial_sig_parse(
const secp256k1_context *ctx,
secp256k1_musig_partial_sig *sig,
const unsigned char *in32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize a MuSig partial signature
*
* Returns: 1 always
* Args: ctx: pointer to a context object
* Out: out32: pointer to a 32-byte array to store the serialized signature
* In: sig: pointer to the signature
*/
SECP256K1_API int secp256k1_musig_partial_sig_serialize(
const secp256k1_context *ctx,
unsigned char *out32,
const secp256k1_musig_partial_sig *sig
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Computes an aggregate public key and uses it to initialize a keyagg_cache
*
* Different orders of `pubkeys` result in different `agg_pk`s.
*
* Before aggregating, the pubkeys can be sorted with `secp256k1_ec_pubkey_sort`
* which ensures the same `agg_pk` result for the same multiset of pubkeys.
* This is useful to do before `pubkey_agg`, such that the order of pubkeys
* does not affect the aggregate public key.
*
* Returns: 0 if the arguments are invalid, 1 otherwise
* Args: ctx: pointer to a context object
* Out: agg_pk: the MuSig-aggregated x-only public key. If you do not need it,
* this arg can be NULL.
* keyagg_cache: if non-NULL, pointer to a musig_keyagg_cache struct that
* is required for signing (or observing the signing session
* and verifying partial signatures).
* In: pubkeys: input array of pointers to public keys to aggregate. The order
* is important; a different order will result in a different
* aggregate public key.
* n_pubkeys: length of pubkeys array. Must be greater than 0.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_musig_pubkey_agg(
const secp256k1_context *ctx,
secp256k1_xonly_pubkey *agg_pk,
secp256k1_musig_keyagg_cache *keyagg_cache,
const secp256k1_pubkey * const *pubkeys,
size_t n_pubkeys
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(4);
/** Obtain the aggregate public key from a keyagg_cache.
*
* This is only useful if you need the non-xonly public key, in particular for
* plain (non-xonly) tweaking or batch-verifying multiple key aggregations
* (not implemented).
*
* Returns: 0 if the arguments are invalid, 1 otherwise
* Args: ctx: pointer to a context object
* Out: agg_pk: the MuSig-aggregated public key.
* In: keyagg_cache: pointer to a `musig_keyagg_cache` struct initialized by
* `musig_pubkey_agg`
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_musig_pubkey_get(
const secp256k1_context *ctx,
secp256k1_pubkey *agg_pk,
const secp256k1_musig_keyagg_cache *keyagg_cache
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Apply plain "EC" tweaking to a public key in a given keyagg_cache by adding
* the generator multiplied with `tweak32` to it. This is useful for deriving
* child keys from an aggregate public key via BIP 32 where `tweak32` is set to
* a hash as defined in BIP 32.
*
* Callers are responsible for deriving `tweak32` in a way that does not reduce
* the security of MuSig (for example, by following BIP 32).
*
* The tweaking method is the same as `secp256k1_ec_pubkey_tweak_add`. So after
* the following pseudocode buf and buf2 have identical contents (absent
* earlier failures).
*
* secp256k1_musig_pubkey_agg(..., keyagg_cache, pubkeys, ...)
* secp256k1_musig_pubkey_get(..., agg_pk, keyagg_cache)
* secp256k1_musig_pubkey_ec_tweak_add(..., output_pk, tweak32, keyagg_cache)
* secp256k1_ec_pubkey_serialize(..., buf, ..., output_pk, ...)
* secp256k1_ec_pubkey_tweak_add(..., agg_pk, tweak32)
* secp256k1_ec_pubkey_serialize(..., buf2, ..., agg_pk, ...)
*
* This function is required if you want to _sign_ for a tweaked aggregate key.
* If you are only computing a public key but not intending to create a
* signature for it, use `secp256k1_ec_pubkey_tweak_add` instead.
*
* Returns: 0 if the arguments are invalid, 1 otherwise
* Args: ctx: pointer to a context object
* Out: output_pubkey: pointer to a public key to store the result. Will be set
* to an invalid value if this function returns 0. If you
* do not need it, this arg can be NULL.
* In/Out: keyagg_cache: pointer to a `musig_keyagg_cache` struct initialized by
* `musig_pubkey_agg`
* In: tweak32: pointer to a 32-byte tweak. The tweak is valid if it passes
* `secp256k1_ec_seckey_verify` and is not equal to the
* secret key corresponding to the public key represented
* by keyagg_cache or its negation. For uniformly random
* 32-byte arrays the chance of being invalid is
* negligible (around 1 in 2^128).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_musig_pubkey_ec_tweak_add(
const secp256k1_context *ctx,
secp256k1_pubkey *output_pubkey,
secp256k1_musig_keyagg_cache *keyagg_cache,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Apply x-only tweaking to a public key in a given keyagg_cache by adding the
* generator multiplied with `tweak32` to it. This is useful for creating
* Taproot outputs where `tweak32` is set to a TapTweak hash as defined in BIP
* 341.
*
* Callers are responsible for deriving `tweak32` in a way that does not reduce
* the security of MuSig (for example, by following Taproot BIP 341).
*
* The tweaking method is the same as `secp256k1_xonly_pubkey_tweak_add`. So in
* the following pseudocode xonly_pubkey_tweak_add_check (absent earlier
* failures) returns 1.
*
* secp256k1_musig_pubkey_agg(..., agg_pk, keyagg_cache, pubkeys, ...)
* secp256k1_musig_pubkey_xonly_tweak_add(..., output_pk, keyagg_cache, tweak32)
* secp256k1_xonly_pubkey_serialize(..., buf, output_pk)
* secp256k1_xonly_pubkey_tweak_add_check(..., buf, ..., agg_pk, tweak32)
*
* This function is required if you want to _sign_ for a tweaked aggregate key.
* If you are only computing a public key but not intending to create a
* signature for it, use `secp256k1_xonly_pubkey_tweak_add` instead.
*
* Returns: 0 if the arguments are invalid, 1 otherwise
* Args: ctx: pointer to a context object
* Out: output_pubkey: pointer to a public key to store the result. Will be set
* to an invalid value if this function returns 0. If you
* do not need it, this arg can be NULL.
* In/Out: keyagg_cache: pointer to a `musig_keyagg_cache` struct initialized by
* `musig_pubkey_agg`
* In: tweak32: pointer to a 32-byte tweak. The tweak is valid if it passes
* `secp256k1_ec_seckey_verify` and is not equal to the
* secret key corresponding to the public key represented
* by keyagg_cache or its negation. For uniformly random
* 32-byte arrays the chance of being invalid is
* negligible (around 1 in 2^128).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_musig_pubkey_xonly_tweak_add(
const secp256k1_context *ctx,
secp256k1_pubkey *output_pubkey,
secp256k1_musig_keyagg_cache *keyagg_cache,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Starts a signing session by generating a nonce
*
* This function outputs a secret nonce that will be required for signing and a
* corresponding public nonce that is intended to be sent to other signers.
*
* MuSig differs from regular Schnorr signing in that implementers _must_ take
* special care to not reuse a nonce. This can be ensured by following these rules:
*
* 1. Each call to this function must have a UNIQUE session_secrand32 that must
* NOT BE REUSED in subsequent calls to this function and must be KEPT
* SECRET (even from other signers).
* 2. If you already know the seckey, message or aggregate public key
* cache, they can be optionally provided to derive the nonce and increase
* misuse-resistance. The extra_input32 argument can be used to provide
* additional data that does not repeat in normal scenarios, such as the
* current time.
* 3. Avoid copying (or serializing) the secnonce. This reduces the possibility
* that it is used more than once for signing.
*
* If you don't have access to good randomness for session_secrand32, but you
* have access to a non-repeating counter, then see
* secp256k1_musig_nonce_gen_counter.
*
* Remember that nonce reuse will leak the secret key!
* Note that using the same seckey for multiple MuSig sessions is fine.
*
* Returns: 0 if the arguments are invalid and 1 otherwise
* Args: ctx: pointer to a context object (not secp256k1_context_static)
* Out: secnonce: pointer to a structure to store the secret nonce
* pubnonce: pointer to a structure to store the public nonce
* In/Out:
* session_secrand32: a 32-byte session_secrand32 as explained above. Must be unique to this
* call to secp256k1_musig_nonce_gen and must be uniformly
* random. If the function call is successful, the
* session_secrand32 buffer is invalidated to prevent reuse.
* In:
* seckey: the 32-byte secret key that will later be used for signing, if
* already known (can be NULL)
* pubkey: public key of the signer creating the nonce. The secnonce
* output of this function cannot be used to sign for any
* other public key. While the public key should correspond
* to the provided seckey, a mismatch will not cause the
* function to return 0.
* msg32: the 32-byte message that will later be signed, if already known
* (can be NULL)
* keyagg_cache: pointer to the keyagg_cache that was used to create the aggregate
* (and potentially tweaked) public key if already known
* (can be NULL)
* extra_input32: an optional 32-byte array that is input to the nonce
* derivation function (can be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_musig_nonce_gen(
const secp256k1_context *ctx,
secp256k1_musig_secnonce *secnonce,
secp256k1_musig_pubnonce *pubnonce,
unsigned char *session_secrand32,
const unsigned char *seckey,
const secp256k1_pubkey *pubkey,
const unsigned char *msg32,
const secp256k1_musig_keyagg_cache *keyagg_cache,
const unsigned char *extra_input32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(6);
/** Alternative way to generate a nonce and start a signing session
*
* This function outputs a secret nonce that will be required for signing and a
* corresponding public nonce that is intended to be sent to other signers.
*
* This function differs from `secp256k1_musig_nonce_gen` by accepting a
* non-repeating counter value instead of a secret random value. This requires
* that a secret key is provided to `secp256k1_musig_nonce_gen_counter`
* (through the keypair argument), as opposed to `secp256k1_musig_nonce_gen`
* where the seckey argument is optional.
*
* MuSig differs from regular Schnorr signing in that implementers _must_ take
* special care to not reuse a nonce. This can be ensured by following these rules:
*
* 1. The nonrepeating_cnt argument must be a counter value that never repeats,
* i.e., you must never call `secp256k1_musig_nonce_gen_counter` twice with
* the same keypair and nonrepeating_cnt value. For example, this implies
* that if the same keypair is used with `secp256k1_musig_nonce_gen_counter`
* on multiple devices, none of the devices should have the same counter
* value as any other device.
* 2. If the seckey, message or aggregate public key cache is already available
* at this stage, any of these can be optionally provided, in which case
* they will be used in the derivation of the nonce and increase
* misuse-resistance. The extra_input32 argument can be used to provide
* additional data that does not repeat in normal scenarios, such as the
* current time.
* 3. Avoid copying (or serializing) the secnonce. This reduces the possibility
* that it is used more than once for signing.
*
* Remember that nonce reuse will leak the secret key!
* Note that using the same keypair for multiple MuSig sessions is fine.
*
* Returns: 0 if the arguments are invalid and 1 otherwise
* Args: ctx: pointer to a context object (not secp256k1_context_static)
* Out: secnonce: pointer to a structure to store the secret nonce
* pubnonce: pointer to a structure to store the public nonce
* In:
* nonrepeating_cnt: the value of a counter as explained above. Must be
* unique to this call to secp256k1_musig_nonce_gen.
* keypair: keypair of the signer creating the nonce. The secnonce
* output of this function cannot be used to sign for any
* other keypair.
* msg32: the 32-byte message that will later be signed, if already known
* (can be NULL)
* keyagg_cache: pointer to the keyagg_cache that was used to create the aggregate
* (and potentially tweaked) public key if already known
* (can be NULL)
* extra_input32: an optional 32-byte array that is input to the nonce
* derivation function (can be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_musig_nonce_gen_counter(
const secp256k1_context *ctx,
secp256k1_musig_secnonce *secnonce,
secp256k1_musig_pubnonce *pubnonce,
uint64_t nonrepeating_cnt,
const secp256k1_keypair *keypair,
const unsigned char *msg32,
const secp256k1_musig_keyagg_cache *keyagg_cache,
const unsigned char *extra_input32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(5);
/** Aggregates the nonces of all signers into a single nonce
*
* This can be done by an untrusted party to reduce the communication
* between signers. Instead of everyone sending nonces to everyone else, there
* can be one party receiving all nonces, aggregating the nonces with this
* function and then sending only the aggregate nonce back to the signers.
*
* If the aggregator does not compute the aggregate nonce correctly, the final
* signature will be invalid.
*
* Returns: 0 if the arguments are invalid, 1 otherwise
* Args: ctx: pointer to a context object
* Out: aggnonce: pointer to an aggregate public nonce object for
* musig_nonce_process
* In: pubnonces: array of pointers to public nonces sent by the
* signers
* n_pubnonces: number of elements in the pubnonces array. Must be
* greater than 0.
*/
SECP256K1_API int secp256k1_musig_nonce_agg(
const secp256k1_context *ctx,
secp256k1_musig_aggnonce *aggnonce,
const secp256k1_musig_pubnonce * const *pubnonces,
size_t n_pubnonces
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Takes the aggregate nonce and creates a session that is required for signing
* and verification of partial signatures.
*
* Returns: 0 if the arguments are invalid, 1 otherwise
* Args: ctx: pointer to a context object
* Out: session: pointer to a struct to store the session
* In: aggnonce: pointer to an aggregate public nonce object that is the
* output of musig_nonce_agg
* msg32: the 32-byte message to sign
* keyagg_cache: pointer to the keyagg_cache that was used to create the
* aggregate (and potentially tweaked) pubkey
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_musig_nonce_process(
const secp256k1_context *ctx,
secp256k1_musig_session *session,
const secp256k1_musig_aggnonce *aggnonce,
const unsigned char *msg32,
const secp256k1_musig_keyagg_cache *keyagg_cache
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5);
/** Produces a partial signature
*
* This function overwrites the given secnonce with zeros and will abort if given a
* secnonce that is all zeros. This is a best effort attempt to protect against nonce
* reuse. However, this is of course easily defeated if the secnonce has been
* copied (or serialized). Remember that nonce reuse will leak the secret key!
*
* For signing to succeed, the secnonce provided to this function must have
* been generated for the provided keypair. This means that when signing for a
* keypair consisting of a seckey and pubkey, the secnonce must have been
* created by calling musig_nonce_gen with that pubkey. Otherwise, the
* illegal_callback is called.
*
* This function does not verify the output partial signature, deviating from
* the BIP 327 specification. It is recommended to verify the output partial
* signature with `secp256k1_musig_partial_sig_verify` to prevent random or
* adversarially provoked computation errors.
*
* Returns: 0 if the arguments are invalid or the provided secnonce has already
* been used for signing, 1 otherwise
* Args: ctx: pointer to a context object
* Out: partial_sig: pointer to struct to store the partial signature
* In/Out: secnonce: pointer to the secnonce struct created in
* musig_nonce_gen that has been never used in a
* partial_sign call before and has been created for the
* keypair
* In: keypair: pointer to keypair to sign the message with
* keyagg_cache: pointer to the keyagg_cache that was output when the
* aggregate public key for this session
* session: pointer to the session that was created with
* musig_nonce_process
*/
SECP256K1_API int secp256k1_musig_partial_sign(
const secp256k1_context *ctx,
secp256k1_musig_partial_sig *partial_sig,
secp256k1_musig_secnonce *secnonce,
const secp256k1_keypair *keypair,
const secp256k1_musig_keyagg_cache *keyagg_cache,
const secp256k1_musig_session *session
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6);
/** Verifies an individual signer's partial signature
*
* The signature is verified for a specific signing session. In order to avoid
* accidentally verifying a signature from a different or non-existing signing
* session, you must ensure the following:
* 1. The `keyagg_cache` argument is identical to the one used to create the
* `session` with `musig_nonce_process`.
* 2. The `pubkey` argument must be identical to the one sent by the signer
* before aggregating it with `musig_pubkey_agg` to create the
* `keyagg_cache`.
* 3. The `pubnonce` argument must be identical to the one sent by the signer
* before aggregating it with `musig_nonce_agg` and using the result to
* create the `session` with `musig_nonce_process`.
*
* It is not required to call this function in regular MuSig sessions, because
* if any partial signature does not verify, the final signature will not
* verify either, so the problem will be caught. However, this function
* provides the ability to identify which specific partial signature fails
* verification.
*
* Returns: 0 if the arguments are invalid or the partial signature does not
* verify, 1 otherwise
* Args ctx: pointer to a context object
* In: partial_sig: pointer to partial signature to verify, sent by
* the signer associated with `pubnonce` and `pubkey`
* pubnonce: public nonce of the signer in the signing session
* pubkey: public key of the signer in the signing session
* keyagg_cache: pointer to the keyagg_cache that was output when the
* aggregate public key for this signing session
* session: pointer to the session that was created with
* `musig_nonce_process`
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_musig_partial_sig_verify(
const secp256k1_context *ctx,
const secp256k1_musig_partial_sig *partial_sig,
const secp256k1_musig_pubnonce *pubnonce,
const secp256k1_pubkey *pubkey,
const secp256k1_musig_keyagg_cache *keyagg_cache,
const secp256k1_musig_session *session
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6);
/** Aggregates partial signatures
*
* Returns: 0 if the arguments are invalid, 1 otherwise (which does NOT mean
* the resulting signature verifies).
* Args: ctx: pointer to a context object
* Out: sig64: complete (but possibly invalid) Schnorr signature
* In: session: pointer to the session that was created with
* musig_nonce_process
* partial_sigs: array of pointers to partial signatures to aggregate
* n_sigs: number of elements in the partial_sigs array. Must be
* greater than 0.
*/
SECP256K1_API int secp256k1_musig_partial_sig_agg(
const secp256k1_context *ctx,
unsigned char *sig64,
const secp256k1_musig_session *session,
const secp256k1_musig_partial_sig * const *partial_sigs,
size_t n_sigs
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,134 @@
#ifndef SECP256K1_PREALLOCATED_H
#define SECP256K1_PREALLOCATED_H
#include "secp256k1.h"
#ifdef __cplusplus
extern "C" {
#endif
/* The module provided by this header file is intended for settings in which it
* is not possible or desirable to rely on dynamic memory allocation. It provides
* functions for creating, cloning, and destroying secp256k1 context objects in a
* contiguous fixed-size block of memory provided by the caller.
*
* Context objects created by functions in this module can be used like contexts
* objects created by functions in secp256k1.h, i.e., they can be passed to any
* API function that expects a context object (see secp256k1.h for details). The
* only exception is that context objects created by functions in this module
* must be destroyed using secp256k1_context_preallocated_destroy (in this
* module) instead of secp256k1_context_destroy (in secp256k1.h).
*
* It is guaranteed that functions in this module will not call malloc or its
* friends realloc, calloc, and free.
*/
/** Determine the memory size of a secp256k1 context object to be created in
* caller-provided memory.
*
* The purpose of this function is to determine how much memory must be provided
* to secp256k1_context_preallocated_create.
*
* Returns: the required size of the caller-provided memory block
* In: flags: which parts of the context to initialize.
*/
SECP256K1_API size_t secp256k1_context_preallocated_size(
unsigned int flags
) SECP256K1_WARN_UNUSED_RESULT;
/** Create a secp256k1 context object in caller-provided memory.
*
* The caller must provide a pointer to a rewritable contiguous block of memory
* of size at least secp256k1_context_preallocated_size(flags) bytes, suitably
* aligned to hold an object of any type.
*
* The block of memory is exclusively owned by the created context object during
* the lifetime of this context object, which begins with the call to this
* function and ends when a call to secp256k1_context_preallocated_destroy
* (which destroys the context object again) returns. During the lifetime of the
* context object, the caller is obligated not to access this block of memory,
* i.e., the caller may not read or write the memory, e.g., by copying the memory
* contents to a different location or trying to create a second context object
* in the memory. In simpler words, the prealloc pointer (or any pointer derived
* from it) should not be used during the lifetime of the context object.
*
* Returns: pointer to newly created context object.
* In: prealloc: pointer to a rewritable contiguous block of memory of
* size at least secp256k1_context_preallocated_size(flags)
* bytes, as detailed above.
* flags: which parts of the context to initialize.
*
* See secp256k1_context_create (in secp256k1.h) for further details.
*
* See also secp256k1_context_randomize (in secp256k1.h)
* and secp256k1_context_preallocated_destroy.
*/
SECP256K1_API secp256k1_context *secp256k1_context_preallocated_create(
void *prealloc,
unsigned int flags
) SECP256K1_ARG_NONNULL(1) SECP256K1_WARN_UNUSED_RESULT;
/** Determine the memory size of a secp256k1 context object to be copied into
* caller-provided memory.
*
* Returns: the required size of the caller-provided memory block.
* In: ctx: pointer to a context to copy.
*/
SECP256K1_API size_t secp256k1_context_preallocated_clone_size(
const secp256k1_context *ctx
) SECP256K1_ARG_NONNULL(1) SECP256K1_WARN_UNUSED_RESULT;
/** Copy a secp256k1 context object into caller-provided memory.
*
* The caller must provide a pointer to a rewritable contiguous block of memory
* of size at least secp256k1_context_preallocated_size(flags) bytes, suitably
* aligned to hold an object of any type.
*
* The block of memory is exclusively owned by the created context object during
* the lifetime of this context object, see the description of
* secp256k1_context_preallocated_create for details.
*
* Cloning secp256k1_context_static is not possible, and should not be emulated by
* the caller (e.g., using memcpy). Create a new context instead.
*
* Returns: pointer to a newly created context object.
* Args: ctx: pointer to a context to copy (not secp256k1_context_static).
* In: prealloc: pointer to a rewritable contiguous block of memory of
* size at least secp256k1_context_preallocated_size(flags)
* bytes, as detailed above.
*/
SECP256K1_API secp256k1_context *secp256k1_context_preallocated_clone(
const secp256k1_context *ctx,
void *prealloc
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_WARN_UNUSED_RESULT;
/** Destroy a secp256k1 context object that has been created in
* caller-provided memory.
*
* The context pointer may not be used afterwards.
*
* The context to destroy must have been created using
* secp256k1_context_preallocated_create or secp256k1_context_preallocated_clone.
* If the context has instead been created using secp256k1_context_create or
* secp256k1_context_clone, the behaviour is undefined. In that case,
* secp256k1_context_destroy must be used instead.
*
* If required, it is the responsibility of the caller to deallocate the block
* of memory properly after this function returns, e.g., by calling free on the
* preallocated pointer given to secp256k1_context_preallocated_create or
* secp256k1_context_preallocated_clone.
*
* Args: ctx: pointer to a context to destroy, constructed using
* secp256k1_context_preallocated_create or
* secp256k1_context_preallocated_clone
* (i.e., not secp256k1_context_static).
*/
SECP256K1_API void secp256k1_context_preallocated_destroy(
secp256k1_context *ctx
) SECP256K1_ARG_NONNULL(1);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_PREALLOCATED_H */

View File

@ -0,0 +1,113 @@
#ifndef SECP256K1_RECOVERY_H
#define SECP256K1_RECOVERY_H
#include "secp256k1.h"
#ifdef __cplusplus
extern "C" {
#endif
/** Opaque data structure that holds a parsed ECDSA signature,
* supporting pubkey recovery.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 65 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage or transmission, use
* the secp256k1_ecdsa_signature_serialize_* and
* secp256k1_ecdsa_signature_parse_* functions.
*
* Furthermore, it is guaranteed that identical signatures (including their
* recoverability) will have identical representation, so they can be
* memcmp'ed.
*/
typedef struct secp256k1_ecdsa_recoverable_signature {
unsigned char data[65];
} secp256k1_ecdsa_recoverable_signature;
/** Parse a compact ECDSA signature (64 bytes + recovery id).
*
* Returns: 1 when the signature could be parsed, 0 otherwise
* Args: ctx: pointer to a context object
* Out: sig: pointer to a signature object
* In: input64: pointer to a 64-byte compact signature
* recid: the recovery id (0, 1, 2 or 3)
*/
SECP256K1_API int secp256k1_ecdsa_recoverable_signature_parse_compact(
const secp256k1_context *ctx,
secp256k1_ecdsa_recoverable_signature *sig,
const unsigned char *input64,
int recid
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Convert a recoverable signature into a normal signature.
*
* Returns: 1
* Args: ctx: pointer to a context object.
* Out: sig: pointer to a normal signature.
* In: sigin: pointer to a recoverable signature.
*/
SECP256K1_API int secp256k1_ecdsa_recoverable_signature_convert(
const secp256k1_context *ctx,
secp256k1_ecdsa_signature *sig,
const secp256k1_ecdsa_recoverable_signature *sigin
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize an ECDSA signature in compact format (64 bytes + recovery id).
*
* Returns: 1
* Args: ctx: pointer to a context object.
* Out: output64: pointer to a 64-byte array of the compact signature.
* recid: pointer to an integer to hold the recovery id.
* In: sig: pointer to an initialized signature object.
*/
SECP256K1_API int secp256k1_ecdsa_recoverable_signature_serialize_compact(
const secp256k1_context *ctx,
unsigned char *output64,
int *recid,
const secp256k1_ecdsa_recoverable_signature *sig
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Create a recoverable ECDSA signature.
*
* Returns: 1: signature created
* 0: the nonce generation function failed, or the secret key was invalid.
* Args: ctx: pointer to a context object (not secp256k1_context_static).
* Out: sig: pointer to an array where the signature will be placed.
* In: msghash32: the 32-byte message hash being signed.
* seckey: pointer to a 32-byte secret key.
* noncefp: pointer to a nonce generation function. If NULL,
* secp256k1_nonce_function_default is used.
* ndata: pointer to arbitrary data used by the nonce generation function
* (can be NULL for secp256k1_nonce_function_default).
*/
SECP256K1_API int secp256k1_ecdsa_sign_recoverable(
const secp256k1_context *ctx,
secp256k1_ecdsa_recoverable_signature *sig,
const unsigned char *msghash32,
const unsigned char *seckey,
secp256k1_nonce_function noncefp,
const void *ndata
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Recover an ECDSA public key from a signature.
*
* Returns: 1: public key successfully recovered (which guarantees a correct signature).
* 0: otherwise.
* Args: ctx: pointer to a context object.
* Out: pubkey: pointer to the recovered public key.
* In: sig: pointer to initialized signature that supports pubkey recovery.
* msghash32: the 32-byte message hash assumed to be signed.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_recover(
const secp256k1_context *ctx,
secp256k1_pubkey *pubkey,
const secp256k1_ecdsa_recoverable_signature *sig,
const unsigned char *msghash32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_RECOVERY_H */

View File

@ -0,0 +1,190 @@
#ifndef SECP256K1_SCHNORRSIG_H
#define SECP256K1_SCHNORRSIG_H
#include "secp256k1.h"
#include "secp256k1_extrakeys.h"
#ifdef __cplusplus
extern "C" {
#endif
/** This module implements a variant of Schnorr signatures compliant with
* Bitcoin Improvement Proposal 340 "Schnorr Signatures for secp256k1"
* (https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki).
*/
/** A pointer to a function to deterministically generate a nonce.
*
* Same as secp256k1_nonce function with the exception of accepting an
* additional pubkey argument and not requiring an attempt argument. The pubkey
* argument can protect signature schemes with key-prefixed challenge hash
* inputs against reusing the nonce when signing with the wrong precomputed
* pubkey.
*
* Returns: 1 if a nonce was successfully generated. 0 will cause signing to
* return an error.
* Out: nonce32: pointer to a 32-byte array to be filled by the function
* In: msg: the message being verified. Is NULL if and only if msglen
* is 0.
* msglen: the length of the message
* key32: pointer to a 32-byte secret key (will not be NULL)
* xonly_pk32: the 32-byte serialized xonly pubkey corresponding to key32
* (will not be NULL)
* algo: pointer to an array describing the signature
* algorithm (will not be NULL)
* algolen: the length of the algo array
* data: arbitrary data pointer that is passed through
*
* Except for test cases, this function should compute some cryptographic hash of
* the message, the key, the pubkey, the algorithm description, and data.
*/
typedef int (*secp256k1_nonce_function_hardened)(
unsigned char *nonce32,
const unsigned char *msg,
size_t msglen,
const unsigned char *key32,
const unsigned char *xonly_pk32,
const unsigned char *algo,
size_t algolen,
void *data
);
/** An implementation of the nonce generation function as defined in Bitcoin
* Improvement Proposal 340 "Schnorr Signatures for secp256k1"
* (https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki).
*
* If a data pointer is passed, it is assumed to be a pointer to 32 bytes of
* auxiliary random data as defined in BIP-340. If the data pointer is NULL,
* the nonce derivation procedure follows BIP-340 by setting the auxiliary
* random data to zero. The algo argument must be non-NULL, otherwise the
* function will fail and return 0. The hash will be tagged with algo.
* Therefore, to create BIP-340 compliant signatures, algo must be set to
* "BIP0340/nonce" and algolen to 13.
*/
SECP256K1_API const secp256k1_nonce_function_hardened secp256k1_nonce_function_bip340;
/** Data structure that contains additional arguments for schnorrsig_sign_custom.
*
* A schnorrsig_extraparams structure object can be initialized correctly by
* setting it to SECP256K1_SCHNORRSIG_EXTRAPARAMS_INIT.
*
* Members:
* magic: set to SECP256K1_SCHNORRSIG_EXTRAPARAMS_MAGIC at initialization
* and has no other function than making sure the object is
* initialized.
* noncefp: pointer to a nonce generation function. If NULL,
* secp256k1_nonce_function_bip340 is used
* ndata: pointer to arbitrary data used by the nonce generation function
* (can be NULL). If it is non-NULL and
* secp256k1_nonce_function_bip340 is used, then ndata must be a
* pointer to 32-byte auxiliary randomness as per BIP-340.
*/
typedef struct secp256k1_schnorrsig_extraparams {
unsigned char magic[4];
secp256k1_nonce_function_hardened noncefp;
void *ndata;
} secp256k1_schnorrsig_extraparams;
#define SECP256K1_SCHNORRSIG_EXTRAPARAMS_MAGIC { 0xda, 0x6f, 0xb3, 0x8c }
#define SECP256K1_SCHNORRSIG_EXTRAPARAMS_INIT {\
SECP256K1_SCHNORRSIG_EXTRAPARAMS_MAGIC,\
NULL,\
NULL\
}
/** Create a Schnorr signature.
*
* Does _not_ strictly follow BIP-340 because it does not verify the resulting
* signature. Instead, you can manually use secp256k1_schnorrsig_verify and
* abort if it fails.
*
* This function only signs 32-byte messages. If you have messages of a
* different size (or the same size but without a context-specific tag
* prefix), it is recommended to create a 32-byte message hash with
* secp256k1_tagged_sha256 and then sign the hash. Tagged hashing allows
* providing an context-specific tag for domain separation. This prevents
* signatures from being valid in multiple contexts by accident.
*
* Returns 1 on success, 0 on failure.
* Args: ctx: pointer to a context object (not secp256k1_context_static).
* Out: sig64: pointer to a 64-byte array to store the serialized signature.
* In: msg32: the 32-byte message being signed.
* keypair: pointer to an initialized keypair.
* aux_rand32: 32 bytes of fresh randomness. While recommended to provide
* this, it is only supplemental to security and can be NULL. A
* NULL argument is treated the same as an all-zero one. See
* BIP-340 "Default Signing" for a full explanation of this
* argument and for guidance if randomness is expensive.
*/
SECP256K1_API int secp256k1_schnorrsig_sign32(
const secp256k1_context *ctx,
unsigned char *sig64,
const unsigned char *msg32,
const secp256k1_keypair *keypair,
const unsigned char *aux_rand32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Same as secp256k1_schnorrsig_sign32, but DEPRECATED. Will be removed in
* future versions. */
SECP256K1_API int secp256k1_schnorrsig_sign(
const secp256k1_context *ctx,
unsigned char *sig64,
const unsigned char *msg32,
const secp256k1_keypair *keypair,
const unsigned char *aux_rand32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
SECP256K1_DEPRECATED("Use secp256k1_schnorrsig_sign32 instead");
/** Create a Schnorr signature with a more flexible API.
*
* Same arguments as secp256k1_schnorrsig_sign except that it allows signing
* variable length messages and accepts a pointer to an extraparams object that
* allows customizing signing by passing additional arguments.
*
* Equivalent to secp256k1_schnorrsig_sign32(..., aux_rand32) if msglen is 32
* and extraparams is initialized as follows:
* ```
* secp256k1_schnorrsig_extraparams extraparams = SECP256K1_SCHNORRSIG_EXTRAPARAMS_INIT;
* extraparams.ndata = (unsigned char*)aux_rand32;
* ```
*
* Returns 1 on success, 0 on failure.
* Args: ctx: pointer to a context object (not secp256k1_context_static).
* Out: sig64: pointer to a 64-byte array to store the serialized signature.
* In: msg: the message being signed. Can only be NULL if msglen is 0.
* msglen: length of the message.
* keypair: pointer to an initialized keypair.
* extraparams: pointer to an extraparams object (can be NULL).
*/
SECP256K1_API int secp256k1_schnorrsig_sign_custom(
const secp256k1_context *ctx,
unsigned char *sig64,
const unsigned char *msg,
size_t msglen,
const secp256k1_keypair *keypair,
secp256k1_schnorrsig_extraparams *extraparams
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(5);
/** Verify a Schnorr signature.
*
* Returns: 1: correct signature
* 0: incorrect signature
* Args: ctx: pointer to a context object.
* In: sig64: pointer to the 64-byte signature to verify.
* msg: the message being verified. Can only be NULL if msglen is 0.
* msglen: length of the message
* pubkey: pointer to an x-only public key to verify with
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorrsig_verify(
const secp256k1_context *ctx,
const unsigned char *sig64,
const unsigned char *msg,
size_t msglen,
const secp256k1_xonly_pubkey *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(5);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_SCHNORRSIG_H */

View File

@ -0,0 +1,12 @@
prefix=@prefix@
exec_prefix=@exec_prefix@
libdir=@libdir@
includedir=@includedir@
Name: libsecp256k1
Description: Optimized C library for EC operations on curve secp256k1
URL: https://github.com/bitcoin-core/secp256k1
Version: @PACKAGE_VERSION@
Cflags: -I${includedir}
Libs: -L${libdir} -lsecp256k1

View File

@ -0,0 +1,156 @@
load("secp256k1_params.sage")
MAX_ORDER = 1000
# Set of (curve) orders we have encountered so far.
orders_done = set()
# Map from (subgroup) orders to [b, int(gen.x), int(gen.y), gen, lambda] for those subgroups.
solutions = {}
# Iterate over curves of the form y^2 = x^3 + B.
for b in range(1, P):
# There are only 6 curves (up to isomorphism) of the form y^2 = x^3 + B. Stop once we have tried all.
if len(orders_done) == 6:
break
E = EllipticCurve(F, [0, b])
print("Analyzing curve y^2 = x^3 + %i" % b)
n = E.order()
# Skip curves with an order we've already tried
if n in orders_done:
print("- Isomorphic to earlier curve")
print()
continue
orders_done.add(n)
# Skip curves isomorphic to the real secp256k1
if n.is_pseudoprime():
assert E.is_isomorphic(C)
print("- Isomorphic to secp256k1")
print()
continue
print("- Finding prime subgroups")
# Map from group_order to a set of independent generators for that order.
curve_gens = {}
for g in E.gens():
# Find what prime subgroups of group generated by g exist.
g_order = g.order()
for f, _ in g.order().factor():
# Skip subgroups that have bad size.
if f < 4:
print(f" - Subgroup of size {f}: too small")
continue
if f > MAX_ORDER:
print(f" - Subgroup of size {f}: too large")
continue
# Construct a generator for that subgroup.
gen = g * (g_order // f)
assert(gen.order() == f)
# Add to set the minimal multiple of gen.
curve_gens.setdefault(f, set()).add(min([j*gen for j in range(1, f)]))
print(f" - Subgroup of size {f}: ok")
for f in sorted(curve_gens.keys()):
print(f"- Constructing group of order {f}")
cbrts = sorted([int(c) for c in Integers(f)(1).nth_root(3, all=true) if c != 1])
gens = list(curve_gens[f])
sol_count = 0
no_endo_count = 0
# Consider all non-zero linear combinations of the independent generators.
for j in range(1, f**len(gens)):
gen = sum(gens[k] * ((j // f**k) % f) for k in range(len(gens)))
assert not gen.is_zero()
assert (f*gen).is_zero()
# Find lambda for endomorphism. Skip if none can be found.
lam = None
for l in cbrts:
if l*gen == E(BETA*gen[0], gen[1]):
lam = l
break
if lam is None:
no_endo_count += 1
else:
sol_count += 1
solutions.setdefault(f, []).append((b, int(gen[0]), int(gen[1]), gen, lam))
print(f" - Found {sol_count} generators (plus {no_endo_count} without endomorphism)")
print()
def output_generator(g, name):
print(f"#define {name} SECP256K1_GE_CONST(\\")
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x,\\" % tuple((int(g[0]) >> (32 * (7 - i))) & 0xffffffff for i in range(4)))
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x,\\" % tuple((int(g[0]) >> (32 * (7 - i))) & 0xffffffff for i in range(4, 8)))
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x,\\" % tuple((int(g[1]) >> (32 * (7 - i))) & 0xffffffff for i in range(4)))
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x\\" % tuple((int(g[1]) >> (32 * (7 - i))) & 0xffffffff for i in range(4, 8)))
print(")")
def output_b(b):
print(f"#define SECP256K1_B {int(b)}")
print()
print("To be put in src/group_impl.h:")
print()
print("/* Begin of section generated by sage/gen_exhaustive_groups.sage. */")
for f in sorted(solutions.keys()):
# Use as generator/2 the one with lowest b, and lowest (x, y) generator (interpreted as non-negative integers).
b, _, _, HALF_G, lam = min(solutions[f])
output_generator(2 * HALF_G, f"SECP256K1_G_ORDER_{f}")
print("/** Generator for secp256k1, value 'g' defined in")
print(" * \"Standards for Efficient Cryptography\" (SEC2) 2.7.1.")
print(" */")
output_generator(G, "SECP256K1_G")
print("/* These exhaustive group test orders and generators are chosen such that:")
print(" * - The field size is equal to that of secp256k1, so field code is the same.")
print(" * - The curve equation is of the form y^2=x^3+B for some small constant B.")
print(" * - The subgroup has a generator 2*P, where P.x is as small as possible.")
print(f" * - The subgroup has size less than {MAX_ORDER} to permit exhaustive testing.")
print(" * - The subgroup admits an endomorphism of the form lambda*(x,y) == (beta*x,y).")
print(" */")
print("#if defined(EXHAUSTIVE_TEST_ORDER)")
first = True
for f in sorted(solutions.keys()):
b, _, _, _, lam = min(solutions[f])
print(f"# {'if' if first else 'elif'} EXHAUSTIVE_TEST_ORDER == {f}")
first = False
print()
print(f"static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G_ORDER_{f};")
output_b(b)
print()
print("# else")
print("# error No known generator for the specified exhaustive test group order.")
print("# endif")
print("#else")
print()
print("static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G;")
output_b(7)
print()
print("#endif")
print("/* End of section generated by sage/gen_exhaustive_groups.sage. */")
print()
print()
print("To be put in src/scalar_impl.h:")
print()
print("/* Begin of section generated by sage/gen_exhaustive_groups.sage. */")
first = True
for f in sorted(solutions.keys()):
_, _, _, _, lam = min(solutions[f])
print("# %s EXHAUSTIVE_TEST_ORDER == %i" % ("if" if first else "elif", f))
first = False
print("# define EXHAUSTIVE_TEST_LAMBDA %i" % lam)
print("# else")
print("# error No known lambda for the specified exhaustive test group order.")
print("# endif")
print("/* End of section generated by sage/gen_exhaustive_groups.sage. */")

View File

@ -0,0 +1,114 @@
""" Generates the constants used in secp256k1_scalar_split_lambda.
See the comments for secp256k1_scalar_split_lambda in src/scalar_impl.h for detailed explanations.
"""
load("secp256k1_params.sage")
def inf_norm(v):
"""Returns the infinity norm of a vector."""
return max(map(abs, v))
def gauss_reduction(i1, i2):
v1, v2 = i1.copy(), i2.copy()
while True:
if inf_norm(v2) < inf_norm(v1):
v1, v2 = v2, v1
# This is essentially
# m = round((v1[0]*v2[0] + v1[1]*v2[1]) / (inf_norm(v1)**2))
# (rounding to the nearest integer) without relying on floating point arithmetic.
m = ((v1[0]*v2[0] + v1[1]*v2[1]) + (inf_norm(v1)**2) // 2) // (inf_norm(v1)**2)
if m == 0:
return v1, v2
v2[0] -= m*v1[0]
v2[1] -= m*v1[1]
def find_split_constants_gauss():
"""Find constants for secp256k1_scalar_split_lamdba using gauss reduction."""
(v11, v12), (v21, v22) = gauss_reduction([0, N], [1, int(LAMBDA)])
# We use related vectors in secp256k1_scalar_split_lambda.
A1, B1 = -v21, -v11
A2, B2 = v22, -v21
return A1, B1, A2, B2
def find_split_constants_explicit_tof():
"""Find constants for secp256k1_scalar_split_lamdba using the trace of Frobenius.
See Benjamin Smith: "Easy scalar decompositions for efficient scalar multiplication on
elliptic curves and genus 2 Jacobians" (https://eprint.iacr.org/2013/672), Example 2
"""
assert P % 3 == 1 # The paper says P % 3 == 2 but that appears to be a mistake, see [10].
assert C.j_invariant() == 0
t = C.trace_of_frobenius()
c = Integer(sqrt((4*P - t**2)/3))
A1 = Integer((t - c)/2 - 1)
B1 = c
A2 = Integer((t + c)/2 - 1)
B2 = Integer(1 - (t - c)/2)
# We use a negated b values in secp256k1_scalar_split_lambda.
B1, B2 = -B1, -B2
return A1, B1, A2, B2
A1, B1, A2, B2 = find_split_constants_explicit_tof()
# For extra fun, use an independent method to recompute the constants.
assert (A1, B1, A2, B2) == find_split_constants_gauss()
# PHI : Z[l] -> Z_n where phi(a + b*l) == a + b*lambda mod n.
def PHI(a,b):
return Z(a + LAMBDA*b)
# Check that (A1, B1) and (A2, B2) are in the kernel of PHI.
assert PHI(A1, B1) == Z(0)
assert PHI(A2, B2) == Z(0)
# Check that the parallelogram generated by (A1, A2) and (B1, B2)
# is a fundamental domain by containing exactly N points.
# Since the LHS is the determinant and N != 0, this also checks that
# (A1, A2) and (B1, B2) are linearly independent. By the previous
# assertions, (A1, A2) and (B1, B2) are a basis of the kernel.
assert A1*B2 - B1*A2 == N
# Check that their components are short enough.
assert (A1 + A2)/2 < sqrt(N)
assert B1 < sqrt(N)
assert B2 < sqrt(N)
G1 = round((2**384)*B2/N)
G2 = round((2**384)*(-B1)/N)
def rnddiv2(v):
if v & 1:
v += 1
return v >> 1
def scalar_lambda_split(k):
"""Equivalent to secp256k1_scalar_lambda_split()."""
c1 = rnddiv2((k * G1) >> 383)
c2 = rnddiv2((k * G2) >> 383)
c1 = (c1 * -B1) % N
c2 = (c2 * -B2) % N
r2 = (c1 + c2) % N
r1 = (k + r2 * -LAMBDA) % N
return (r1, r2)
# The result of scalar_lambda_split can depend on the representation of k (mod n).
SPECIAL = (2**383) // G2 + 1
assert scalar_lambda_split(SPECIAL) != scalar_lambda_split(SPECIAL + N)
print(' A1 =', hex(A1))
print(' -B1 =', hex(-B1))
print(' A2 =', hex(A2))
print(' -B2 =', hex(-B2))
print(' =', hex(Z(-B2)))
print(' -LAMBDA =', hex(-LAMBDA))
print(' G1 =', hex(G1))
print(' G2 =', hex(G2))

View File

@ -0,0 +1,353 @@
# This code supports verifying group implementations which have branches
# or conditional statements (like cmovs), by allowing each execution path
# to independently set assumptions on input or intermediary variables.
#
# The general approach is:
# * A constraint is a tuple of two sets of symbolic expressions:
# the first of which are required to evaluate to zero, the second of which
# are required to evaluate to nonzero.
# - A constraint is said to be conflicting if any of its nonzero expressions
# is in the ideal with basis the zero expressions (in other words: when the
# zero expressions imply that one of the nonzero expressions are zero).
# * There is a list of laws that describe the intended behaviour, including
# laws for addition and doubling. Each law is called with the symbolic point
# coordinates as arguments, and returns:
# - A constraint describing the assumptions under which it is applicable,
# called "assumeLaw"
# - A constraint describing the requirements of the law, called "require"
# * Implementations are transliterated into functions that operate as well on
# algebraic input points, and are called once per combination of branches
# executed. Each execution returns:
# - A constraint describing the assumptions this implementation requires
# (such as Z1=1), called "assumeFormula"
# - A constraint describing the assumptions this specific branch requires,
# but which is by construction guaranteed to cover the entire space by
# merging the results from all branches, called "assumeBranch"
# - The result of the computation
# * All combinations of laws with implementation branches are tried, and:
# - If the combination of assumeLaw, assumeFormula, and assumeBranch results
# in a conflict, it means this law does not apply to this branch, and it is
# skipped.
# - For others, we try to prove the require constraints hold, assuming the
# information in assumeLaw + assumeFormula + assumeBranch, and if this does
# not succeed, we fail.
# + To prove an expression is zero, we check whether it belongs to the
# ideal with the assumed zero expressions as basis. This test is exact.
# + To prove an expression is nonzero, we check whether each of its
# factors is contained in the set of nonzero assumptions' factors.
# This test is not exact, so various combinations of original and
# reduced expressions' factors are tried.
# - If we succeed, we print out the assumptions from assumeFormula that
# weren't implied by assumeLaw already. Those from assumeBranch are skipped,
# as we assume that all constraints in it are complementary with each other.
#
# Based on the sage verification scripts used in the Explicit-Formulas Database
# by Tanja Lange and others, see https://hyperelliptic.org/EFD
class fastfrac:
"""Fractions over rings."""
def __init__(self,R,top,bot=1):
"""Construct a fractional, given a ring, a numerator, and denominator."""
self.R = R
if parent(top) == ZZ or parent(top) == R:
self.top = R(top)
self.bot = R(bot)
elif top.__class__ == fastfrac:
self.top = top.top
self.bot = top.bot * bot
else:
self.top = R(numerator(top))
self.bot = R(denominator(top)) * bot
def iszero(self,I):
"""Return whether this fraction is zero given an ideal."""
return self.top in I and self.bot not in I
def reduce(self,assumeZero):
zero = self.R.ideal(list(map(numerator, assumeZero)))
return fastfrac(self.R, zero.reduce(self.top)) / fastfrac(self.R, zero.reduce(self.bot))
def __add__(self,other):
"""Add two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top + self.bot * other,self.bot)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.bot + self.bot * other.top,self.bot * other.bot)
return NotImplemented
def __sub__(self,other):
"""Subtract two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top - self.bot * other,self.bot)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.bot - self.bot * other.top,self.bot * other.bot)
return NotImplemented
def __neg__(self):
"""Return the negation of a fraction."""
return fastfrac(self.R,-self.top,self.bot)
def __mul__(self,other):
"""Multiply two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top * other,self.bot)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.top,self.bot * other.bot)
return NotImplemented
def __rmul__(self,other):
"""Multiply something else with a fraction."""
return self.__mul__(other)
def __truediv__(self,other):
"""Divide two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top,self.bot * other)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.bot,self.bot * other.top)
return NotImplemented
# Compatibility wrapper for Sage versions based on Python 2
def __div__(self,other):
"""Divide two fractions."""
return self.__truediv__(other)
def __pow__(self,other):
"""Compute a power of a fraction."""
if parent(other) == ZZ:
if other < 0:
# Negative powers require flipping top and bottom
return fastfrac(self.R,self.bot ^ (-other),self.top ^ (-other))
else:
return fastfrac(self.R,self.top ^ other,self.bot ^ other)
return NotImplemented
def __str__(self):
return "fastfrac((" + str(self.top) + ") / (" + str(self.bot) + "))"
def __repr__(self):
return "%s" % self
def numerator(self):
return self.top
class constraints:
"""A set of constraints, consisting of zero and nonzero expressions.
Constraints can either be used to express knowledge or a requirement.
Both the fields zero and nonzero are maps from expressions to description
strings. The expressions that are the keys in zero are required to be zero,
and the expressions that are the keys in nonzero are required to be nonzero.
Note that (a != 0) and (b != 0) is the same as (a*b != 0), so all keys in
nonzero could be multiplied into a single key. This is often much less
efficient to work with though, so we keep them separate inside the
constraints. This allows higher-level code to do fast checks on the individual
nonzero elements, or combine them if needed for stronger checks.
We can't multiply the different zero elements, as it would suffice for one of
the factors to be zero, instead of all of them. Instead, the zero elements are
typically combined into an ideal first.
"""
def __init__(self, **kwargs):
if 'zero' in kwargs:
self.zero = dict(kwargs['zero'])
else:
self.zero = dict()
if 'nonzero' in kwargs:
self.nonzero = dict(kwargs['nonzero'])
else:
self.nonzero = dict()
def negate(self):
return constraints(zero=self.nonzero, nonzero=self.zero)
def map(self, fun):
return constraints(zero={fun(k): v for k, v in self.zero.items()}, nonzero={fun(k): v for k, v in self.nonzero.items()})
def __add__(self, other):
zero = self.zero.copy()
zero.update(other.zero)
nonzero = self.nonzero.copy()
nonzero.update(other.nonzero)
return constraints(zero=zero, nonzero=nonzero)
def __str__(self):
return "constraints(zero=%s,nonzero=%s)" % (self.zero, self.nonzero)
def __repr__(self):
return "%s" % self
def normalize_factor(p):
"""Normalizes the sign of primitive polynomials (as returned by factor())
This function ensures that the polynomial has a positive leading coefficient.
This is necessary because recent sage versions (starting with v9.3 or v9.4,
we don't know) are inconsistent about the placement of the minus sign in
polynomial factorizations:
```
sage: R.<ax,bx,ay,by,Az,Bz,Ai,Bi> = PolynomialRing(QQ,8,order='invlex')
sage: R((-2 * (bx - ax)) ^ 1).factor()
(-2) * (bx - ax)
sage: R((-2 * (bx - ax)) ^ 2).factor()
(4) * (-bx + ax)^2
sage: R((-2 * (bx - ax)) ^ 3).factor()
(8) * (-bx + ax)^3
```
"""
# Assert p is not 0 and that its non-zero coefficients are coprime.
# (We could just work with the primitive part p/p.content() but we want to be
# aware if factor() does not return a primitive part in future sage versions.)
assert p.content() == 1
# Ensure that the first non-zero coefficient is positive.
return p if p.lc() > 0 else -p
def conflicts(R, con):
"""Check whether any of the passed non-zero assumptions is implied by the zero assumptions"""
zero = R.ideal(list(map(numerator, con.zero)))
if 1 in zero:
return True
# First a cheap check whether any of the individual nonzero terms conflict on
# their own.
for nonzero in con.nonzero:
if nonzero.iszero(zero):
return True
# It can be the case that entries in the nonzero set do not individually
# conflict with the zero set, but their combination does. For example, knowing
# that either x or y is zero is equivalent to having x*y in the zero set.
# Having x or y individually in the nonzero set is not a conflict, but both
# simultaneously is, so that is the right thing to check for.
if reduce(lambda a,b: a * b, con.nonzero, fastfrac(R, 1)).iszero(zero):
return True
return False
def get_nonzero_set(R, assume):
"""Calculate a simple set of nonzero expressions"""
zero = R.ideal(list(map(numerator, assume.zero)))
nonzero = set()
for nz in map(numerator, assume.nonzero):
for (f,n) in nz.factor():
nonzero.add(normalize_factor(f))
rnz = zero.reduce(nz)
for (f,n) in rnz.factor():
nonzero.add(normalize_factor(f))
return nonzero
def prove_nonzero(R, exprs, assume):
"""Check whether an expression is provably nonzero, given assumptions"""
zero = R.ideal(list(map(numerator, assume.zero)))
nonzero = get_nonzero_set(R, assume)
expl = set()
ok = True
for expr in exprs:
if numerator(expr) in zero:
return (False, [exprs[expr]])
allexprs = reduce(lambda a,b: numerator(a)*numerator(b), exprs, 1)
for (f, n) in allexprs.factor():
if normalize_factor(f) not in nonzero:
ok = False
if ok:
return (True, None)
ok = True
for (f, n) in zero.reduce(allexprs).factor():
if normalize_factor(f) not in nonzero:
ok = False
if ok:
return (True, None)
ok = True
for expr in exprs:
for (f,n) in numerator(expr).factor():
if normalize_factor(f) not in nonzero:
ok = False
if ok:
return (True, None)
ok = True
for expr in exprs:
for (f,n) in zero.reduce(numerator(expr)).factor():
if normalize_factor(f) not in nonzero:
expl.add(exprs[expr])
if expl:
return (False, list(expl))
else:
return (True, None)
def prove_zero(R, exprs, assume):
"""Check whether all of the passed expressions are provably zero, given assumptions"""
r, e = prove_nonzero(R, dict(map(lambda x: (fastfrac(R, x.bot, 1), exprs[x]), exprs)), assume)
if not r:
return (False, list(map(lambda x: "Possibly zero denominator: %s" % x, e)))
zero = R.ideal(list(map(numerator, assume.zero)))
nonzero = prod(x for x in assume.nonzero)
expl = []
for expr in exprs:
if not expr.iszero(zero):
expl.append(exprs[expr])
if not expl:
return (True, None)
return (False, expl)
def describe_extra(R, assume, assumeExtra):
"""Describe what assumptions are added, given existing assumptions"""
zerox = assume.zero.copy()
zerox.update(assumeExtra.zero)
zero = R.ideal(list(map(numerator, assume.zero)))
zeroextra = R.ideal(list(map(numerator, zerox)))
nonzero = get_nonzero_set(R, assume)
ret = set()
# Iterate over the extra zero expressions
for base in assumeExtra.zero:
if base not in zero:
add = []
for (f, n) in numerator(base).factor():
if normalize_factor(f) not in nonzero:
add += ["%s" % normalize_factor(f)]
if add:
ret.add((" * ".join(add)) + " = 0 [%s]" % assumeExtra.zero[base])
# Iterate over the extra nonzero expressions
for nz in assumeExtra.nonzero:
nzr = zeroextra.reduce(numerator(nz))
if nzr not in zeroextra:
for (f,n) in nzr.factor():
if normalize_factor(zeroextra.reduce(f)) not in nonzero:
ret.add("%s != 0" % normalize_factor(zeroextra.reduce(f)))
return ", ".join(x for x in ret)
def check_symbolic(R, assumeLaw, assumeAssert, assumeBranch, require):
"""Check a set of zero and nonzero requirements, given a set of zero and nonzero assumptions"""
assume = assumeLaw + assumeAssert + assumeBranch
if conflicts(R, assume):
# This formula does not apply
return (True, None)
describe = describe_extra(R, assumeLaw + assumeBranch, assumeAssert)
if describe != "":
describe = " (assuming " + describe + ")"
ok, msg = prove_zero(R, require.zero, assume)
if not ok:
return (False, "FAIL, %s fails%s" % (str(msg), describe))
res, expl = prove_nonzero(R, require.nonzero, assume)
if not res:
return (False, "FAIL, %s fails%s" % (str(expl), describe))
return (True, "OK%s" % describe)
def concrete_verify(c):
for k in c.zero:
if k != 0:
return (False, c.zero[k])
for k in c.nonzero:
if k == 0:
return (False, c.nonzero[k])
return (True, None)

View File

@ -0,0 +1,285 @@
# Test libsecp256k1' group operation implementations using prover.sage
import sys
load("group_prover.sage")
load("weierstrass_prover.sage")
def formula_secp256k1_gej_double_var(a):
"""libsecp256k1's secp256k1_gej_double_var, used by various addition functions"""
rz = a.Z * a.Y
s = a.Y^2
l = a.X^2
l = l * 3
l = l / 2
t = -s
t = t * a.X
rx = l^2
rx = rx + t
rx = rx + t
s = s^2
t = t + rx
ry = t * l
ry = ry + s
ry = -ry
return jacobianpoint(rx, ry, rz)
def formula_secp256k1_gej_add_var(branch, a, b):
"""libsecp256k1's secp256k1_gej_add_var"""
if branch == 0:
return (constraints(), constraints(nonzero={a.Infinity : 'a_infinite'}), b)
if branch == 1:
return (constraints(), constraints(zero={a.Infinity : 'a_finite'}, nonzero={b.Infinity : 'b_infinite'}), a)
z22 = b.Z^2
z12 = a.Z^2
u1 = a.X * z22
u2 = b.X * z12
s1 = a.Y * z22
s1 = s1 * b.Z
s2 = b.Y * z12
s2 = s2 * a.Z
h = -u1
h = h + u2
i = -s2
i = i + s1
if branch == 2:
r = formula_secp256k1_gej_double_var(a)
return (constraints(), constraints(zero={h : 'h=0', i : 'i=0', a.Infinity : 'a_finite', b.Infinity : 'b_finite'}), r)
if branch == 3:
return (constraints(), constraints(zero={h : 'h=0', a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={i : 'i!=0'}), point_at_infinity())
t = h * b.Z
rz = a.Z * t
h2 = h^2
h2 = -h2
h3 = h2 * h
t = u1 * h2
rx = i^2
rx = rx + h3
rx = rx + t
rx = rx + t
t = t + rx
ry = t * i
h3 = h3 * s1
ry = ry + h3
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
def formula_secp256k1_gej_add_ge_var(branch, a, b):
"""libsecp256k1's secp256k1_gej_add_ge_var, which assume bz==1"""
if branch == 0:
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(nonzero={a.Infinity : 'a_infinite'}), b)
if branch == 1:
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite'}, nonzero={b.Infinity : 'b_infinite'}), a)
z12 = a.Z^2
u1 = a.X
u2 = b.X * z12
s1 = a.Y
s2 = b.Y * z12
s2 = s2 * a.Z
h = -u1
h = h + u2
i = -s2
i = i + s1
if (branch == 2):
r = formula_secp256k1_gej_double_var(a)
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0', i : 'i=0'}), r)
if (branch == 3):
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0'}, nonzero={i : 'i!=0'}), point_at_infinity())
rz = a.Z * h
h2 = h^2
h2 = -h2
h3 = h2 * h
t = u1 * h2
rx = i^2
rx = rx + h3
rx = rx + t
rx = rx + t
t = t + rx
ry = t * i
h3 = h3 * s1
ry = ry + h3
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
def formula_secp256k1_gej_add_zinv_var(branch, a, b):
"""libsecp256k1's secp256k1_gej_add_zinv_var"""
bzinv = b.Z^(-1)
if branch == 0:
rinf = b.Infinity
bzinv2 = bzinv^2
bzinv3 = bzinv2 * bzinv
rx = b.X * bzinv2
ry = b.Y * bzinv3
rz = 1
return (constraints(), constraints(nonzero={a.Infinity : 'a_infinite'}), jacobianpoint(rx, ry, rz, rinf))
if branch == 1:
return (constraints(), constraints(zero={a.Infinity : 'a_finite'}, nonzero={b.Infinity : 'b_infinite'}), a)
azz = a.Z * bzinv
z12 = azz^2
u1 = a.X
u2 = b.X * z12
s1 = a.Y
s2 = b.Y * z12
s2 = s2 * azz
h = -u1
h = h + u2
i = -s2
i = i + s1
if branch == 2:
r = formula_secp256k1_gej_double_var(a)
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0', i : 'i=0'}), r)
if branch == 3:
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0'}, nonzero={i : 'i!=0'}), point_at_infinity())
rz = a.Z * h
h2 = h^2
h2 = -h2
h3 = h2 * h
t = u1 * h2
rx = i^2
rx = rx + h3
rx = rx + t
rx = rx + t
t = t + rx
ry = t * i
h3 = h3 * s1
ry = ry + h3
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
def formula_secp256k1_gej_add_ge(branch, a, b):
"""libsecp256k1's secp256k1_gej_add_ge"""
zeroes = {}
nonzeroes = {}
a_infinity = False
if (branch & 2) != 0:
nonzeroes.update({a.Infinity : 'a_infinite'})
a_infinity = True
else:
zeroes.update({a.Infinity : 'a_finite'})
zz = a.Z^2
u1 = a.X
u2 = b.X * zz
s1 = a.Y
s2 = b.Y * zz
s2 = s2 * a.Z
t = u1
t = t + u2
m = s1
m = m + s2
rr = t^2
m_alt = -u2
tt = u1 * m_alt
rr = rr + tt
degenerate = (branch & 1) != 0
if degenerate:
zeroes.update({m : 'm_zero'})
else:
nonzeroes.update({m : 'm_nonzero'})
rr_alt = s1
rr_alt = rr_alt * 2
m_alt = m_alt + u1
if not degenerate:
rr_alt = rr
m_alt = m
n = m_alt^2
q = -t
q = q * n
n = n^2
if degenerate:
n = m
t = rr_alt^2
rz = a.Z * m_alt
t = t + q
rx = t
t = t * 2
t = t + q
t = t * rr_alt
t = t + n
ry = -t
ry = ry / 2
if a_infinity:
rx = b.X
ry = b.Y
rz = 1
if (branch & 4) != 0:
zeroes.update({rz : 'r.z = 0'})
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), point_at_infinity())
else:
nonzeroes.update({rz : 'r.z != 0'})
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), jacobianpoint(rx, ry, rz))
def formula_secp256k1_gej_add_ge_old(branch, a, b):
"""libsecp256k1's old secp256k1_gej_add_ge, which fails when ay+by=0 but ax!=bx"""
a_infinity = (branch & 1) != 0
zero = {}
nonzero = {}
if a_infinity:
nonzero.update({a.Infinity : 'a_infinite'})
else:
zero.update({a.Infinity : 'a_finite'})
zz = a.Z^2
u1 = a.X
u2 = b.X * zz
s1 = a.Y
s2 = b.Y * zz
s2 = s2 * a.Z
z = a.Z
t = u1
t = t + u2
m = s1
m = m + s2
n = m^2
q = n * t
n = n^2
rr = t^2
t = u1 * u2
t = -t
rr = rr + t
t = rr^2
rz = m * z
infinity = False
if (branch & 2) != 0:
if not a_infinity:
infinity = True
else:
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(nonzero={z : 'conflict_a'}, zero={z : 'conflict_b'}), point_at_infinity())
zero.update({rz : 'r.z=0'})
else:
nonzero.update({rz : 'r.z!=0'})
rz = rz * (0 if a_infinity else 2)
rx = t
q = -q
rx = rx + q
q = q * 3
t = t * 2
t = t + q
t = t * rr
t = t + n
ry = -t
rx = rx * (0 if a_infinity else 4)
ry = ry * (0 if a_infinity else 4)
t = b.X
t = t * (1 if a_infinity else 0)
rx = rx + t
t = b.Y
t = t * (1 if a_infinity else 0)
ry = ry + t
t = (1 if a_infinity else 0)
rz = rz + t
if infinity:
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zero, nonzero=nonzero), point_at_infinity())
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zero, nonzero=nonzero), jacobianpoint(rx, ry, rz))
if __name__ == "__main__":
success = True
success = success & check_symbolic_jacobian_weierstrass("secp256k1_gej_add_var", 0, 7, 5, formula_secp256k1_gej_add_var)
success = success & check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge_var", 0, 7, 5, formula_secp256k1_gej_add_ge_var)
success = success & check_symbolic_jacobian_weierstrass("secp256k1_gej_add_zinv_var", 0, 7, 5, formula_secp256k1_gej_add_zinv_var)
success = success & check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge", 0, 7, 8, formula_secp256k1_gej_add_ge)
success = success & (not check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge_old [should fail]", 0, 7, 4, formula_secp256k1_gej_add_ge_old))
if len(sys.argv) >= 2 and sys.argv[1] == "--exhaustive":
success = success & check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_var", 0, 7, 5, formula_secp256k1_gej_add_var, 43)
success = success & check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge_var", 0, 7, 5, formula_secp256k1_gej_add_ge_var, 43)
success = success & check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_zinv_var", 0, 7, 5, formula_secp256k1_gej_add_zinv_var, 43)
success = success & check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge", 0, 7, 8, formula_secp256k1_gej_add_ge, 43)
success = success & (not check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge_old [should fail]", 0, 7, 4, formula_secp256k1_gej_add_ge_old, 43))
sys.exit(int(not success))

View File

@ -0,0 +1,39 @@
"""Prime order of finite field underlying secp256k1 (2^256 - 2^32 - 977)"""
P = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
"""Finite field underlying secp256k1"""
F = FiniteField(P)
"""Elliptic curve secp256k1: y^2 = x^3 + 7"""
C = EllipticCurve([F(0), F(7)])
"""Base point of secp256k1"""
G = C.lift_x(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798)
if int(G[1]) & 1:
# G.y is even
G = -G
"""Prime order of secp256k1"""
N = C.order()
"""Finite field of scalars of secp256k1"""
Z = FiniteField(N)
""" Beta value of secp256k1 non-trivial endomorphism: lambda * (x, y) = (beta * x, y)"""
BETA = F(2)^((P-1)/3)
""" Lambda value of secp256k1 non-trivial endomorphism: lambda * (x, y) = (beta * x, y)"""
LAMBDA = Z(3)^((N-1)/3)
assert is_prime(P)
assert is_prime(N)
assert BETA != F(1)
assert BETA^3 == F(1)
assert BETA^2 + BETA + 1 == 0
assert LAMBDA != Z(1)
assert LAMBDA^3 == Z(1)
assert LAMBDA^2 + LAMBDA + 1 == 0
assert Integer(LAMBDA)*G == C(BETA*G[0], G[1])

View File

@ -0,0 +1,275 @@
# Prover implementation for Weierstrass curves of the form
# y^2 = x^3 + A * x + B, specifically with a = 0 and b = 7, with group laws
# operating on affine and Jacobian coordinates, including the point at infinity
# represented by a 4th variable in coordinates.
load("group_prover.sage")
class affinepoint:
def __init__(self, x, y, infinity=0):
self.x = x
self.y = y
self.infinity = infinity
def __str__(self):
return "affinepoint(x=%s,y=%s,inf=%s)" % (self.x, self.y, self.infinity)
class jacobianpoint:
def __init__(self, x, y, z, infinity=0):
self.X = x
self.Y = y
self.Z = z
self.Infinity = infinity
def __str__(self):
return "jacobianpoint(X=%s,Y=%s,Z=%s,inf=%s)" % (self.X, self.Y, self.Z, self.Infinity)
def point_at_infinity():
return jacobianpoint(1, 1, 1, 1)
def negate(p):
if p.__class__ == affinepoint:
return affinepoint(p.x, -p.y)
if p.__class__ == jacobianpoint:
return jacobianpoint(p.X, -p.Y, p.Z)
assert(False)
def on_weierstrass_curve(A, B, p):
"""Return a set of zero-expressions for an affine point to be on the curve"""
return constraints(zero={p.x^3 + A*p.x + B - p.y^2: 'on_curve'})
def tangential_to_weierstrass_curve(A, B, p12, p3):
"""Return a set of zero-expressions for ((x12,y12),(x3,y3)) to be a line that is tangential to the curve at (x12,y12)"""
return constraints(zero={
(p12.y - p3.y) * (p12.y * 2) - (p12.x^2 * 3 + A) * (p12.x - p3.x): 'tangential_to_curve'
})
def colinear(p1, p2, p3):
"""Return a set of zero-expressions for ((x1,y1),(x2,y2),(x3,y3)) to be collinear"""
return constraints(zero={
(p1.y - p2.y) * (p1.x - p3.x) - (p1.y - p3.y) * (p1.x - p2.x): 'colinear_1',
(p2.y - p3.y) * (p2.x - p1.x) - (p2.y - p1.y) * (p2.x - p3.x): 'colinear_2',
(p3.y - p1.y) * (p3.x - p2.x) - (p3.y - p2.y) * (p3.x - p1.x): 'colinear_3'
})
def good_affine_point(p):
return constraints(nonzero={p.x : 'nonzero_x', p.y : 'nonzero_y'})
def good_jacobian_point(p):
return constraints(nonzero={p.X : 'nonzero_X', p.Y : 'nonzero_Y', p.Z^6 : 'nonzero_Z'})
def good_point(p):
return constraints(nonzero={p.Z^6 : 'nonzero_X'})
def finite(p, *affine_fns):
con = good_point(p) + constraints(zero={p.Infinity : 'finite_point'})
if p.Z != 0:
return con + reduce(lambda a, b: a + b, (f(affinepoint(p.X / p.Z^2, p.Y / p.Z^3)) for f in affine_fns), con)
else:
return con
def infinite(p):
return constraints(nonzero={p.Infinity : 'infinite_point'})
def law_jacobian_weierstrass_add(A, B, pa, pb, pA, pB, pC):
"""Check whether the passed set of coordinates is a valid Jacobian add, given assumptions"""
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
on_weierstrass_curve(A, B, pb) +
finite(pA) +
finite(pB) +
constraints(nonzero={pa.x - pb.x : 'different_x'}))
require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) +
colinear(pa, pb, negate(pc))))
return (assumeLaw, require)
def law_jacobian_weierstrass_double(A, B, pa, pb, pA, pB, pC):
"""Check whether the passed set of coordinates is a valid Jacobian doubling, given assumptions"""
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
on_weierstrass_curve(A, B, pb) +
finite(pA) +
finite(pB) +
constraints(zero={pa.x - pb.x : 'equal_x', pa.y - pb.y : 'equal_y'}))
require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) +
tangential_to_weierstrass_curve(A, B, pa, negate(pc))))
return (assumeLaw, require)
def law_jacobian_weierstrass_add_opposites(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
on_weierstrass_curve(A, B, pb) +
finite(pA) +
finite(pB) +
constraints(zero={pa.x - pb.x : 'equal_x', pa.y + pb.y : 'opposite_y'}))
require = infinite(pC)
return (assumeLaw, require)
def law_jacobian_weierstrass_add_infinite_a(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pb) +
infinite(pA) +
finite(pB))
require = finite(pC, lambda pc: constraints(zero={pc.x - pb.x : 'c.x=b.x', pc.y - pb.y : 'c.y=b.y'}))
return (assumeLaw, require)
def law_jacobian_weierstrass_add_infinite_b(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
infinite(pB) +
finite(pA))
require = finite(pC, lambda pc: constraints(zero={pc.x - pa.x : 'c.x=a.x', pc.y - pa.y : 'c.y=a.y'}))
return (assumeLaw, require)
def law_jacobian_weierstrass_add_infinite_ab(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
infinite(pA) +
infinite(pB))
require = infinite(pC)
return (assumeLaw, require)
laws_jacobian_weierstrass = {
'add': law_jacobian_weierstrass_add,
'double': law_jacobian_weierstrass_double,
'add_opposite': law_jacobian_weierstrass_add_opposites,
'add_infinite_a': law_jacobian_weierstrass_add_infinite_a,
'add_infinite_b': law_jacobian_weierstrass_add_infinite_b,
'add_infinite_ab': law_jacobian_weierstrass_add_infinite_ab
}
def check_exhaustive_jacobian_weierstrass(name, A, B, branches, formula, p):
"""Verify an implementation of addition of Jacobian points on a Weierstrass curve, by executing and validating the result for every possible addition in a prime field"""
F = Integers(p)
print("Formula %s on Z%i:" % (name, p))
points = []
for x in range(0, p):
for y in range(0, p):
point = affinepoint(F(x), F(y))
r, e = concrete_verify(on_weierstrass_curve(A, B, point))
if r:
points.append(point)
ret = True
for za in range(1, p):
for zb in range(1, p):
for pa in points:
for pb in points:
for ia in range(2):
for ib in range(2):
pA = jacobianpoint(pa.x * F(za)^2, pa.y * F(za)^3, F(za), ia)
pB = jacobianpoint(pb.x * F(zb)^2, pb.y * F(zb)^3, F(zb), ib)
for branch in range(0, branches):
assumeAssert, assumeBranch, pC = formula(branch, pA, pB)
pC.X = F(pC.X)
pC.Y = F(pC.Y)
pC.Z = F(pC.Z)
pC.Infinity = F(pC.Infinity)
r, e = concrete_verify(assumeAssert + assumeBranch)
if r:
match = False
for key in laws_jacobian_weierstrass:
assumeLaw, require = laws_jacobian_weierstrass[key](A, B, pa, pb, pA, pB, pC)
r, e = concrete_verify(assumeLaw)
if r:
if match:
print(" multiple branches for (%s,%s,%s,%s) + (%s,%s,%s,%s)" % (pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity))
else:
match = True
r, e = concrete_verify(require)
if not r:
ret = False
print(" failure in branch %i for (%s,%s,%s,%s) + (%s,%s,%s,%s) = (%s,%s,%s,%s): %s" % (branch, pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity, pC.X, pC.Y, pC.Z, pC.Infinity, e))
print()
return ret
def check_symbolic_function(R, assumeAssert, assumeBranch, f, A, B, pa, pb, pA, pB, pC):
assumeLaw, require = f(A, B, pa, pb, pA, pB, pC)
return check_symbolic(R, assumeLaw, assumeAssert, assumeBranch, require)
def check_symbolic_jacobian_weierstrass(name, A, B, branches, formula):
"""Verify an implementation of addition of Jacobian points on a Weierstrass curve symbolically"""
R.<ax,bx,ay,by,Az,Bz,Ai,Bi> = PolynomialRing(QQ,8,order='invlex')
lift = lambda x: fastfrac(R,x)
ax = lift(ax)
ay = lift(ay)
Az = lift(Az)
bx = lift(bx)
by = lift(by)
Bz = lift(Bz)
Ai = lift(Ai)
Bi = lift(Bi)
pa = affinepoint(ax, ay, Ai)
pb = affinepoint(bx, by, Bi)
pA = jacobianpoint(ax * Az^2, ay * Az^3, Az, Ai)
pB = jacobianpoint(bx * Bz^2, by * Bz^3, Bz, Bi)
res = {}
for key in laws_jacobian_weierstrass:
res[key] = []
print("Formula " + name + ":")
count = 0
ret = True
for branch in range(branches):
assumeFormula, assumeBranch, pC = formula(branch, pA, pB)
assumeBranch = assumeBranch.map(lift)
assumeFormula = assumeFormula.map(lift)
pC.X = lift(pC.X)
pC.Y = lift(pC.Y)
pC.Z = lift(pC.Z)
pC.Infinity = lift(pC.Infinity)
for key in laws_jacobian_weierstrass:
success, msg = check_symbolic_function(R, assumeFormula, assumeBranch, laws_jacobian_weierstrass[key], A, B, pa, pb, pA, pB, pC)
if not success:
ret = False
res[key].append((msg, branch))
for key in res:
print(" %s:" % key)
val = res[key]
for x in val:
if x[0] is not None:
print(" branch %i: %s" % (x[1], x[0]))
print()
return ret

View File

@ -0,0 +1,205 @@
add_library(secp256k1)
set_property(TARGET secp256k1 PROPERTY PUBLIC_HEADER
${PROJECT_SOURCE_DIR}/include/secp256k1.h
${PROJECT_SOURCE_DIR}/include/secp256k1_preallocated.h
)
# Processing must be done in a topological sorting of the dependency graph
# (dependent module first).
if(SECP256K1_ENABLE_MODULE_ELLSWIFT)
add_compile_definitions(ENABLE_MODULE_ELLSWIFT=1)
set_property(TARGET secp256k1 APPEND PROPERTY PUBLIC_HEADER ${PROJECT_SOURCE_DIR}/include/secp256k1_ellswift.h)
endif()
if(SECP256K1_ENABLE_MODULE_MUSIG)
if(DEFINED SECP256K1_ENABLE_MODULE_SCHNORRSIG AND NOT SECP256K1_ENABLE_MODULE_SCHNORRSIG)
message(FATAL_ERROR "Module dependency error: You have disabled the schnorrsig module explicitly, but it is required by the musig module.")
endif()
set(SECP256K1_ENABLE_MODULE_SCHNORRSIG ON)
add_compile_definitions(ENABLE_MODULE_MUSIG=1)
set_property(TARGET secp256k1 APPEND PROPERTY PUBLIC_HEADER ${PROJECT_SOURCE_DIR}/include/secp256k1_musig.h)
endif()
if(SECP256K1_ENABLE_MODULE_SCHNORRSIG)
if(DEFINED SECP256K1_ENABLE_MODULE_EXTRAKEYS AND NOT SECP256K1_ENABLE_MODULE_EXTRAKEYS)
message(FATAL_ERROR "Module dependency error: You have disabled the extrakeys module explicitly, but it is required by the schnorrsig module.")
endif()
set(SECP256K1_ENABLE_MODULE_EXTRAKEYS ON)
add_compile_definitions(ENABLE_MODULE_SCHNORRSIG=1)
set_property(TARGET secp256k1 APPEND PROPERTY PUBLIC_HEADER ${PROJECT_SOURCE_DIR}/include/secp256k1_schnorrsig.h)
endif()
if(SECP256K1_ENABLE_MODULE_EXTRAKEYS)
add_compile_definitions(ENABLE_MODULE_EXTRAKEYS=1)
set_property(TARGET secp256k1 APPEND PROPERTY PUBLIC_HEADER ${PROJECT_SOURCE_DIR}/include/secp256k1_extrakeys.h)
endif()
if(SECP256K1_ENABLE_MODULE_RECOVERY)
add_compile_definitions(ENABLE_MODULE_RECOVERY=1)
set_property(TARGET secp256k1 APPEND PROPERTY PUBLIC_HEADER ${PROJECT_SOURCE_DIR}/include/secp256k1_recovery.h)
endif()
if(SECP256K1_ENABLE_MODULE_ECDH)
add_compile_definitions(ENABLE_MODULE_ECDH=1)
set_property(TARGET secp256k1 APPEND PROPERTY PUBLIC_HEADER ${PROJECT_SOURCE_DIR}/include/secp256k1_ecdh.h)
endif()
add_library(secp256k1_precomputed OBJECT EXCLUDE_FROM_ALL
precomputed_ecmult.c
precomputed_ecmult_gen.c
)
# Add objects explicitly rather than linking to the object libs to keep them
# from being exported.
target_sources(secp256k1 PRIVATE secp256k1.c $<TARGET_OBJECTS:secp256k1_precomputed>)
if(NOT SECP256K1_ENABLE_API_VISIBILITY_ATTRIBUTES)
target_compile_definitions(secp256k1 PRIVATE SECP256K1_NO_API_VISIBILITY_ATTRIBUTES)
endif()
# Create a helper lib that parent projects can use to link secp256k1 into a
# static lib.
add_library(secp256k1_objs INTERFACE)
target_sources(secp256k1_objs INTERFACE $<TARGET_OBJECTS:secp256k1> $<TARGET_OBJECTS:secp256k1_precomputed>)
add_library(secp256k1_asm INTERFACE)
if(SECP256K1_ASM STREQUAL "arm32")
add_library(secp256k1_asm_arm OBJECT EXCLUDE_FROM_ALL)
target_sources(secp256k1_asm_arm PUBLIC
asm/field_10x26_arm.s
)
target_sources(secp256k1 PRIVATE $<TARGET_OBJECTS:secp256k1_asm_arm>)
target_sources(secp256k1_objs INTERFACE $<TARGET_OBJECTS:secp256k1_asm_arm>)
target_link_libraries(secp256k1_asm INTERFACE secp256k1_asm_arm)
endif()
if(WIN32)
# Define our export symbol only for shared libs.
set_target_properties(secp256k1 PROPERTIES DEFINE_SYMBOL SECP256K1_DLL_EXPORT)
target_compile_definitions(secp256k1 INTERFACE $<$<NOT:$<BOOL:${BUILD_SHARED_LIBS}>>:SECP256K1_STATIC>)
endif()
# Object libs don't know if they're being built for a shared or static lib.
# Grab the PIC property from secp256k1 which knows.
get_target_property(use_pic secp256k1 POSITION_INDEPENDENT_CODE)
set_target_properties(secp256k1_precomputed PROPERTIES POSITION_INDEPENDENT_CODE ${use_pic})
# Add the include path for parent projects so that they don't have to manually add it.
target_include_directories(secp256k1 INTERFACE
$<BUILD_INTERFACE:$<$<NOT:$<BOOL:${PROJECT_IS_TOP_LEVEL}>>:${PROJECT_SOURCE_DIR}/include>>
)
set_target_properties(secp256k1_objs PROPERTIES
INTERFACE_COMPILE_DEFINITIONS "$<TARGET_PROPERTY:secp256k1,INTERFACE_COMPILE_DEFINITIONS>"
INTERFACE_INCLUDE_DIRECTORIES "$<TARGET_PROPERTY:secp256k1,INTERFACE_INCLUDE_DIRECTORIES>"
)
# This emulates Libtool to make sure Libtool and CMake agree on the ABI version,
# see below "Calculate the version variables" in build-aux/ltmain.sh.
math(EXPR ${PROJECT_NAME}_soversion "${${PROJECT_NAME}_LIB_VERSION_CURRENT} - ${${PROJECT_NAME}_LIB_VERSION_AGE}")
set_target_properties(secp256k1 PROPERTIES
SOVERSION ${${PROJECT_NAME}_soversion}
)
if(CMAKE_SYSTEM_NAME MATCHES "^(Linux|FreeBSD)$")
set_target_properties(secp256k1 PROPERTIES
VERSION ${${PROJECT_NAME}_soversion}.${${PROJECT_NAME}_LIB_VERSION_AGE}.${${PROJECT_NAME}_LIB_VERSION_REVISION}
)
elseif(APPLE)
math(EXPR ${PROJECT_NAME}_compatibility_version "${${PROJECT_NAME}_LIB_VERSION_CURRENT} + 1")
set_target_properties(secp256k1 PROPERTIES
MACHO_COMPATIBILITY_VERSION ${${PROJECT_NAME}_compatibility_version}
MACHO_CURRENT_VERSION ${${PROJECT_NAME}_compatibility_version}.${${PROJECT_NAME}_LIB_VERSION_REVISION}
)
unset(${PROJECT_NAME}_compatibility_version)
elseif(CMAKE_SYSTEM_NAME STREQUAL "Windows")
set(${PROJECT_NAME}_windows "secp256k1")
if(MSVC)
set(${PROJECT_NAME}_windows "${PROJECT_NAME}")
endif()
set_target_properties(secp256k1 PROPERTIES
ARCHIVE_OUTPUT_NAME "${${PROJECT_NAME}_windows}"
RUNTIME_OUTPUT_NAME "${${PROJECT_NAME}_windows}-${${PROJECT_NAME}_soversion}"
)
unset(${PROJECT_NAME}_windows)
endif()
unset(${PROJECT_NAME}_soversion)
if(SECP256K1_BUILD_BENCHMARK)
add_executable(bench bench.c)
target_link_libraries(bench secp256k1)
add_executable(bench_internal bench_internal.c)
target_link_libraries(bench_internal secp256k1_precomputed secp256k1_asm)
add_executable(bench_ecmult bench_ecmult.c)
target_link_libraries(bench_ecmult secp256k1_precomputed secp256k1_asm)
endif()
if(SECP256K1_BUILD_TESTS)
add_executable(noverify_tests tests.c)
target_link_libraries(noverify_tests secp256k1_precomputed secp256k1_asm)
add_test(NAME secp256k1_noverify_tests COMMAND noverify_tests)
if(NOT CMAKE_BUILD_TYPE STREQUAL "Coverage")
add_executable(tests tests.c)
target_compile_definitions(tests PRIVATE VERIFY)
target_link_libraries(tests secp256k1_precomputed secp256k1_asm)
add_test(NAME secp256k1_tests COMMAND tests)
endif()
endif()
if(SECP256K1_BUILD_EXHAUSTIVE_TESTS)
# Note: do not include secp256k1_precomputed in exhaustive_tests (it uses runtime-generated tables).
add_executable(exhaustive_tests tests_exhaustive.c)
target_link_libraries(exhaustive_tests secp256k1_asm)
target_compile_definitions(exhaustive_tests PRIVATE $<$<NOT:$<CONFIG:Coverage>>:VERIFY>)
add_test(NAME secp256k1_exhaustive_tests COMMAND exhaustive_tests)
endif()
if(SECP256K1_BUILD_CTIME_TESTS)
add_executable(ctime_tests ctime_tests.c)
target_link_libraries(ctime_tests secp256k1)
endif()
if(SECP256K1_INSTALL)
include(GNUInstallDirs)
target_include_directories(secp256k1 INTERFACE
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>
)
install(TARGETS secp256k1
EXPORT ${PROJECT_NAME}-targets
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}
PUBLIC_HEADER DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
)
install(EXPORT ${PROJECT_NAME}-targets
FILE ${PROJECT_NAME}-targets.cmake
NAMESPACE ${PROJECT_NAME}::
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/${PROJECT_NAME}
)
include(CMakePackageConfigHelpers)
configure_package_config_file(
${PROJECT_SOURCE_DIR}/cmake/config.cmake.in
${PROJECT_NAME}-config.cmake
INSTALL_DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/${PROJECT_NAME}
NO_SET_AND_CHECK_MACRO
)
write_basic_package_version_file(${PROJECT_NAME}-config-version.cmake
COMPATIBILITY SameMinorVersion
)
install(
FILES
${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}-config.cmake
${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}-config-version.cmake
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/${PROJECT_NAME}
)
include(GeneratePkgConfigFile)
generate_pkg_config_file(${PROJECT_SOURCE_DIR}/libsecp256k1.pc.in)
install(
FILES
${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}.pc
DESTINATION ${CMAKE_INSTALL_LIBDIR}/pkgconfig
)
endif()

View File

@ -0,0 +1,916 @@
@ vim: set tabstop=8 softtabstop=8 shiftwidth=8 noexpandtab syntax=armasm:
/***********************************************************************
* Copyright (c) 2014 Wladimir J. van der Laan *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
/*
ARM implementation of field_10x26 inner loops.
Note:
- To avoid unnecessary loads and make use of available registers, two
'passes' have every time been interleaved, with the odd passes accumulating c' and d'
which will be added to c and d respectively in the even passes
*/
.syntax unified
@ eabi attributes - see readelf -A
.eabi_attribute 24, 1 @ Tag_ABI_align_needed = 8-byte
.eabi_attribute 25, 1 @ Tag_ABI_align_preserved = 8-byte, except leaf SP
.text
@ Field constants
.set field_R0, 0x3d10
.set field_R1, 0x400
.set field_not_M, 0xfc000000 @ ~M = ~0x3ffffff
.align 2
.global secp256k1_fe_mul_inner
.type secp256k1_fe_mul_inner, %function
.hidden secp256k1_fe_mul_inner
@ Arguments:
@ r0 r Restrict: can overlap with a, not with b
@ r1 a
@ r2 b
@ Stack (total 4+10*4 = 44)
@ sp + #0 saved 'r' pointer
@ sp + #4 + 4*X t0,t1,t2,t3,t4,t5,t6,t7,u8,t9
secp256k1_fe_mul_inner:
stmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r14}
sub sp, sp, #48 @ frame=44 + alignment
str r0, [sp, #0] @ save result address, we need it only at the end
/******************************************
* Main computation code.
******************************************
Allocation:
r0,r14,r7,r8 scratch
r1 a (pointer)
r2 b (pointer)
r3:r4 c
r5:r6 d
r11:r12 c'
r9:r10 d'
Note: do not write to r[] here, it may overlap with a[]
*/
/* A - interleaved with B */
ldr r7, [r1, #0*4] @ a[0]
ldr r8, [r2, #9*4] @ b[9]
ldr r0, [r1, #1*4] @ a[1]
umull r5, r6, r7, r8 @ d = a[0] * b[9]
ldr r14, [r2, #8*4] @ b[8]
umull r9, r10, r0, r8 @ d' = a[1] * b[9]
ldr r7, [r1, #2*4] @ a[2]
umlal r5, r6, r0, r14 @ d += a[1] * b[8]
ldr r8, [r2, #7*4] @ b[7]
umlal r9, r10, r7, r14 @ d' += a[2] * b[8]
ldr r0, [r1, #3*4] @ a[3]
umlal r5, r6, r7, r8 @ d += a[2] * b[7]
ldr r14, [r2, #6*4] @ b[6]
umlal r9, r10, r0, r8 @ d' += a[3] * b[7]
ldr r7, [r1, #4*4] @ a[4]
umlal r5, r6, r0, r14 @ d += a[3] * b[6]
ldr r8, [r2, #5*4] @ b[5]
umlal r9, r10, r7, r14 @ d' += a[4] * b[6]
ldr r0, [r1, #5*4] @ a[5]
umlal r5, r6, r7, r8 @ d += a[4] * b[5]
ldr r14, [r2, #4*4] @ b[4]
umlal r9, r10, r0, r8 @ d' += a[5] * b[5]
ldr r7, [r1, #6*4] @ a[6]
umlal r5, r6, r0, r14 @ d += a[5] * b[4]
ldr r8, [r2, #3*4] @ b[3]
umlal r9, r10, r7, r14 @ d' += a[6] * b[4]
ldr r0, [r1, #7*4] @ a[7]
umlal r5, r6, r7, r8 @ d += a[6] * b[3]
ldr r14, [r2, #2*4] @ b[2]
umlal r9, r10, r0, r8 @ d' += a[7] * b[3]
ldr r7, [r1, #8*4] @ a[8]
umlal r5, r6, r0, r14 @ d += a[7] * b[2]
ldr r8, [r2, #1*4] @ b[1]
umlal r9, r10, r7, r14 @ d' += a[8] * b[2]
ldr r0, [r1, #9*4] @ a[9]
umlal r5, r6, r7, r8 @ d += a[8] * b[1]
ldr r14, [r2, #0*4] @ b[0]
umlal r9, r10, r0, r8 @ d' += a[9] * b[1]
ldr r7, [r1, #0*4] @ a[0]
umlal r5, r6, r0, r14 @ d += a[9] * b[0]
@ r7,r14 used in B
bic r0, r5, field_not_M @ t9 = d & M
str r0, [sp, #4 + 4*9]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
/* B */
umull r3, r4, r7, r14 @ c = a[0] * b[0]
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u0 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u0 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t0 = c & M
str r14, [sp, #4 + 0*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u0 * R1
umlal r3, r4, r0, r14
/* C - interleaved with D */
ldr r7, [r1, #0*4] @ a[0]
ldr r8, [r2, #2*4] @ b[2]
ldr r14, [r2, #1*4] @ b[1]
umull r11, r12, r7, r8 @ c' = a[0] * b[2]
ldr r0, [r1, #1*4] @ a[1]
umlal r3, r4, r7, r14 @ c += a[0] * b[1]
ldr r8, [r2, #0*4] @ b[0]
umlal r11, r12, r0, r14 @ c' += a[1] * b[1]
ldr r7, [r1, #2*4] @ a[2]
umlal r3, r4, r0, r8 @ c += a[1] * b[0]
ldr r14, [r2, #9*4] @ b[9]
umlal r11, r12, r7, r8 @ c' += a[2] * b[0]
ldr r0, [r1, #3*4] @ a[3]
umlal r5, r6, r7, r14 @ d += a[2] * b[9]
ldr r8, [r2, #8*4] @ b[8]
umull r9, r10, r0, r14 @ d' = a[3] * b[9]
ldr r7, [r1, #4*4] @ a[4]
umlal r5, r6, r0, r8 @ d += a[3] * b[8]
ldr r14, [r2, #7*4] @ b[7]
umlal r9, r10, r7, r8 @ d' += a[4] * b[8]
ldr r0, [r1, #5*4] @ a[5]
umlal r5, r6, r7, r14 @ d += a[4] * b[7]
ldr r8, [r2, #6*4] @ b[6]
umlal r9, r10, r0, r14 @ d' += a[5] * b[7]
ldr r7, [r1, #6*4] @ a[6]
umlal r5, r6, r0, r8 @ d += a[5] * b[6]
ldr r14, [r2, #5*4] @ b[5]
umlal r9, r10, r7, r8 @ d' += a[6] * b[6]
ldr r0, [r1, #7*4] @ a[7]
umlal r5, r6, r7, r14 @ d += a[6] * b[5]
ldr r8, [r2, #4*4] @ b[4]
umlal r9, r10, r0, r14 @ d' += a[7] * b[5]
ldr r7, [r1, #8*4] @ a[8]
umlal r5, r6, r0, r8 @ d += a[7] * b[4]
ldr r14, [r2, #3*4] @ b[3]
umlal r9, r10, r7, r8 @ d' += a[8] * b[4]
ldr r0, [r1, #9*4] @ a[9]
umlal r5, r6, r7, r14 @ d += a[8] * b[3]
ldr r8, [r2, #2*4] @ b[2]
umlal r9, r10, r0, r14 @ d' += a[9] * b[3]
umlal r5, r6, r0, r8 @ d += a[9] * b[2]
bic r0, r5, field_not_M @ u1 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u1 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t1 = c & M
str r14, [sp, #4 + 1*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u1 * R1
umlal r3, r4, r0, r14
/* D */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u2 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u2 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t2 = c & M
str r14, [sp, #4 + 2*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u2 * R1
umlal r3, r4, r0, r14
/* E - interleaved with F */
ldr r7, [r1, #0*4] @ a[0]
ldr r8, [r2, #4*4] @ b[4]
umull r11, r12, r7, r8 @ c' = a[0] * b[4]
ldr r8, [r2, #3*4] @ b[3]
umlal r3, r4, r7, r8 @ c += a[0] * b[3]
ldr r7, [r1, #1*4] @ a[1]
umlal r11, r12, r7, r8 @ c' += a[1] * b[3]
ldr r8, [r2, #2*4] @ b[2]
umlal r3, r4, r7, r8 @ c += a[1] * b[2]
ldr r7, [r1, #2*4] @ a[2]
umlal r11, r12, r7, r8 @ c' += a[2] * b[2]
ldr r8, [r2, #1*4] @ b[1]
umlal r3, r4, r7, r8 @ c += a[2] * b[1]
ldr r7, [r1, #3*4] @ a[3]
umlal r11, r12, r7, r8 @ c' += a[3] * b[1]
ldr r8, [r2, #0*4] @ b[0]
umlal r3, r4, r7, r8 @ c += a[3] * b[0]
ldr r7, [r1, #4*4] @ a[4]
umlal r11, r12, r7, r8 @ c' += a[4] * b[0]
ldr r8, [r2, #9*4] @ b[9]
umlal r5, r6, r7, r8 @ d += a[4] * b[9]
ldr r7, [r1, #5*4] @ a[5]
umull r9, r10, r7, r8 @ d' = a[5] * b[9]
ldr r8, [r2, #8*4] @ b[8]
umlal r5, r6, r7, r8 @ d += a[5] * b[8]
ldr r7, [r1, #6*4] @ a[6]
umlal r9, r10, r7, r8 @ d' += a[6] * b[8]
ldr r8, [r2, #7*4] @ b[7]
umlal r5, r6, r7, r8 @ d += a[6] * b[7]
ldr r7, [r1, #7*4] @ a[7]
umlal r9, r10, r7, r8 @ d' += a[7] * b[7]
ldr r8, [r2, #6*4] @ b[6]
umlal r5, r6, r7, r8 @ d += a[7] * b[6]
ldr r7, [r1, #8*4] @ a[8]
umlal r9, r10, r7, r8 @ d' += a[8] * b[6]
ldr r8, [r2, #5*4] @ b[5]
umlal r5, r6, r7, r8 @ d += a[8] * b[5]
ldr r7, [r1, #9*4] @ a[9]
umlal r9, r10, r7, r8 @ d' += a[9] * b[5]
ldr r8, [r2, #4*4] @ b[4]
umlal r5, r6, r7, r8 @ d += a[9] * b[4]
bic r0, r5, field_not_M @ u3 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u3 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t3 = c & M
str r14, [sp, #4 + 3*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u3 * R1
umlal r3, r4, r0, r14
/* F */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u4 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u4 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t4 = c & M
str r14, [sp, #4 + 4*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u4 * R1
umlal r3, r4, r0, r14
/* G - interleaved with H */
ldr r7, [r1, #0*4] @ a[0]
ldr r8, [r2, #6*4] @ b[6]
ldr r14, [r2, #5*4] @ b[5]
umull r11, r12, r7, r8 @ c' = a[0] * b[6]
ldr r0, [r1, #1*4] @ a[1]
umlal r3, r4, r7, r14 @ c += a[0] * b[5]
ldr r8, [r2, #4*4] @ b[4]
umlal r11, r12, r0, r14 @ c' += a[1] * b[5]
ldr r7, [r1, #2*4] @ a[2]
umlal r3, r4, r0, r8 @ c += a[1] * b[4]
ldr r14, [r2, #3*4] @ b[3]
umlal r11, r12, r7, r8 @ c' += a[2] * b[4]
ldr r0, [r1, #3*4] @ a[3]
umlal r3, r4, r7, r14 @ c += a[2] * b[3]
ldr r8, [r2, #2*4] @ b[2]
umlal r11, r12, r0, r14 @ c' += a[3] * b[3]
ldr r7, [r1, #4*4] @ a[4]
umlal r3, r4, r0, r8 @ c += a[3] * b[2]
ldr r14, [r2, #1*4] @ b[1]
umlal r11, r12, r7, r8 @ c' += a[4] * b[2]
ldr r0, [r1, #5*4] @ a[5]
umlal r3, r4, r7, r14 @ c += a[4] * b[1]
ldr r8, [r2, #0*4] @ b[0]
umlal r11, r12, r0, r14 @ c' += a[5] * b[1]
ldr r7, [r1, #6*4] @ a[6]
umlal r3, r4, r0, r8 @ c += a[5] * b[0]
ldr r14, [r2, #9*4] @ b[9]
umlal r11, r12, r7, r8 @ c' += a[6] * b[0]
ldr r0, [r1, #7*4] @ a[7]
umlal r5, r6, r7, r14 @ d += a[6] * b[9]
ldr r8, [r2, #8*4] @ b[8]
umull r9, r10, r0, r14 @ d' = a[7] * b[9]
ldr r7, [r1, #8*4] @ a[8]
umlal r5, r6, r0, r8 @ d += a[7] * b[8]
ldr r14, [r2, #7*4] @ b[7]
umlal r9, r10, r7, r8 @ d' += a[8] * b[8]
ldr r0, [r1, #9*4] @ a[9]
umlal r5, r6, r7, r14 @ d += a[8] * b[7]
ldr r8, [r2, #6*4] @ b[6]
umlal r9, r10, r0, r14 @ d' += a[9] * b[7]
umlal r5, r6, r0, r8 @ d += a[9] * b[6]
bic r0, r5, field_not_M @ u5 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u5 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t5 = c & M
str r14, [sp, #4 + 5*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u5 * R1
umlal r3, r4, r0, r14
/* H */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u6 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u6 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t6 = c & M
str r14, [sp, #4 + 6*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u6 * R1
umlal r3, r4, r0, r14
/* I - interleaved with J */
ldr r8, [r2, #8*4] @ b[8]
ldr r7, [r1, #0*4] @ a[0]
ldr r14, [r2, #7*4] @ b[7]
umull r11, r12, r7, r8 @ c' = a[0] * b[8]
ldr r0, [r1, #1*4] @ a[1]
umlal r3, r4, r7, r14 @ c += a[0] * b[7]
ldr r8, [r2, #6*4] @ b[6]
umlal r11, r12, r0, r14 @ c' += a[1] * b[7]
ldr r7, [r1, #2*4] @ a[2]
umlal r3, r4, r0, r8 @ c += a[1] * b[6]
ldr r14, [r2, #5*4] @ b[5]
umlal r11, r12, r7, r8 @ c' += a[2] * b[6]
ldr r0, [r1, #3*4] @ a[3]
umlal r3, r4, r7, r14 @ c += a[2] * b[5]
ldr r8, [r2, #4*4] @ b[4]
umlal r11, r12, r0, r14 @ c' += a[3] * b[5]
ldr r7, [r1, #4*4] @ a[4]
umlal r3, r4, r0, r8 @ c += a[3] * b[4]
ldr r14, [r2, #3*4] @ b[3]
umlal r11, r12, r7, r8 @ c' += a[4] * b[4]
ldr r0, [r1, #5*4] @ a[5]
umlal r3, r4, r7, r14 @ c += a[4] * b[3]
ldr r8, [r2, #2*4] @ b[2]
umlal r11, r12, r0, r14 @ c' += a[5] * b[3]
ldr r7, [r1, #6*4] @ a[6]
umlal r3, r4, r0, r8 @ c += a[5] * b[2]
ldr r14, [r2, #1*4] @ b[1]
umlal r11, r12, r7, r8 @ c' += a[6] * b[2]
ldr r0, [r1, #7*4] @ a[7]
umlal r3, r4, r7, r14 @ c += a[6] * b[1]
ldr r8, [r2, #0*4] @ b[0]
umlal r11, r12, r0, r14 @ c' += a[7] * b[1]
ldr r7, [r1, #8*4] @ a[8]
umlal r3, r4, r0, r8 @ c += a[7] * b[0]
ldr r14, [r2, #9*4] @ b[9]
umlal r11, r12, r7, r8 @ c' += a[8] * b[0]
ldr r0, [r1, #9*4] @ a[9]
umlal r5, r6, r7, r14 @ d += a[8] * b[9]
ldr r8, [r2, #8*4] @ b[8]
umull r9, r10, r0, r14 @ d' = a[9] * b[9]
umlal r5, r6, r0, r8 @ d += a[9] * b[8]
bic r0, r5, field_not_M @ u7 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u7 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t7 = c & M
str r14, [sp, #4 + 7*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u7 * R1
umlal r3, r4, r0, r14
/* J */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u8 = d & M
str r0, [sp, #4 + 8*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u8 * R0
umlal r3, r4, r0, r14
/******************************************
* compute and write back result
******************************************
Allocation:
r0 r
r3:r4 c
r5:r6 d
r7 t0
r8 t1
r9 t2
r11 u8
r12 t9
r1,r2,r10,r14 scratch
Note: do not read from a[] after here, it may overlap with r[]
*/
ldr r0, [sp, #0]
add r1, sp, #4 + 3*4 @ r[3..7] = t3..7, r11=u8, r12=t9
ldmia r1, {r2,r7,r8,r9,r10,r11,r12}
add r1, r0, #3*4
stmia r1, {r2,r7,r8,r9,r10}
bic r2, r3, field_not_M @ r[8] = c & M
str r2, [r0, #8*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u8 * R1
umlal r3, r4, r11, r14
movw r14, field_R0 @ c += d * R0
umlal r3, r4, r5, r14
adds r3, r3, r12 @ c += t9
adc r4, r4, #0
add r1, sp, #4 + 0*4 @ r7,r8,r9 = t0,t1,t2
ldmia r1, {r7,r8,r9}
ubfx r2, r3, #0, #22 @ r[9] = c & (M >> 4)
str r2, [r0, #9*4]
mov r3, r3, lsr #22 @ c >>= 22
orr r3, r3, r4, asl #10
mov r4, r4, lsr #22
movw r14, field_R1 << 4 @ c += d * (R1 << 4)
umlal r3, r4, r5, r14
movw r14, field_R0 >> 4 @ d = c * (R0 >> 4) + t0 (64x64 multiply+add)
umull r5, r6, r3, r14 @ d = c.lo * (R0 >> 4)
adds r5, r5, r7 @ d.lo += t0
mla r6, r14, r4, r6 @ d.hi += c.hi * (R0 >> 4)
adc r6, r6, 0 @ d.hi += carry
bic r2, r5, field_not_M @ r[0] = d & M
str r2, [r0, #0*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R1 >> 4 @ d += c * (R1 >> 4) + t1 (64x64 multiply+add)
umull r1, r2, r3, r14 @ tmp = c.lo * (R1 >> 4)
adds r5, r5, r8 @ d.lo += t1
adc r6, r6, #0 @ d.hi += carry
adds r5, r5, r1 @ d.lo += tmp.lo
mla r2, r14, r4, r2 @ tmp.hi += c.hi * (R1 >> 4)
adc r6, r6, r2 @ d.hi += carry + tmp.hi
bic r2, r5, field_not_M @ r[1] = d & M
str r2, [r0, #1*4]
mov r5, r5, lsr #26 @ d >>= 26 (ignore hi)
orr r5, r5, r6, asl #6
add r5, r5, r9 @ d += t2
str r5, [r0, #2*4] @ r[2] = d
add sp, sp, #48
ldmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc}
.size secp256k1_fe_mul_inner, .-secp256k1_fe_mul_inner
.align 2
.global secp256k1_fe_sqr_inner
.type secp256k1_fe_sqr_inner, %function
.hidden secp256k1_fe_sqr_inner
@ Arguments:
@ r0 r Can overlap with a
@ r1 a
@ Stack (total 4+10*4 = 44)
@ sp + #0 saved 'r' pointer
@ sp + #4 + 4*X t0,t1,t2,t3,t4,t5,t6,t7,u8,t9
secp256k1_fe_sqr_inner:
stmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r14}
sub sp, sp, #48 @ frame=44 + alignment
str r0, [sp, #0] @ save result address, we need it only at the end
/******************************************
* Main computation code.
******************************************
Allocation:
r0,r14,r2,r7,r8 scratch
r1 a (pointer)
r3:r4 c
r5:r6 d
r11:r12 c'
r9:r10 d'
Note: do not write to r[] here, it may overlap with a[]
*/
/* A interleaved with B */
ldr r0, [r1, #1*4] @ a[1]*2
ldr r7, [r1, #0*4] @ a[0]
mov r0, r0, asl #1
ldr r14, [r1, #9*4] @ a[9]
umull r3, r4, r7, r7 @ c = a[0] * a[0]
ldr r8, [r1, #8*4] @ a[8]
mov r7, r7, asl #1
umull r5, r6, r7, r14 @ d = a[0]*2 * a[9]
ldr r7, [r1, #2*4] @ a[2]*2
umull r9, r10, r0, r14 @ d' = a[1]*2 * a[9]
ldr r14, [r1, #7*4] @ a[7]
umlal r5, r6, r0, r8 @ d += a[1]*2 * a[8]
mov r7, r7, asl #1
ldr r0, [r1, #3*4] @ a[3]*2
umlal r9, r10, r7, r8 @ d' += a[2]*2 * a[8]
ldr r8, [r1, #6*4] @ a[6]
umlal r5, r6, r7, r14 @ d += a[2]*2 * a[7]
mov r0, r0, asl #1
ldr r7, [r1, #4*4] @ a[4]*2
umlal r9, r10, r0, r14 @ d' += a[3]*2 * a[7]
ldr r14, [r1, #5*4] @ a[5]
mov r7, r7, asl #1
umlal r5, r6, r0, r8 @ d += a[3]*2 * a[6]
umlal r9, r10, r7, r8 @ d' += a[4]*2 * a[6]
umlal r5, r6, r7, r14 @ d += a[4]*2 * a[5]
umlal r9, r10, r14, r14 @ d' += a[5] * a[5]
bic r0, r5, field_not_M @ t9 = d & M
str r0, [sp, #4 + 9*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
/* B */
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u0 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u0 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t0 = c & M
str r14, [sp, #4 + 0*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u0 * R1
umlal r3, r4, r0, r14
/* C interleaved with D */
ldr r0, [r1, #0*4] @ a[0]*2
ldr r14, [r1, #1*4] @ a[1]
mov r0, r0, asl #1
ldr r8, [r1, #2*4] @ a[2]
umlal r3, r4, r0, r14 @ c += a[0]*2 * a[1]
mov r7, r8, asl #1 @ a[2]*2
umull r11, r12, r14, r14 @ c' = a[1] * a[1]
ldr r14, [r1, #9*4] @ a[9]
umlal r11, r12, r0, r8 @ c' += a[0]*2 * a[2]
ldr r0, [r1, #3*4] @ a[3]*2
ldr r8, [r1, #8*4] @ a[8]
umlal r5, r6, r7, r14 @ d += a[2]*2 * a[9]
mov r0, r0, asl #1
ldr r7, [r1, #4*4] @ a[4]*2
umull r9, r10, r0, r14 @ d' = a[3]*2 * a[9]
ldr r14, [r1, #7*4] @ a[7]
umlal r5, r6, r0, r8 @ d += a[3]*2 * a[8]
mov r7, r7, asl #1
ldr r0, [r1, #5*4] @ a[5]*2
umlal r9, r10, r7, r8 @ d' += a[4]*2 * a[8]
ldr r8, [r1, #6*4] @ a[6]
mov r0, r0, asl #1
umlal r5, r6, r7, r14 @ d += a[4]*2 * a[7]
umlal r9, r10, r0, r14 @ d' += a[5]*2 * a[7]
umlal r5, r6, r0, r8 @ d += a[5]*2 * a[6]
umlal r9, r10, r8, r8 @ d' += a[6] * a[6]
bic r0, r5, field_not_M @ u1 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u1 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t1 = c & M
str r14, [sp, #4 + 1*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u1 * R1
umlal r3, r4, r0, r14
/* D */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u2 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u2 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t2 = c & M
str r14, [sp, #4 + 2*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u2 * R1
umlal r3, r4, r0, r14
/* E interleaved with F */
ldr r7, [r1, #0*4] @ a[0]*2
ldr r0, [r1, #1*4] @ a[1]*2
ldr r14, [r1, #2*4] @ a[2]
mov r7, r7, asl #1
ldr r8, [r1, #3*4] @ a[3]
ldr r2, [r1, #4*4]
umlal r3, r4, r7, r8 @ c += a[0]*2 * a[3]
mov r0, r0, asl #1
umull r11, r12, r7, r2 @ c' = a[0]*2 * a[4]
mov r2, r2, asl #1 @ a[4]*2
umlal r11, r12, r0, r8 @ c' += a[1]*2 * a[3]
ldr r8, [r1, #9*4] @ a[9]
umlal r3, r4, r0, r14 @ c += a[1]*2 * a[2]
ldr r0, [r1, #5*4] @ a[5]*2
umlal r11, r12, r14, r14 @ c' += a[2] * a[2]
ldr r14, [r1, #8*4] @ a[8]
mov r0, r0, asl #1
umlal r5, r6, r2, r8 @ d += a[4]*2 * a[9]
ldr r7, [r1, #6*4] @ a[6]*2
umull r9, r10, r0, r8 @ d' = a[5]*2 * a[9]
mov r7, r7, asl #1
ldr r8, [r1, #7*4] @ a[7]
umlal r5, r6, r0, r14 @ d += a[5]*2 * a[8]
umlal r9, r10, r7, r14 @ d' += a[6]*2 * a[8]
umlal r5, r6, r7, r8 @ d += a[6]*2 * a[7]
umlal r9, r10, r8, r8 @ d' += a[7] * a[7]
bic r0, r5, field_not_M @ u3 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u3 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t3 = c & M
str r14, [sp, #4 + 3*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u3 * R1
umlal r3, r4, r0, r14
/* F */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u4 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u4 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t4 = c & M
str r14, [sp, #4 + 4*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u4 * R1
umlal r3, r4, r0, r14
/* G interleaved with H */
ldr r7, [r1, #0*4] @ a[0]*2
ldr r0, [r1, #1*4] @ a[1]*2
mov r7, r7, asl #1
ldr r8, [r1, #5*4] @ a[5]
ldr r2, [r1, #6*4] @ a[6]
umlal r3, r4, r7, r8 @ c += a[0]*2 * a[5]
ldr r14, [r1, #4*4] @ a[4]
mov r0, r0, asl #1
umull r11, r12, r7, r2 @ c' = a[0]*2 * a[6]
ldr r7, [r1, #2*4] @ a[2]*2
umlal r11, r12, r0, r8 @ c' += a[1]*2 * a[5]
mov r7, r7, asl #1
ldr r8, [r1, #3*4] @ a[3]
umlal r3, r4, r0, r14 @ c += a[1]*2 * a[4]
mov r0, r2, asl #1 @ a[6]*2
umlal r11, r12, r7, r14 @ c' += a[2]*2 * a[4]
ldr r14, [r1, #9*4] @ a[9]
umlal r3, r4, r7, r8 @ c += a[2]*2 * a[3]
ldr r7, [r1, #7*4] @ a[7]*2
umlal r11, r12, r8, r8 @ c' += a[3] * a[3]
mov r7, r7, asl #1
ldr r8, [r1, #8*4] @ a[8]
umlal r5, r6, r0, r14 @ d += a[6]*2 * a[9]
umull r9, r10, r7, r14 @ d' = a[7]*2 * a[9]
umlal r5, r6, r7, r8 @ d += a[7]*2 * a[8]
umlal r9, r10, r8, r8 @ d' += a[8] * a[8]
bic r0, r5, field_not_M @ u5 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u5 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t5 = c & M
str r14, [sp, #4 + 5*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u5 * R1
umlal r3, r4, r0, r14
/* H */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u6 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u6 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t6 = c & M
str r14, [sp, #4 + 6*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u6 * R1
umlal r3, r4, r0, r14
/* I interleaved with J */
ldr r7, [r1, #0*4] @ a[0]*2
ldr r0, [r1, #1*4] @ a[1]*2
mov r7, r7, asl #1
ldr r8, [r1, #7*4] @ a[7]
ldr r2, [r1, #8*4] @ a[8]
umlal r3, r4, r7, r8 @ c += a[0]*2 * a[7]
ldr r14, [r1, #6*4] @ a[6]
mov r0, r0, asl #1
umull r11, r12, r7, r2 @ c' = a[0]*2 * a[8]
ldr r7, [r1, #2*4] @ a[2]*2
umlal r11, r12, r0, r8 @ c' += a[1]*2 * a[7]
ldr r8, [r1, #5*4] @ a[5]
umlal r3, r4, r0, r14 @ c += a[1]*2 * a[6]
ldr r0, [r1, #3*4] @ a[3]*2
mov r7, r7, asl #1
umlal r11, r12, r7, r14 @ c' += a[2]*2 * a[6]
ldr r14, [r1, #4*4] @ a[4]
mov r0, r0, asl #1
umlal r3, r4, r7, r8 @ c += a[2]*2 * a[5]
mov r2, r2, asl #1 @ a[8]*2
umlal r11, r12, r0, r8 @ c' += a[3]*2 * a[5]
umlal r3, r4, r0, r14 @ c += a[3]*2 * a[4]
umlal r11, r12, r14, r14 @ c' += a[4] * a[4]
ldr r8, [r1, #9*4] @ a[9]
umlal r5, r6, r2, r8 @ d += a[8]*2 * a[9]
@ r8 will be used in J
bic r0, r5, field_not_M @ u7 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u7 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t7 = c & M
str r14, [sp, #4 + 7*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u7 * R1
umlal r3, r4, r0, r14
/* J */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
umlal r5, r6, r8, r8 @ d += a[9] * a[9]
bic r0, r5, field_not_M @ u8 = d & M
str r0, [sp, #4 + 8*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u8 * R0
umlal r3, r4, r0, r14
/******************************************
* compute and write back result
******************************************
Allocation:
r0 r
r3:r4 c
r5:r6 d
r7 t0
r8 t1
r9 t2
r11 u8
r12 t9
r1,r2,r10,r14 scratch
Note: do not read from a[] after here, it may overlap with r[]
*/
ldr r0, [sp, #0]
add r1, sp, #4 + 3*4 @ r[3..7] = t3..7, r11=u8, r12=t9
ldmia r1, {r2,r7,r8,r9,r10,r11,r12}
add r1, r0, #3*4
stmia r1, {r2,r7,r8,r9,r10}
bic r2, r3, field_not_M @ r[8] = c & M
str r2, [r0, #8*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u8 * R1
umlal r3, r4, r11, r14
movw r14, field_R0 @ c += d * R0
umlal r3, r4, r5, r14
adds r3, r3, r12 @ c += t9
adc r4, r4, #0
add r1, sp, #4 + 0*4 @ r7,r8,r9 = t0,t1,t2
ldmia r1, {r7,r8,r9}
ubfx r2, r3, #0, #22 @ r[9] = c & (M >> 4)
str r2, [r0, #9*4]
mov r3, r3, lsr #22 @ c >>= 22
orr r3, r3, r4, asl #10
mov r4, r4, lsr #22
movw r14, field_R1 << 4 @ c += d * (R1 << 4)
umlal r3, r4, r5, r14
movw r14, field_R0 >> 4 @ d = c * (R0 >> 4) + t0 (64x64 multiply+add)
umull r5, r6, r3, r14 @ d = c.lo * (R0 >> 4)
adds r5, r5, r7 @ d.lo += t0
mla r6, r14, r4, r6 @ d.hi += c.hi * (R0 >> 4)
adc r6, r6, 0 @ d.hi += carry
bic r2, r5, field_not_M @ r[0] = d & M
str r2, [r0, #0*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R1 >> 4 @ d += c * (R1 >> 4) + t1 (64x64 multiply+add)
umull r1, r2, r3, r14 @ tmp = c.lo * (R1 >> 4)
adds r5, r5, r8 @ d.lo += t1
adc r6, r6, #0 @ d.hi += carry
adds r5, r5, r1 @ d.lo += tmp.lo
mla r2, r14, r4, r2 @ tmp.hi += c.hi * (R1 >> 4)
adc r6, r6, r2 @ d.hi += carry + tmp.hi
bic r2, r5, field_not_M @ r[1] = d & M
str r2, [r0, #1*4]
mov r5, r5, lsr #26 @ d >>= 26 (ignore hi)
orr r5, r5, r6, asl #6
add r5, r5, r9 @ d += t2
str r5, [r0, #2*4] @ r[2] = d
add sp, sp, #48
ldmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc}
.size secp256k1_fe_sqr_inner, .-secp256k1_fe_sqr_inner
.section .note.GNU-stack,"",%progbits

View File

@ -0,0 +1,87 @@
/***********************************************************************
* Copyright (c) 2020 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ASSUMPTIONS_H
#define SECP256K1_ASSUMPTIONS_H
#include <limits.h>
#include "util.h"
#if defined(SECP256K1_INT128_NATIVE)
#include "int128_native.h"
#endif
/* This library, like most software, relies on a number of compiler implementation defined (but not undefined)
behaviours. Although the behaviours we require are essentially universal we test them specifically here to
reduce the odds of experiencing an unwelcome surprise.
*/
#if defined(__has_attribute)
# if __has_attribute(__unavailable__)
__attribute__((__unavailable__("Don't call this function. It only exists because STATIC_ASSERT cannot be used outside a function.")))
# endif
#endif
static void secp256k1_assumption_checker(void) {
/* Bytes are 8 bits. */
STATIC_ASSERT(CHAR_BIT == 8);
/* No integer promotion for uint32_t. This ensures that we can multiply uintXX_t values where XX >= 32
without signed overflow, which would be undefined behaviour. */
STATIC_ASSERT(UINT_MAX <= UINT32_MAX);
/* Conversions from unsigned to signed outside of the bounds of the signed type are
implementation-defined. Verify that they function as reinterpreting the lower
bits of the input in two's complement notation. Do this for conversions:
- from uint(N)_t to int(N)_t with negative result
- from uint(2N)_t to int(N)_t with negative result
- from int(2N)_t to int(N)_t with negative result
- from int(2N)_t to int(N)_t with positive result */
/* To int8_t. */
STATIC_ASSERT(((int8_t)(uint8_t)0xAB == (int8_t)-(int8_t)0x55));
STATIC_ASSERT((int8_t)(uint16_t)0xABCD == (int8_t)-(int8_t)0x33);
STATIC_ASSERT((int8_t)(int16_t)(uint16_t)0xCDEF == (int8_t)(uint8_t)0xEF);
STATIC_ASSERT((int8_t)(int16_t)(uint16_t)0x9234 == (int8_t)(uint8_t)0x34);
/* To int16_t. */
STATIC_ASSERT((int16_t)(uint16_t)0xBCDE == (int16_t)-(int16_t)0x4322);
STATIC_ASSERT((int16_t)(uint32_t)0xA1B2C3D4 == (int16_t)-(int16_t)0x3C2C);
STATIC_ASSERT((int16_t)(int32_t)(uint32_t)0xC1D2E3F4 == (int16_t)(uint16_t)0xE3F4);
STATIC_ASSERT((int16_t)(int32_t)(uint32_t)0x92345678 == (int16_t)(uint16_t)0x5678);
/* To int32_t. */
STATIC_ASSERT((int32_t)(uint32_t)0xB2C3D4E5 == (int32_t)-(int32_t)0x4D3C2B1B);
STATIC_ASSERT((int32_t)(uint64_t)0xA123B456C789D012ULL == (int32_t)-(int32_t)0x38762FEE);
STATIC_ASSERT((int32_t)(int64_t)(uint64_t)0xC1D2E3F4A5B6C7D8ULL == (int32_t)(uint32_t)0xA5B6C7D8);
STATIC_ASSERT((int32_t)(int64_t)(uint64_t)0xABCDEF0123456789ULL == (int32_t)(uint32_t)0x23456789);
/* To int64_t. */
STATIC_ASSERT((int64_t)(uint64_t)0xB123C456D789E012ULL == (int64_t)-(int64_t)0x4EDC3BA928761FEEULL);
#if defined(SECP256K1_INT128_NATIVE)
STATIC_ASSERT((int64_t)(((uint128_t)0xA1234567B8901234ULL << 64) + 0xC5678901D2345678ULL) == (int64_t)-(int64_t)0x3A9876FE2DCBA988ULL);
STATIC_ASSERT(((int64_t)(int128_t)(((uint128_t)0xB1C2D3E4F5A6B7C8ULL << 64) + 0xD9E0F1A2B3C4D5E6ULL)) == (int64_t)(uint64_t)0xD9E0F1A2B3C4D5E6ULL);
STATIC_ASSERT(((int64_t)(int128_t)(((uint128_t)0xABCDEF0123456789ULL << 64) + 0x0123456789ABCDEFULL)) == (int64_t)(uint64_t)0x0123456789ABCDEFULL);
/* To int128_t. */
STATIC_ASSERT((int128_t)(((uint128_t)0xB1234567C8901234ULL << 64) + 0xD5678901E2345678ULL) == (int128_t)(-(int128_t)0x8E1648B3F50E80DCULL * 0x8E1648B3F50E80DDULL + 0x5EA688D5482F9464ULL));
#endif
/* Right shift on negative signed values is implementation defined. Verify that it
acts as a right shift in two's complement with sign extension (i.e duplicating
the top bit into newly added bits). */
STATIC_ASSERT((((int8_t)0xE8) >> 2) == (int8_t)(uint8_t)0xFA);
STATIC_ASSERT((((int16_t)0xE9AC) >> 4) == (int16_t)(uint16_t)0xFE9A);
STATIC_ASSERT((((int32_t)0x937C918A) >> 9) == (int32_t)(uint32_t)0xFFC9BE48);
STATIC_ASSERT((((int64_t)0xA8B72231DF9CF4B9ULL) >> 19) == (int64_t)(uint64_t)0xFFFFF516E4463BF3ULL);
#if defined(SECP256K1_INT128_NATIVE)
STATIC_ASSERT((((int128_t)(((uint128_t)0xCD833A65684A0DBCULL << 64) + 0xB349312F71EA7637ULL)) >> 39) == (int128_t)(((uint128_t)0xFFFFFFFFFF9B0674ULL << 64) + 0xCAD0941B79669262ULL));
#endif
/* This function is not supposed to be called. */
VERIFY_CHECK(0);
}
#endif /* SECP256K1_ASSUMPTIONS_H */

284
secp256k1/src/bench.c Normal file
View File

@ -0,0 +1,284 @@
/***********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "../include/secp256k1.h"
#include "util.h"
#include "bench.h"
static void help(int default_iters) {
printf("Benchmarks the following algorithms:\n");
printf(" - ECDSA signing/verification\n");
#ifdef ENABLE_MODULE_RECOVERY
printf(" - Public key recovery (optional module)\n");
#endif
#ifdef ENABLE_MODULE_ECDH
printf(" - ECDH key exchange (optional module)\n");
#endif
#ifdef ENABLE_MODULE_SCHNORRSIG
printf(" - Schnorr signatures (optional module)\n");
#endif
#ifdef ENABLE_MODULE_ELLSWIFT
printf(" - ElligatorSwift (optional module)\n");
#endif
printf("\n");
printf("The default number of iterations for each benchmark is %d. This can be\n", default_iters);
printf("customized using the SECP256K1_BENCH_ITERS environment variable.\n");
printf("\n");
printf("Usage: ./bench [args]\n");
printf("By default, all benchmarks will be run.\n");
printf("args:\n");
printf(" help : display this help and exit\n");
printf(" ecdsa : all ECDSA algorithms--sign, verify, recovery (if enabled)\n");
printf(" ecdsa_sign : ECDSA siging algorithm\n");
printf(" ecdsa_verify : ECDSA verification algorithm\n");
printf(" ec : all EC public key algorithms (keygen)\n");
printf(" ec_keygen : EC public key generation\n");
#ifdef ENABLE_MODULE_RECOVERY
printf(" ecdsa_recover : ECDSA public key recovery algorithm\n");
#endif
#ifdef ENABLE_MODULE_ECDH
printf(" ecdh : ECDH key exchange algorithm\n");
#endif
#ifdef ENABLE_MODULE_SCHNORRSIG
printf(" schnorrsig : all Schnorr signature algorithms (sign, verify)\n");
printf(" schnorrsig_sign : Schnorr sigining algorithm\n");
printf(" schnorrsig_verify : Schnorr verification algorithm\n");
#endif
#ifdef ENABLE_MODULE_ELLSWIFT
printf(" ellswift : all ElligatorSwift benchmarks (encode, decode, keygen, ecdh)\n");
printf(" ellswift_encode : ElligatorSwift encoding\n");
printf(" ellswift_decode : ElligatorSwift decoding\n");
printf(" ellswift_keygen : ElligatorSwift key generation\n");
printf(" ellswift_ecdh : ECDH on ElligatorSwift keys\n");
#endif
printf("\n");
}
typedef struct {
secp256k1_context *ctx;
unsigned char msg[32];
unsigned char key[32];
unsigned char sig[72];
size_t siglen;
unsigned char pubkey[33];
size_t pubkeylen;
} bench_data;
static void bench_verify(void* arg, int iters) {
int i;
bench_data* data = (bench_data*)arg;
for (i = 0; i < iters; i++) {
secp256k1_pubkey pubkey;
secp256k1_ecdsa_signature sig;
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
CHECK(secp256k1_ec_pubkey_parse(data->ctx, &pubkey, data->pubkey, data->pubkeylen) == 1);
CHECK(secp256k1_ecdsa_signature_parse_der(data->ctx, &sig, data->sig, data->siglen) == 1);
CHECK(secp256k1_ecdsa_verify(data->ctx, &sig, data->msg, &pubkey) == (i == 0));
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
}
}
static void bench_sign_setup(void* arg) {
int i;
bench_data *data = (bench_data*)arg;
for (i = 0; i < 32; i++) {
data->msg[i] = i + 1;
}
for (i = 0; i < 32; i++) {
data->key[i] = i + 65;
}
}
static void bench_sign_run(void* arg, int iters) {
int i;
bench_data *data = (bench_data*)arg;
unsigned char sig[74];
for (i = 0; i < iters; i++) {
size_t siglen = 74;
int j;
secp256k1_ecdsa_signature signature;
CHECK(secp256k1_ecdsa_sign(data->ctx, &signature, data->msg, data->key, NULL, NULL));
CHECK(secp256k1_ecdsa_signature_serialize_der(data->ctx, sig, &siglen, &signature));
for (j = 0; j < 32; j++) {
data->msg[j] = sig[j];
data->key[j] = sig[j + 32];
}
}
}
static void bench_keygen_setup(void* arg) {
int i;
bench_data *data = (bench_data*)arg;
for (i = 0; i < 32; i++) {
data->key[i] = i + 65;
}
}
static void bench_keygen_run(void *arg, int iters) {
int i;
bench_data *data = (bench_data*)arg;
for (i = 0; i < iters; i++) {
unsigned char pub33[33];
size_t len = 33;
secp256k1_pubkey pubkey;
CHECK(secp256k1_ec_pubkey_create(data->ctx, &pubkey, data->key));
CHECK(secp256k1_ec_pubkey_serialize(data->ctx, pub33, &len, &pubkey, SECP256K1_EC_COMPRESSED));
memcpy(data->key, pub33 + 1, 32);
}
}
#ifdef ENABLE_MODULE_ECDH
# include "modules/ecdh/bench_impl.h"
#endif
#ifdef ENABLE_MODULE_RECOVERY
# include "modules/recovery/bench_impl.h"
#endif
#ifdef ENABLE_MODULE_SCHNORRSIG
# include "modules/schnorrsig/bench_impl.h"
#endif
#ifdef ENABLE_MODULE_ELLSWIFT
# include "modules/ellswift/bench_impl.h"
#endif
int main(int argc, char** argv) {
int i;
secp256k1_pubkey pubkey;
secp256k1_ecdsa_signature sig;
bench_data data;
int d = argc == 1;
int default_iters = 20000;
int iters = get_iters(default_iters);
/* Check for invalid user arguments */
char* valid_args[] = {"ecdsa", "verify", "ecdsa_verify", "sign", "ecdsa_sign", "ecdh", "recover",
"ecdsa_recover", "schnorrsig", "schnorrsig_verify", "schnorrsig_sign", "ec",
"keygen", "ec_keygen", "ellswift", "encode", "ellswift_encode", "decode",
"ellswift_decode", "ellswift_keygen", "ellswift_ecdh"};
size_t valid_args_size = sizeof(valid_args)/sizeof(valid_args[0]);
int invalid_args = have_invalid_args(argc, argv, valid_args, valid_args_size);
if (argc > 1) {
if (have_flag(argc, argv, "-h")
|| have_flag(argc, argv, "--help")
|| have_flag(argc, argv, "help")) {
help(default_iters);
return EXIT_SUCCESS;
} else if (invalid_args) {
fprintf(stderr, "./bench: unrecognized argument.\n\n");
help(default_iters);
return EXIT_FAILURE;
}
}
/* Check if the user tries to benchmark optional module without building it */
#ifndef ENABLE_MODULE_ECDH
if (have_flag(argc, argv, "ecdh")) {
fprintf(stderr, "./bench: ECDH module not enabled.\n");
fprintf(stderr, "Use ./configure --enable-module-ecdh.\n\n");
return EXIT_FAILURE;
}
#endif
#ifndef ENABLE_MODULE_RECOVERY
if (have_flag(argc, argv, "recover") || have_flag(argc, argv, "ecdsa_recover")) {
fprintf(stderr, "./bench: Public key recovery module not enabled.\n");
fprintf(stderr, "Use ./configure --enable-module-recovery.\n\n");
return EXIT_FAILURE;
}
#endif
#ifndef ENABLE_MODULE_SCHNORRSIG
if (have_flag(argc, argv, "schnorrsig") || have_flag(argc, argv, "schnorrsig_sign") || have_flag(argc, argv, "schnorrsig_verify")) {
fprintf(stderr, "./bench: Schnorr signatures module not enabled.\n");
fprintf(stderr, "Use ./configure --enable-module-schnorrsig.\n\n");
return EXIT_FAILURE;
}
#endif
#ifndef ENABLE_MODULE_ELLSWIFT
if (have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "ellswift_encode") || have_flag(argc, argv, "ellswift_decode") ||
have_flag(argc, argv, "encode") || have_flag(argc, argv, "decode") || have_flag(argc, argv, "ellswift_keygen") ||
have_flag(argc, argv, "ellswift_ecdh")) {
fprintf(stderr, "./bench: ElligatorSwift module not enabled.\n");
fprintf(stderr, "Use ./configure --enable-module-ellswift.\n\n");
return EXIT_FAILURE;
}
#endif
/* ECDSA benchmark */
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
for (i = 0; i < 32; i++) {
data.msg[i] = 1 + i;
}
for (i = 0; i < 32; i++) {
data.key[i] = 33 + i;
}
data.siglen = 72;
CHECK(secp256k1_ecdsa_sign(data.ctx, &sig, data.msg, data.key, NULL, NULL));
CHECK(secp256k1_ecdsa_signature_serialize_der(data.ctx, data.sig, &data.siglen, &sig));
CHECK(secp256k1_ec_pubkey_create(data.ctx, &pubkey, data.key));
data.pubkeylen = 33;
CHECK(secp256k1_ec_pubkey_serialize(data.ctx, data.pubkey, &data.pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED) == 1);
print_output_table_header_row();
if (d || have_flag(argc, argv, "ecdsa") || have_flag(argc, argv, "verify") || have_flag(argc, argv, "ecdsa_verify")) run_benchmark("ecdsa_verify", bench_verify, NULL, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "ecdsa") || have_flag(argc, argv, "sign") || have_flag(argc, argv, "ecdsa_sign")) run_benchmark("ecdsa_sign", bench_sign_run, bench_sign_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "ec") || have_flag(argc, argv, "keygen") || have_flag(argc, argv, "ec_keygen")) run_benchmark("ec_keygen", bench_keygen_run, bench_keygen_setup, NULL, &data, 10, iters);
secp256k1_context_destroy(data.ctx);
#ifdef ENABLE_MODULE_ECDH
/* ECDH benchmarks */
run_ecdh_bench(iters, argc, argv);
#endif
#ifdef ENABLE_MODULE_RECOVERY
/* ECDSA recovery benchmarks */
run_recovery_bench(iters, argc, argv);
#endif
#ifdef ENABLE_MODULE_SCHNORRSIG
/* Schnorr signature benchmarks */
run_schnorrsig_bench(iters, argc, argv);
#endif
#ifdef ENABLE_MODULE_ELLSWIFT
/* ElligatorSwift benchmarks */
run_ellswift_bench(iters, argc, argv);
#endif
return EXIT_SUCCESS;
}

188
secp256k1/src/bench.h Normal file
View File

@ -0,0 +1,188 @@
/***********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_BENCH_H
#define SECP256K1_BENCH_H
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#if (defined(_MSC_VER) && _MSC_VER >= 1900)
# include <time.h>
#else
# include <sys/time.h>
#endif
static int64_t gettime_i64(void) {
#if (defined(_MSC_VER) && _MSC_VER >= 1900)
/* C11 way to get wallclock time */
struct timespec tv;
if (!timespec_get(&tv, TIME_UTC)) {
fputs("timespec_get failed!", stderr);
exit(EXIT_FAILURE);
}
return (int64_t)tv.tv_nsec / 1000 + (int64_t)tv.tv_sec * 1000000LL;
#else
struct timeval tv;
gettimeofday(&tv, NULL);
return (int64_t)tv.tv_usec + (int64_t)tv.tv_sec * 1000000LL;
#endif
}
#define FP_EXP (6)
#define FP_MULT (1000000LL)
/* Format fixed point number. */
static void print_number(const int64_t x) {
int64_t x_abs, y;
int c, i, rounding, g; /* g = integer part size, c = fractional part size */
size_t ptr;
char buffer[30];
if (x == INT64_MIN) {
/* Prevent UB. */
printf("ERR");
return;
}
x_abs = x < 0 ? -x : x;
/* Determine how many decimals we want to show (more than FP_EXP makes no
* sense). */
y = x_abs;
c = 0;
while (y > 0LL && y < 100LL * FP_MULT && c < FP_EXP) {
y *= 10LL;
c++;
}
/* Round to 'c' decimals. */
y = x_abs;
rounding = 0;
for (i = c; i < FP_EXP; ++i) {
rounding = (y % 10) >= 5;
y /= 10;
}
y += rounding;
/* Format and print the number. */
ptr = sizeof(buffer) - 1;
buffer[ptr] = 0;
g = 0;
if (c != 0) { /* non zero fractional part */
for (i = 0; i < c; ++i) {
buffer[--ptr] = '0' + (y % 10);
y /= 10;
}
} else if (c == 0) { /* fractional part is 0 */
buffer[--ptr] = '0';
}
buffer[--ptr] = '.';
do {
buffer[--ptr] = '0' + (y % 10);
y /= 10;
g++;
} while (y != 0);
if (x < 0) {
buffer[--ptr] = '-';
g++;
}
printf("%5.*s", g, &buffer[ptr]); /* Prints integer part */
printf("%-*s", FP_EXP, &buffer[ptr + g]); /* Prints fractional part */
}
static void run_benchmark(char *name, void (*benchmark)(void*, int), void (*setup)(void*), void (*teardown)(void*, int), void* data, int count, int iter) {
int i;
int64_t min = INT64_MAX;
int64_t sum = 0;
int64_t max = 0;
for (i = 0; i < count; i++) {
int64_t begin, total;
if (setup != NULL) {
setup(data);
}
begin = gettime_i64();
benchmark(data, iter);
total = gettime_i64() - begin;
if (teardown != NULL) {
teardown(data, iter);
}
if (total < min) {
min = total;
}
if (total > max) {
max = total;
}
sum += total;
}
/* ',' is used as a column delimiter */
printf("%-30s, ", name);
print_number(min * FP_MULT / iter);
printf(" , ");
print_number(((sum * FP_MULT) / count) / iter);
printf(" , ");
print_number(max * FP_MULT / iter);
printf("\n");
}
static int have_flag(int argc, char** argv, char *flag) {
char** argm = argv + argc;
argv++;
while (argv != argm) {
if (strcmp(*argv, flag) == 0) {
return 1;
}
argv++;
}
return 0;
}
/* takes an array containing the arguments that the user is allowed to enter on the command-line
returns:
- 1 if the user entered an invalid argument
- 0 if all the user entered arguments are valid */
static int have_invalid_args(int argc, char** argv, char** valid_args, size_t n) {
size_t i;
int found_valid;
char** argm = argv + argc;
argv++;
while (argv != argm) {
found_valid = 0;
for (i = 0; i < n; i++) {
if (strcmp(*argv, valid_args[i]) == 0) {
found_valid = 1; /* user entered a valid arg from the list */
break;
}
}
if (found_valid == 0) {
return 1; /* invalid arg found */
}
argv++;
}
return 0;
}
static int get_iters(int default_iters) {
char* env = getenv("SECP256K1_BENCH_ITERS");
if (env) {
return strtol(env, NULL, 0);
} else {
return default_iters;
}
}
static void print_output_table_header_row(void) {
char* bench_str = "Benchmark"; /* left justified */
char* min_str = " Min(us) "; /* center alignment */
char* avg_str = " Avg(us) ";
char* max_str = " Max(us) ";
printf("%-30s,%-15s,%-15s,%-15s\n", bench_str, min_str, avg_str, max_str);
printf("\n");
}
#endif /* SECP256K1_BENCH_H */

View File

@ -0,0 +1,399 @@
/***********************************************************************
* Copyright (c) 2017 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "secp256k1.c"
#include "../include/secp256k1.h"
#include "util.h"
#include "hash_impl.h"
#include "field_impl.h"
#include "group_impl.h"
#include "scalar_impl.h"
#include "ecmult_impl.h"
#include "bench.h"
#define POINTS 32768
static void help(char **argv) {
printf("Benchmark EC multiplication algorithms\n");
printf("\n");
printf("Usage: %s <help|pippenger_wnaf|strauss_wnaf|simple>\n", argv[0]);
printf("The output shows the number of multiplied and summed points right after the\n");
printf("function name. The letter 'g' indicates that one of the points is the generator.\n");
printf("The benchmarks are divided by the number of points.\n");
printf("\n");
printf("default (ecmult_multi): picks pippenger_wnaf or strauss_wnaf depending on the\n");
printf(" batch size\n");
printf("pippenger_wnaf: for all batch sizes\n");
printf("strauss_wnaf: for all batch sizes\n");
printf("simple: multiply and sum each point individually\n");
}
typedef struct {
/* Setup once in advance */
secp256k1_context* ctx;
secp256k1_scratch_space* scratch;
secp256k1_scalar* scalars;
secp256k1_ge* pubkeys;
secp256k1_gej* pubkeys_gej;
secp256k1_scalar* seckeys;
secp256k1_gej* expected_output;
secp256k1_ecmult_multi_func ecmult_multi;
/* Changes per benchmark */
size_t count;
int includes_g;
/* Changes per benchmark iteration, used to pick different scalars and pubkeys
* in each run. */
size_t offset1;
size_t offset2;
/* Benchmark output. */
secp256k1_gej* output;
secp256k1_fe* output_xonly;
} bench_data;
/* Hashes x into [0, POINTS) twice and store the result in offset1 and offset2. */
static void hash_into_offset(bench_data* data, size_t x) {
data->offset1 = (x * 0x537b7f6f + 0x8f66a481) % POINTS;
data->offset2 = (x * 0x7f6f537b + 0x6a1a8f49) % POINTS;
}
/* Check correctness of the benchmark by computing
* sum(outputs) ?= (sum(scalars_gen) + sum(seckeys)*sum(scalars))*G */
static void bench_ecmult_teardown_helper(bench_data* data, size_t* seckey_offset, size_t* scalar_offset, size_t* scalar_gen_offset, int iters) {
int i;
secp256k1_gej sum_output, tmp;
secp256k1_scalar sum_scalars;
secp256k1_gej_set_infinity(&sum_output);
secp256k1_scalar_set_int(&sum_scalars, 0);
for (i = 0; i < iters; ++i) {
secp256k1_gej_add_var(&sum_output, &sum_output, &data->output[i], NULL);
if (scalar_gen_offset != NULL) {
secp256k1_scalar_add(&sum_scalars, &sum_scalars, &data->scalars[(*scalar_gen_offset+i) % POINTS]);
}
if (seckey_offset != NULL) {
secp256k1_scalar s = data->seckeys[(*seckey_offset+i) % POINTS];
secp256k1_scalar_mul(&s, &s, &data->scalars[(*scalar_offset+i) % POINTS]);
secp256k1_scalar_add(&sum_scalars, &sum_scalars, &s);
}
}
secp256k1_ecmult_gen(&data->ctx->ecmult_gen_ctx, &tmp, &sum_scalars);
CHECK(secp256k1_gej_eq_var(&tmp, &sum_output));
}
static void bench_ecmult_setup(void* arg) {
bench_data* data = (bench_data*)arg;
/* Re-randomize offset to ensure that we're using different scalars and
* group elements in each run. */
hash_into_offset(data, data->offset1);
}
static void bench_ecmult_gen(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
int i;
for (i = 0; i < iters; ++i) {
secp256k1_ecmult_gen(&data->ctx->ecmult_gen_ctx, &data->output[i], &data->scalars[(data->offset1+i) % POINTS]);
}
}
static void bench_ecmult_gen_teardown(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
bench_ecmult_teardown_helper(data, NULL, NULL, &data->offset1, iters);
}
static void bench_ecmult_const(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
int i;
for (i = 0; i < iters; ++i) {
secp256k1_ecmult_const(&data->output[i], &data->pubkeys[(data->offset1+i) % POINTS], &data->scalars[(data->offset2+i) % POINTS]);
}
}
static void bench_ecmult_const_teardown(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
bench_ecmult_teardown_helper(data, &data->offset1, &data->offset2, NULL, iters);
}
static void bench_ecmult_const_xonly(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
int i;
for (i = 0; i < iters; ++i) {
const secp256k1_ge* pubkey = &data->pubkeys[(data->offset1+i) % POINTS];
const secp256k1_scalar* scalar = &data->scalars[(data->offset2+i) % POINTS];
int known_on_curve = 1;
secp256k1_ecmult_const_xonly(&data->output_xonly[i], &pubkey->x, NULL, scalar, known_on_curve);
}
}
static void bench_ecmult_const_xonly_teardown(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
int i;
/* verify by comparing with x coordinate of regular ecmult result */
for (i = 0; i < iters; ++i) {
const secp256k1_gej* pubkey_gej = &data->pubkeys_gej[(data->offset1+i) % POINTS];
const secp256k1_scalar* scalar = &data->scalars[(data->offset2+i) % POINTS];
secp256k1_gej expected_gej;
secp256k1_ecmult(&expected_gej, pubkey_gej, scalar, NULL);
CHECK(secp256k1_gej_eq_x_var(&data->output_xonly[i], &expected_gej));
}
}
static void bench_ecmult_1p(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
int i;
for (i = 0; i < iters; ++i) {
secp256k1_ecmult(&data->output[i], &data->pubkeys_gej[(data->offset1+i) % POINTS], &data->scalars[(data->offset2+i) % POINTS], NULL);
}
}
static void bench_ecmult_1p_teardown(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
bench_ecmult_teardown_helper(data, &data->offset1, &data->offset2, NULL, iters);
}
static void bench_ecmult_0p_g(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
int i;
for (i = 0; i < iters; ++i) {
secp256k1_ecmult(&data->output[i], NULL, &secp256k1_scalar_zero, &data->scalars[(data->offset1+i) % POINTS]);
}
}
static void bench_ecmult_0p_g_teardown(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
bench_ecmult_teardown_helper(data, NULL, NULL, &data->offset1, iters);
}
static void bench_ecmult_1p_g(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
int i;
for (i = 0; i < iters/2; ++i) {
secp256k1_ecmult(&data->output[i], &data->pubkeys_gej[(data->offset1+i) % POINTS], &data->scalars[(data->offset2+i) % POINTS], &data->scalars[(data->offset1+i) % POINTS]);
}
}
static void bench_ecmult_1p_g_teardown(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
bench_ecmult_teardown_helper(data, &data->offset1, &data->offset2, &data->offset1, iters/2);
}
static void run_ecmult_bench(bench_data* data, int iters) {
char str[32];
sprintf(str, "ecmult_gen");
run_benchmark(str, bench_ecmult_gen, bench_ecmult_setup, bench_ecmult_gen_teardown, data, 10, iters);
sprintf(str, "ecmult_const");
run_benchmark(str, bench_ecmult_const, bench_ecmult_setup, bench_ecmult_const_teardown, data, 10, iters);
sprintf(str, "ecmult_const_xonly");
run_benchmark(str, bench_ecmult_const_xonly, bench_ecmult_setup, bench_ecmult_const_xonly_teardown, data, 10, iters);
/* ecmult with non generator point */
sprintf(str, "ecmult_1p");
run_benchmark(str, bench_ecmult_1p, bench_ecmult_setup, bench_ecmult_1p_teardown, data, 10, iters);
/* ecmult with generator point */
sprintf(str, "ecmult_0p_g");
run_benchmark(str, bench_ecmult_0p_g, bench_ecmult_setup, bench_ecmult_0p_g_teardown, data, 10, iters);
/* ecmult with generator and non-generator point. The reported time is per point. */
sprintf(str, "ecmult_1p_g");
run_benchmark(str, bench_ecmult_1p_g, bench_ecmult_setup, bench_ecmult_1p_g_teardown, data, 10, 2*iters);
}
static int bench_ecmult_multi_callback(secp256k1_scalar* sc, secp256k1_ge* ge, size_t idx, void* arg) {
bench_data* data = (bench_data*)arg;
if (data->includes_g) ++idx;
if (idx == 0) {
*sc = data->scalars[data->offset1];
*ge = secp256k1_ge_const_g;
} else {
*sc = data->scalars[(data->offset1 + idx) % POINTS];
*ge = data->pubkeys[(data->offset2 + idx - 1) % POINTS];
}
return 1;
}
static void bench_ecmult_multi(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
int includes_g = data->includes_g;
int iter;
int count = data->count;
iters = iters / data->count;
for (iter = 0; iter < iters; ++iter) {
data->ecmult_multi(&data->ctx->error_callback, data->scratch, &data->output[iter], data->includes_g ? &data->scalars[data->offset1] : NULL, bench_ecmult_multi_callback, arg, count - includes_g);
data->offset1 = (data->offset1 + count) % POINTS;
data->offset2 = (data->offset2 + count - 1) % POINTS;
}
}
static void bench_ecmult_multi_setup(void* arg) {
bench_data* data = (bench_data*)arg;
hash_into_offset(data, data->count);
}
static void bench_ecmult_multi_teardown(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
int iter;
iters = iters / data->count;
/* Verify the results in teardown, to avoid doing comparisons while benchmarking. */
for (iter = 0; iter < iters; ++iter) {
secp256k1_gej tmp;
secp256k1_gej_add_var(&tmp, &data->output[iter], &data->expected_output[iter], NULL);
CHECK(secp256k1_gej_is_infinity(&tmp));
}
}
static void generate_scalar(uint32_t num, secp256k1_scalar* scalar) {
secp256k1_sha256 sha256;
unsigned char c[10] = {'e', 'c', 'm', 'u', 'l', 't', 0, 0, 0, 0};
unsigned char buf[32];
int overflow = 0;
c[6] = num;
c[7] = num >> 8;
c[8] = num >> 16;
c[9] = num >> 24;
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, c, sizeof(c));
secp256k1_sha256_finalize(&sha256, buf);
secp256k1_scalar_set_b32(scalar, buf, &overflow);
CHECK(!overflow);
}
static void run_ecmult_multi_bench(bench_data* data, size_t count, int includes_g, int num_iters) {
char str[32];
size_t iters = 1 + num_iters / count;
size_t iter;
data->count = count;
data->includes_g = includes_g;
/* Compute (the negation of) the expected results directly. */
hash_into_offset(data, data->count);
for (iter = 0; iter < iters; ++iter) {
secp256k1_scalar tmp;
secp256k1_scalar total = data->scalars[(data->offset1++) % POINTS];
size_t i = 0;
for (i = 0; i + 1 < count; ++i) {
secp256k1_scalar_mul(&tmp, &data->seckeys[(data->offset2++) % POINTS], &data->scalars[(data->offset1++) % POINTS]);
secp256k1_scalar_add(&total, &total, &tmp);
}
secp256k1_scalar_negate(&total, &total);
secp256k1_ecmult(&data->expected_output[iter], NULL, &secp256k1_scalar_zero, &total);
}
/* Run the benchmark. */
if (includes_g) {
sprintf(str, "ecmult_multi_%ip_g", (int)count - 1);
} else {
sprintf(str, "ecmult_multi_%ip", (int)count);
}
run_benchmark(str, bench_ecmult_multi, bench_ecmult_multi_setup, bench_ecmult_multi_teardown, data, 10, count * iters);
}
int main(int argc, char **argv) {
bench_data data;
int i, p;
size_t scratch_size;
int iters = get_iters(10000);
data.ecmult_multi = secp256k1_ecmult_multi_var;
if (argc > 1) {
if(have_flag(argc, argv, "-h")
|| have_flag(argc, argv, "--help")
|| have_flag(argc, argv, "help")) {
help(argv);
return EXIT_SUCCESS;
} else if(have_flag(argc, argv, "pippenger_wnaf")) {
printf("Using pippenger_wnaf:\n");
data.ecmult_multi = secp256k1_ecmult_pippenger_batch_single;
} else if(have_flag(argc, argv, "strauss_wnaf")) {
printf("Using strauss_wnaf:\n");
data.ecmult_multi = secp256k1_ecmult_strauss_batch_single;
} else if(have_flag(argc, argv, "simple")) {
printf("Using simple algorithm:\n");
} else {
fprintf(stderr, "%s: unrecognized argument '%s'.\n\n", argv[0], argv[1]);
help(argv);
return EXIT_FAILURE;
}
}
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
scratch_size = secp256k1_strauss_scratch_size(POINTS) + STRAUSS_SCRATCH_OBJECTS*16;
if (!have_flag(argc, argv, "simple")) {
data.scratch = secp256k1_scratch_space_create(data.ctx, scratch_size);
} else {
data.scratch = NULL;
}
/* Allocate stuff */
data.scalars = malloc(sizeof(secp256k1_scalar) * POINTS);
data.seckeys = malloc(sizeof(secp256k1_scalar) * POINTS);
data.pubkeys = malloc(sizeof(secp256k1_ge) * POINTS);
data.pubkeys_gej = malloc(sizeof(secp256k1_gej) * POINTS);
data.expected_output = malloc(sizeof(secp256k1_gej) * (iters + 1));
data.output = malloc(sizeof(secp256k1_gej) * (iters + 1));
data.output_xonly = malloc(sizeof(secp256k1_fe) * (iters + 1));
/* Generate a set of scalars, and private/public keypairs. */
secp256k1_gej_set_ge(&data.pubkeys_gej[0], &secp256k1_ge_const_g);
secp256k1_scalar_set_int(&data.seckeys[0], 1);
for (i = 0; i < POINTS; ++i) {
generate_scalar(i, &data.scalars[i]);
if (i) {
secp256k1_gej_double_var(&data.pubkeys_gej[i], &data.pubkeys_gej[i - 1], NULL);
secp256k1_scalar_add(&data.seckeys[i], &data.seckeys[i - 1], &data.seckeys[i - 1]);
}
}
secp256k1_ge_set_all_gej_var(data.pubkeys, data.pubkeys_gej, POINTS);
print_output_table_header_row();
/* Initialize offset1 and offset2 */
hash_into_offset(&data, 0);
run_ecmult_bench(&data, iters);
for (i = 1; i <= 8; ++i) {
run_ecmult_multi_bench(&data, i, 1, iters);
}
/* This is disabled with low count of iterations because the loop runs 77 times even with iters=1
* and the higher it goes the longer the computation takes(more points)
* So we don't run this benchmark with low iterations to prevent slow down */
if (iters > 2) {
for (p = 0; p <= 11; ++p) {
for (i = 9; i <= 16; ++i) {
run_ecmult_multi_bench(&data, i << p, 1, iters);
}
}
}
if (data.scratch != NULL) {
secp256k1_scratch_space_destroy(data.ctx, data.scratch);
}
secp256k1_context_destroy(data.ctx);
free(data.scalars);
free(data.pubkeys);
free(data.pubkeys_gej);
free(data.seckeys);
free(data.output_xonly);
free(data.output);
free(data.expected_output);
return EXIT_SUCCESS;
}

View File

@ -0,0 +1,437 @@
/***********************************************************************
* Copyright (c) 2014-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "secp256k1.c"
#include "../include/secp256k1.h"
#include "assumptions.h"
#include "util.h"
#include "hash_impl.h"
#include "field_impl.h"
#include "group_impl.h"
#include "scalar_impl.h"
#include "ecmult_impl.h"
#include "bench.h"
static void help(int default_iters) {
printf("Benchmarks various internal routines.\n");
printf("\n");
printf("The default number of iterations for each benchmark is %d. This can be\n", default_iters);
printf("customized using the SECP256K1_BENCH_ITERS environment variable.\n");
printf("\n");
printf("Usage: ./bench_internal [args]\n");
printf("By default, all benchmarks will be run.\n");
printf("args:\n");
printf(" help : display this help and exit\n");
printf(" scalar : all scalar operations (add, half, inverse, mul, negate, split)\n");
printf(" field : all field operations (half, inverse, issquare, mul, normalize, sqr, sqrt)\n");
printf(" group : all group operations (add, double, to_affine)\n");
printf(" ecmult : all point multiplication operations (ecmult_wnaf) \n");
printf(" hash : all hash algorithms (hmac, rng6979, sha256)\n");
printf(" context : all context object operations (context_create)\n");
printf("\n");
}
typedef struct {
secp256k1_scalar scalar[2];
secp256k1_fe fe[4];
secp256k1_ge ge[2];
secp256k1_gej gej[2];
unsigned char data[64];
int wnaf[256];
} bench_inv;
static void bench_setup(void* arg) {
bench_inv *data = (bench_inv*)arg;
static const unsigned char init[4][32] = {
/* Initializer for scalar[0], fe[0], first half of data, the X coordinate of ge[0],
and the (implied affine) X coordinate of gej[0]. */
{
0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13,
0x17, 0x1d, 0x1f, 0x25, 0x29, 0x2b, 0x2f, 0x35,
0x3b, 0x3d, 0x43, 0x47, 0x49, 0x4f, 0x53, 0x59,
0x61, 0x65, 0x67, 0x6b, 0x6d, 0x71, 0x7f, 0x83
},
/* Initializer for scalar[1], fe[1], first half of data, the X coordinate of ge[1],
and the (implied affine) X coordinate of gej[1]. */
{
0x82, 0x83, 0x85, 0x87, 0x8b, 0x8d, 0x81, 0x83,
0x97, 0xad, 0xaf, 0xb5, 0xb9, 0xbb, 0xbf, 0xc5,
0xdb, 0xdd, 0xe3, 0xe7, 0xe9, 0xef, 0xf3, 0xf9,
0x11, 0x15, 0x17, 0x1b, 0x1d, 0xb1, 0xbf, 0xd3
},
/* Initializer for fe[2] and the Z coordinate of gej[0]. */
{
0x3d, 0x2d, 0xef, 0xf4, 0x25, 0x98, 0x4f, 0x5d,
0xe2, 0xca, 0x5f, 0x41, 0x3f, 0x3f, 0xce, 0x44,
0xaa, 0x2c, 0x53, 0x8a, 0xc6, 0x59, 0x1f, 0x38,
0x38, 0x23, 0xe4, 0x11, 0x27, 0xc6, 0xa0, 0xe7
},
/* Initializer for fe[3] and the Z coordinate of gej[1]. */
{
0xbd, 0x21, 0xa5, 0xe1, 0x13, 0x50, 0x73, 0x2e,
0x52, 0x98, 0xc8, 0x9e, 0xab, 0x00, 0xa2, 0x68,
0x43, 0xf5, 0xd7, 0x49, 0x80, 0x72, 0xa7, 0xf3,
0xd7, 0x60, 0xe6, 0xab, 0x90, 0x92, 0xdf, 0xc5
}
};
secp256k1_scalar_set_b32(&data->scalar[0], init[0], NULL);
secp256k1_scalar_set_b32(&data->scalar[1], init[1], NULL);
secp256k1_fe_set_b32_limit(&data->fe[0], init[0]);
secp256k1_fe_set_b32_limit(&data->fe[1], init[1]);
secp256k1_fe_set_b32_limit(&data->fe[2], init[2]);
secp256k1_fe_set_b32_limit(&data->fe[3], init[3]);
CHECK(secp256k1_ge_set_xo_var(&data->ge[0], &data->fe[0], 0));
CHECK(secp256k1_ge_set_xo_var(&data->ge[1], &data->fe[1], 1));
secp256k1_gej_set_ge(&data->gej[0], &data->ge[0]);
secp256k1_gej_rescale(&data->gej[0], &data->fe[2]);
secp256k1_gej_set_ge(&data->gej[1], &data->ge[1]);
secp256k1_gej_rescale(&data->gej[1], &data->fe[3]);
memcpy(data->data, init[0], 32);
memcpy(data->data + 32, init[1], 32);
}
static void bench_scalar_add(void* arg, int iters) {
int i, j = 0;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
}
CHECK(j <= iters);
}
static void bench_scalar_negate(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_scalar_negate(&data->scalar[0], &data->scalar[0]);
}
}
static void bench_scalar_half(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
secp256k1_scalar s = data->scalar[0];
for (i = 0; i < iters; i++) {
secp256k1_scalar_half(&s, &s);
}
data->scalar[0] = s;
}
static void bench_scalar_mul(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_scalar_mul(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
}
}
static void bench_scalar_split(void* arg, int iters) {
int i, j = 0;
bench_inv *data = (bench_inv*)arg;
secp256k1_scalar tmp;
for (i = 0; i < iters; i++) {
secp256k1_scalar_split_lambda(&tmp, &data->scalar[1], &data->scalar[0]);
j += secp256k1_scalar_add(&data->scalar[0], &tmp, &data->scalar[1]);
}
CHECK(j <= iters);
}
static void bench_scalar_inverse(void* arg, int iters) {
int i, j = 0;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_scalar_inverse(&data->scalar[0], &data->scalar[0]);
j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
}
CHECK(j <= iters);
}
static void bench_scalar_inverse_var(void* arg, int iters) {
int i, j = 0;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_scalar_inverse_var(&data->scalar[0], &data->scalar[0]);
j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
}
CHECK(j <= iters);
}
static void bench_field_half(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_fe_half(&data->fe[0]);
}
}
static void bench_field_normalize(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_fe_normalize(&data->fe[0]);
}
}
static void bench_field_normalize_weak(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_fe_normalize_weak(&data->fe[0]);
}
}
static void bench_field_mul(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_fe_mul(&data->fe[0], &data->fe[0], &data->fe[1]);
}
}
static void bench_field_sqr(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_fe_sqr(&data->fe[0], &data->fe[0]);
}
}
static void bench_field_inverse(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_fe_inv(&data->fe[0], &data->fe[0]);
secp256k1_fe_add(&data->fe[0], &data->fe[1]);
}
}
static void bench_field_inverse_var(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_fe_inv_var(&data->fe[0], &data->fe[0]);
secp256k1_fe_add(&data->fe[0], &data->fe[1]);
}
}
static void bench_field_sqrt(void* arg, int iters) {
int i, j = 0;
bench_inv *data = (bench_inv*)arg;
secp256k1_fe t;
for (i = 0; i < iters; i++) {
t = data->fe[0];
j += secp256k1_fe_sqrt(&data->fe[0], &t);
secp256k1_fe_add(&data->fe[0], &data->fe[1]);
}
CHECK(j <= iters);
}
static void bench_field_is_square_var(void* arg, int iters) {
int i, j = 0;
bench_inv *data = (bench_inv*)arg;
secp256k1_fe t = data->fe[0];
for (i = 0; i < iters; i++) {
j += secp256k1_fe_is_square_var(&t);
secp256k1_fe_add(&t, &data->fe[1]);
secp256k1_fe_normalize_var(&t);
}
CHECK(j <= iters);
}
static void bench_group_double_var(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_gej_double_var(&data->gej[0], &data->gej[0], NULL);
}
}
static void bench_group_add_var(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_gej_add_var(&data->gej[0], &data->gej[0], &data->gej[1], NULL);
}
}
static void bench_group_add_affine(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_gej_add_ge(&data->gej[0], &data->gej[0], &data->ge[1]);
}
}
static void bench_group_add_affine_var(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_gej_add_ge_var(&data->gej[0], &data->gej[0], &data->ge[1], NULL);
}
}
static void bench_group_add_zinv_var(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_gej_add_zinv_var(&data->gej[0], &data->gej[0], &data->ge[1], &data->gej[0].y);
}
}
static void bench_group_to_affine_var(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; ++i) {
secp256k1_ge_set_gej_var(&data->ge[1], &data->gej[0]);
/* Use the output affine X/Y coordinates to vary the input X/Y/Z coordinates.
Note that the resulting coordinates will generally not correspond to a point
on the curve, but this is not a problem for the code being benchmarked here.
Adding and normalizing have less overhead than EC operations (which could
guarantee the point remains on the curve). */
secp256k1_fe_add(&data->gej[0].x, &data->ge[1].y);
secp256k1_fe_add(&data->gej[0].y, &data->fe[2]);
secp256k1_fe_add(&data->gej[0].z, &data->ge[1].x);
secp256k1_fe_normalize_var(&data->gej[0].x);
secp256k1_fe_normalize_var(&data->gej[0].y);
secp256k1_fe_normalize_var(&data->gej[0].z);
}
}
static void bench_ecmult_wnaf(void* arg, int iters) {
int i, bits = 0, overflow = 0;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
bits += secp256k1_ecmult_wnaf(data->wnaf, 256, &data->scalar[0], WINDOW_A);
overflow += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
}
CHECK(overflow >= 0);
CHECK(bits <= 256*iters);
}
static void bench_sha256(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
secp256k1_sha256 sha;
for (i = 0; i < iters; i++) {
secp256k1_sha256_initialize(&sha);
secp256k1_sha256_write(&sha, data->data, 32);
secp256k1_sha256_finalize(&sha, data->data);
}
}
static void bench_hmac_sha256(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
secp256k1_hmac_sha256 hmac;
for (i = 0; i < iters; i++) {
secp256k1_hmac_sha256_initialize(&hmac, data->data, 32);
secp256k1_hmac_sha256_write(&hmac, data->data, 32);
secp256k1_hmac_sha256_finalize(&hmac, data->data);
}
}
static void bench_rfc6979_hmac_sha256(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
secp256k1_rfc6979_hmac_sha256 rng;
for (i = 0; i < iters; i++) {
secp256k1_rfc6979_hmac_sha256_initialize(&rng, data->data, 64);
secp256k1_rfc6979_hmac_sha256_generate(&rng, data->data, 32);
}
}
static void bench_context(void* arg, int iters) {
int i;
(void)arg;
for (i = 0; i < iters; i++) {
secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_NONE));
}
}
int main(int argc, char **argv) {
bench_inv data;
int default_iters = 20000;
int iters = get_iters(default_iters);
int d = argc == 1; /* default */
if (argc > 1) {
if (have_flag(argc, argv, "-h")
|| have_flag(argc, argv, "--help")
|| have_flag(argc, argv, "help")) {
help(default_iters);
return EXIT_SUCCESS;
}
}
print_output_table_header_row();
if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "half")) run_benchmark("scalar_half", bench_scalar_half, bench_setup, NULL, &data, 10, iters*100);
if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "add")) run_benchmark("scalar_add", bench_scalar_add, bench_setup, NULL, &data, 10, iters*100);
if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "negate")) run_benchmark("scalar_negate", bench_scalar_negate, bench_setup, NULL, &data, 10, iters*100);
if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "mul")) run_benchmark("scalar_mul", bench_scalar_mul, bench_setup, NULL, &data, 10, iters*10);
if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "split")) run_benchmark("scalar_split", bench_scalar_split, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse", bench_scalar_inverse, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse_var", bench_scalar_inverse_var, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "half")) run_benchmark("field_half", bench_field_half, bench_setup, NULL, &data, 10, iters*100);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize", bench_field_normalize, bench_setup, NULL, &data, 10, iters*100);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize_weak", bench_field_normalize_weak, bench_setup, NULL, &data, 10, iters*100);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "sqr")) run_benchmark("field_sqr", bench_field_sqr, bench_setup, NULL, &data, 10, iters*10);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "mul")) run_benchmark("field_mul", bench_field_mul, bench_setup, NULL, &data, 10, iters*10);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "issquare")) run_benchmark("field_is_square_var", bench_field_is_square_var, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt", bench_field_sqrt, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, iters*10);
if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, iters*10);
if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, iters*10);
if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, iters*10);
if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_zinv_var", bench_group_add_zinv_var, bench_setup, NULL, &data, 10, iters*10);
if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "to_affine")) run_benchmark("group_to_affine_var", bench_group_to_affine_var, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "sha256")) run_benchmark("hash_sha256", bench_sha256, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "hmac")) run_benchmark("hash_hmac_sha256", bench_hmac_sha256, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "rng6979")) run_benchmark("hash_rfc6979_hmac_sha256", bench_rfc6979_hmac_sha256, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "context")) run_benchmark("context_create", bench_context, bench_setup, NULL, &data, 10, iters);
return EXIT_SUCCESS;
}

102
secp256k1/src/checkmem.h Normal file
View File

@ -0,0 +1,102 @@
/***********************************************************************
* Copyright (c) 2022 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
/* The code here is inspired by Kris Kwiatkowski's approach in
* https://github.com/kriskwiatkowski/pqc/blob/main/src/common/ct_check.h
* to provide a general interface for memory-checking mechanisms, primarily
* for constant-time checking.
*/
/* These macros are defined by this header file:
*
* - SECP256K1_CHECKMEM_ENABLED:
* - 1 if memory-checking integration is available, 0 otherwise.
* This is just a compile-time macro. Use the next macro to check it is actually
* available at runtime.
* - SECP256K1_CHECKMEM_RUNNING():
* - Acts like a function call, returning 1 if memory checking is available
* at runtime.
* - SECP256K1_CHECKMEM_CHECK(p, len):
* - Assert or otherwise fail in case the len-byte memory block pointed to by p is
* not considered entirely defined.
* - SECP256K1_CHECKMEM_CHECK_VERIFY(p, len):
* - Like SECP256K1_CHECKMEM_CHECK, but only works in VERIFY mode.
* - SECP256K1_CHECKMEM_UNDEFINE(p, len):
* - marks the len-byte memory block pointed to by p as undefined data (secret data,
* in the context of constant-time checking).
* - SECP256K1_CHECKMEM_DEFINE(p, len):
* - marks the len-byte memory pointed to by p as defined data (public data, in the
* context of constant-time checking).
* - SECP256K1_CHECKMEM_MSAN_DEFINE(p, len):
* - Like SECP256K1_CHECKMEM_DEFINE, but applies only to memory_sanitizer.
*
*/
#ifndef SECP256K1_CHECKMEM_H
#define SECP256K1_CHECKMEM_H
/* Define a statement-like macro that ignores the arguments. */
#define SECP256K1_CHECKMEM_NOOP(p, len) do { (void)(p); (void)(len); } while(0)
/* If compiling under msan, map the SECP256K1_CHECKMEM_* functionality to msan.
* Choose this preferentially, even when VALGRIND is defined, as msan-compiled
* binaries can't be run under valgrind anyway. */
#if defined(__has_feature)
# if __has_feature(memory_sanitizer)
# include <sanitizer/msan_interface.h>
# define SECP256K1_CHECKMEM_ENABLED 1
# define SECP256K1_CHECKMEM_UNDEFINE(p, len) __msan_allocated_memory((p), (len))
# define SECP256K1_CHECKMEM_DEFINE(p, len) __msan_unpoison((p), (len))
# define SECP256K1_CHECKMEM_MSAN_DEFINE(p, len) __msan_unpoison((p), (len))
# define SECP256K1_CHECKMEM_CHECK(p, len) __msan_check_mem_is_initialized((p), (len))
# define SECP256K1_CHECKMEM_RUNNING() (1)
# endif
#endif
#if !defined SECP256K1_CHECKMEM_MSAN_DEFINE
# define SECP256K1_CHECKMEM_MSAN_DEFINE(p, len) SECP256K1_CHECKMEM_NOOP((p), (len))
#endif
/* If valgrind integration is desired (through the VALGRIND define), implement the
* SECP256K1_CHECKMEM_* macros using valgrind. */
#if !defined SECP256K1_CHECKMEM_ENABLED
# if defined VALGRIND
# include <stddef.h>
# if defined(__clang__) && defined(__APPLE__)
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wreserved-identifier"
# endif
# include <valgrind/memcheck.h>
# if defined(__clang__) && defined(__APPLE__)
# pragma clang diagnostic pop
# endif
# define SECP256K1_CHECKMEM_ENABLED 1
# define SECP256K1_CHECKMEM_UNDEFINE(p, len) VALGRIND_MAKE_MEM_UNDEFINED((p), (len))
# define SECP256K1_CHECKMEM_DEFINE(p, len) VALGRIND_MAKE_MEM_DEFINED((p), (len))
# define SECP256K1_CHECKMEM_CHECK(p, len) VALGRIND_CHECK_MEM_IS_DEFINED((p), (len))
/* VALGRIND_MAKE_MEM_DEFINED returns 0 iff not running on memcheck.
* This is more precise than the RUNNING_ON_VALGRIND macro, which
* checks for valgrind in general instead of memcheck specifically. */
# define SECP256K1_CHECKMEM_RUNNING() (VALGRIND_MAKE_MEM_DEFINED(NULL, 0) != 0)
# endif
#endif
/* As a fall-back, map these macros to dummy statements. */
#if !defined SECP256K1_CHECKMEM_ENABLED
# define SECP256K1_CHECKMEM_ENABLED 0
# define SECP256K1_CHECKMEM_UNDEFINE(p, len) SECP256K1_CHECKMEM_NOOP((p), (len))
# define SECP256K1_CHECKMEM_DEFINE(p, len) SECP256K1_CHECKMEM_NOOP((p), (len))
# define SECP256K1_CHECKMEM_CHECK(p, len) SECP256K1_CHECKMEM_NOOP((p), (len))
# define SECP256K1_CHECKMEM_RUNNING() (0)
#endif
#if defined VERIFY
#define SECP256K1_CHECKMEM_CHECK_VERIFY(p, len) SECP256K1_CHECKMEM_CHECK((p), (len))
#else
#define SECP256K1_CHECKMEM_CHECK_VERIFY(p, len) SECP256K1_CHECKMEM_NOOP((p), (len))
#endif
#endif /* SECP256K1_CHECKMEM_H */

267
secp256k1/src/ctime_tests.c Normal file
View File

@ -0,0 +1,267 @@
/***********************************************************************
* Copyright (c) 2020 Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "../include/secp256k1.h"
#include "assumptions.h"
#include "checkmem.h"
#if !SECP256K1_CHECKMEM_ENABLED
# error "This tool cannot be compiled without memory-checking interface (valgrind or msan)"
#endif
#ifdef ENABLE_MODULE_ECDH
# include "../include/secp256k1_ecdh.h"
#endif
#ifdef ENABLE_MODULE_RECOVERY
# include "../include/secp256k1_recovery.h"
#endif
#ifdef ENABLE_MODULE_EXTRAKEYS
# include "../include/secp256k1_extrakeys.h"
#endif
#ifdef ENABLE_MODULE_SCHNORRSIG
#include "../include/secp256k1_schnorrsig.h"
#endif
#ifdef ENABLE_MODULE_MUSIG
#include "../include/secp256k1_musig.h"
#endif
#ifdef ENABLE_MODULE_ELLSWIFT
#include "../include/secp256k1_ellswift.h"
#endif
static void run_tests(secp256k1_context *ctx, unsigned char *key);
int main(void) {
secp256k1_context* ctx;
unsigned char key[32];
int ret, i;
if (!SECP256K1_CHECKMEM_RUNNING()) {
fprintf(stderr, "This test can only usefully be run inside valgrind because it was not compiled under msan.\n");
fprintf(stderr, "Usage: libtool --mode=execute valgrind ./ctime_tests\n");
return EXIT_FAILURE;
}
ctx = secp256k1_context_create(SECP256K1_CONTEXT_DECLASSIFY);
/** In theory, testing with a single secret input should be sufficient:
* If control flow depended on secrets the tool would generate an error.
*/
for (i = 0; i < 32; i++) {
key[i] = i + 65;
}
run_tests(ctx, key);
/* Test context randomisation. Do this last because it leaves the context
* tainted. */
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
ret = secp256k1_context_randomize(ctx, key);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret);
secp256k1_context_destroy(ctx);
return EXIT_SUCCESS;
}
static void run_tests(secp256k1_context *ctx, unsigned char *key) {
secp256k1_ecdsa_signature signature;
secp256k1_pubkey pubkey;
size_t siglen = 74;
size_t outputlen = 33;
int i;
int ret;
unsigned char msg[32];
unsigned char sig[74];
unsigned char spubkey[33];
#ifdef ENABLE_MODULE_RECOVERY
secp256k1_ecdsa_recoverable_signature recoverable_signature;
int recid;
#endif
#ifdef ENABLE_MODULE_EXTRAKEYS
secp256k1_keypair keypair;
#endif
#ifdef ENABLE_MODULE_ELLSWIFT
unsigned char ellswift[64];
static const unsigned char prefix[64] = {'t', 'e', 's', 't'};
#endif
for (i = 0; i < 32; i++) {
msg[i] = i + 1;
}
/* Test keygen. */
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
ret = secp256k1_ec_pubkey_create(ctx, &pubkey, key);
SECP256K1_CHECKMEM_DEFINE(&pubkey, sizeof(secp256k1_pubkey));
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret);
CHECK(secp256k1_ec_pubkey_serialize(ctx, spubkey, &outputlen, &pubkey, SECP256K1_EC_COMPRESSED) == 1);
/* Test signing. */
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
ret = secp256k1_ecdsa_sign(ctx, &signature, msg, key, NULL, NULL);
SECP256K1_CHECKMEM_DEFINE(&signature, sizeof(secp256k1_ecdsa_signature));
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret);
CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, sig, &siglen, &signature));
#ifdef ENABLE_MODULE_ECDH
/* Test ECDH. */
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
ret = secp256k1_ecdh(ctx, msg, &pubkey, key, NULL, NULL);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
#endif
#ifdef ENABLE_MODULE_RECOVERY
/* Test signing a recoverable signature. */
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
ret = secp256k1_ecdsa_sign_recoverable(ctx, &recoverable_signature, msg, key, NULL, NULL);
SECP256K1_CHECKMEM_DEFINE(&recoverable_signature, sizeof(recoverable_signature));
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret);
CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(ctx, sig, &recid, &recoverable_signature));
CHECK(recid >= 0 && recid <= 3);
#endif
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
ret = secp256k1_ec_seckey_verify(ctx, key);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
ret = secp256k1_ec_seckey_negate(ctx, key);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
SECP256K1_CHECKMEM_UNDEFINE(msg, 32);
ret = secp256k1_ec_seckey_tweak_add(ctx, key, msg);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
SECP256K1_CHECKMEM_UNDEFINE(msg, 32);
ret = secp256k1_ec_seckey_tweak_mul(ctx, key, msg);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
/* Test keypair_create and keypair_xonly_tweak_add. */
#ifdef ENABLE_MODULE_EXTRAKEYS
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
ret = secp256k1_keypair_create(ctx, &keypair, key);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
/* The tweak is not treated as a secret in keypair_tweak_add */
SECP256K1_CHECKMEM_DEFINE(msg, 32);
ret = secp256k1_keypair_xonly_tweak_add(ctx, &keypair, msg);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
SECP256K1_CHECKMEM_UNDEFINE(&keypair, sizeof(keypair));
ret = secp256k1_keypair_sec(ctx, key, &keypair);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
#endif
#ifdef ENABLE_MODULE_SCHNORRSIG
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
ret = secp256k1_keypair_create(ctx, &keypair, key);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
ret = secp256k1_schnorrsig_sign32(ctx, sig, msg, &keypair, NULL);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
#endif
#ifdef ENABLE_MODULE_MUSIG
{
secp256k1_pubkey pk;
const secp256k1_pubkey *pk_ptr[1];
secp256k1_xonly_pubkey agg_pk;
unsigned char session_secrand[32];
uint64_t nonrepeating_cnt = 0;
secp256k1_musig_secnonce secnonce;
secp256k1_musig_pubnonce pubnonce;
const secp256k1_musig_pubnonce *pubnonce_ptr[1];
secp256k1_musig_aggnonce aggnonce;
secp256k1_musig_keyagg_cache cache;
secp256k1_musig_session session;
secp256k1_musig_partial_sig partial_sig;
unsigned char extra_input[32];
pk_ptr[0] = &pk;
pubnonce_ptr[0] = &pubnonce;
SECP256K1_CHECKMEM_DEFINE(key, 32);
memcpy(session_secrand, key, sizeof(session_secrand));
session_secrand[0] = session_secrand[0] + 1;
memcpy(extra_input, key, sizeof(extra_input));
extra_input[0] = extra_input[0] + 2;
CHECK(secp256k1_keypair_create(ctx, &keypair, key));
CHECK(secp256k1_keypair_pub(ctx, &pk, &keypair));
CHECK(secp256k1_musig_pubkey_agg(ctx, &agg_pk, &cache, pk_ptr, 1));
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
SECP256K1_CHECKMEM_UNDEFINE(session_secrand, sizeof(session_secrand));
SECP256K1_CHECKMEM_UNDEFINE(extra_input, sizeof(extra_input));
ret = secp256k1_musig_nonce_gen(ctx, &secnonce, &pubnonce, session_secrand, key, &pk, msg, &cache, extra_input);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
ret = secp256k1_musig_nonce_gen_counter(ctx, &secnonce, &pubnonce, nonrepeating_cnt, &keypair, msg, &cache, extra_input);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
CHECK(secp256k1_musig_nonce_agg(ctx, &aggnonce, pubnonce_ptr, 1));
/* Make sure that previous tests don't undefine msg. It's not used as a secret here. */
SECP256K1_CHECKMEM_DEFINE(msg, sizeof(msg));
CHECK(secp256k1_musig_nonce_process(ctx, &session, &aggnonce, msg, &cache) == 1);
ret = secp256k1_keypair_create(ctx, &keypair, key);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
ret = secp256k1_musig_partial_sign(ctx, &partial_sig, &secnonce, &keypair, &cache, &session);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
}
#endif
#ifdef ENABLE_MODULE_ELLSWIFT
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
ret = secp256k1_ellswift_create(ctx, ellswift, key, NULL);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
ret = secp256k1_ellswift_create(ctx, ellswift, key, ellswift);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
for (i = 0; i < 2; i++) {
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
SECP256K1_CHECKMEM_DEFINE(&ellswift, sizeof(ellswift));
ret = secp256k1_ellswift_xdh(ctx, msg, ellswift, ellswift, key, i, secp256k1_ellswift_xdh_hash_function_bip324, NULL);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
SECP256K1_CHECKMEM_DEFINE(&ellswift, sizeof(ellswift));
ret = secp256k1_ellswift_xdh(ctx, msg, ellswift, ellswift, key, i, secp256k1_ellswift_xdh_hash_function_prefix, (void *)prefix);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
}
#endif
}

21
secp256k1/src/ecdsa.h Normal file
View File

@ -0,0 +1,21 @@
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ECDSA_H
#define SECP256K1_ECDSA_H
#include <stddef.h>
#include "scalar.h"
#include "group.h"
#include "ecmult.h"
static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *r, secp256k1_scalar *s, const unsigned char *sig, size_t size);
static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar *r, const secp256k1_scalar *s);
static int secp256k1_ecdsa_sig_verify(const secp256k1_scalar* r, const secp256k1_scalar* s, const secp256k1_ge *pubkey, const secp256k1_scalar *message);
static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid);
#endif /* SECP256K1_ECDSA_H */

304
secp256k1/src/ecdsa_impl.h Normal file
View File

@ -0,0 +1,304 @@
/***********************************************************************
* Copyright (c) 2013-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ECDSA_IMPL_H
#define SECP256K1_ECDSA_IMPL_H
#include "scalar.h"
#include "field.h"
#include "group.h"
#include "ecmult.h"
#include "ecmult_gen.h"
#include "ecdsa.h"
/** Group order for secp256k1 defined as 'n' in "Standards for Efficient Cryptography" (SEC2) 2.7.1
* $ sage -c 'load("secp256k1_params.sage"); print(hex(N))'
* 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
*/
static const secp256k1_fe secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST(
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL
);
/** Difference between field and order, values 'p' and 'n' values defined in
* "Standards for Efficient Cryptography" (SEC2) 2.7.1.
* $ sage -c 'load("secp256k1_params.sage"); print(hex(P-N))'
* 0x14551231950b75fc4402da1722fc9baee
*/
static const secp256k1_fe secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST(
0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL
);
static int secp256k1_der_read_len(size_t *len, const unsigned char **sigp, const unsigned char *sigend) {
size_t lenleft;
unsigned char b1;
VERIFY_CHECK(len != NULL);
*len = 0;
if (*sigp >= sigend) {
return 0;
}
b1 = *((*sigp)++);
if (b1 == 0xFF) {
/* X.690-0207 8.1.3.5.c the value 0xFF shall not be used. */
return 0;
}
if ((b1 & 0x80) == 0) {
/* X.690-0207 8.1.3.4 short form length octets */
*len = b1;
return 1;
}
if (b1 == 0x80) {
/* Indefinite length is not allowed in DER. */
return 0;
}
/* X.690-207 8.1.3.5 long form length octets */
lenleft = b1 & 0x7F; /* lenleft is at least 1 */
if (lenleft > (size_t)(sigend - *sigp)) {
return 0;
}
if (**sigp == 0) {
/* Not the shortest possible length encoding. */
return 0;
}
if (lenleft > sizeof(size_t)) {
/* The resulting length would exceed the range of a size_t, so
* it is certainly longer than the passed array size. */
return 0;
}
while (lenleft > 0) {
*len = (*len << 8) | **sigp;
(*sigp)++;
lenleft--;
}
if (*len > (size_t)(sigend - *sigp)) {
/* Result exceeds the length of the passed array.
(Checking this is the responsibility of the caller but it
can't hurt do it here, too.) */
return 0;
}
if (*len < 128) {
/* Not the shortest possible length encoding. */
return 0;
}
return 1;
}
static int secp256k1_der_parse_integer(secp256k1_scalar *r, const unsigned char **sig, const unsigned char *sigend) {
int overflow = 0;
unsigned char ra[32] = {0};
size_t rlen;
if (*sig == sigend || **sig != 0x02) {
/* Not a primitive integer (X.690-0207 8.3.1). */
return 0;
}
(*sig)++;
if (secp256k1_der_read_len(&rlen, sig, sigend) == 0) {
return 0;
}
if (rlen == 0 || rlen > (size_t)(sigend - *sig)) {
/* Exceeds bounds or not at least length 1 (X.690-0207 8.3.1). */
return 0;
}
if (**sig == 0x00 && rlen > 1 && (((*sig)[1]) & 0x80) == 0x00) {
/* Excessive 0x00 padding. */
return 0;
}
if (**sig == 0xFF && rlen > 1 && (((*sig)[1]) & 0x80) == 0x80) {
/* Excessive 0xFF padding. */
return 0;
}
if ((**sig & 0x80) == 0x80) {
/* Negative. */
overflow = 1;
}
/* There is at most one leading zero byte:
* if there were two leading zero bytes, we would have failed and returned 0
* because of excessive 0x00 padding already. */
if (rlen > 0 && **sig == 0) {
/* Skip leading zero byte */
rlen--;
(*sig)++;
}
if (rlen > 32) {
overflow = 1;
}
if (!overflow) {
if (rlen) memcpy(ra + 32 - rlen, *sig, rlen);
secp256k1_scalar_set_b32(r, ra, &overflow);
}
if (overflow) {
secp256k1_scalar_set_int(r, 0);
}
(*sig) += rlen;
return 1;
}
static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *rr, secp256k1_scalar *rs, const unsigned char *sig, size_t size) {
const unsigned char *sigend = sig + size;
size_t rlen;
if (sig == sigend || *(sig++) != 0x30) {
/* The encoding doesn't start with a constructed sequence (X.690-0207 8.9.1). */
return 0;
}
if (secp256k1_der_read_len(&rlen, &sig, sigend) == 0) {
return 0;
}
if (rlen != (size_t)(sigend - sig)) {
/* Tuple exceeds bounds or garage after tuple. */
return 0;
}
if (!secp256k1_der_parse_integer(rr, &sig, sigend)) {
return 0;
}
if (!secp256k1_der_parse_integer(rs, &sig, sigend)) {
return 0;
}
if (sig != sigend) {
/* Trailing garbage inside tuple. */
return 0;
}
return 1;
}
static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar* ar, const secp256k1_scalar* as) {
unsigned char r[33] = {0}, s[33] = {0};
unsigned char *rp = r, *sp = s;
size_t lenR = 33, lenS = 33;
secp256k1_scalar_get_b32(&r[1], ar);
secp256k1_scalar_get_b32(&s[1], as);
while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; }
while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; }
if (*size < 6+lenS+lenR) {
*size = 6 + lenS + lenR;
return 0;
}
*size = 6 + lenS + lenR;
sig[0] = 0x30;
sig[1] = 4 + lenS + lenR;
sig[2] = 0x02;
sig[3] = lenR;
memcpy(sig+4, rp, lenR);
sig[4+lenR] = 0x02;
sig[5+lenR] = lenS;
memcpy(sig+lenR+6, sp, lenS);
return 1;
}
static int secp256k1_ecdsa_sig_verify(const secp256k1_scalar *sigr, const secp256k1_scalar *sigs, const secp256k1_ge *pubkey, const secp256k1_scalar *message) {
unsigned char c[32];
secp256k1_scalar sn, u1, u2;
#if !defined(EXHAUSTIVE_TEST_ORDER)
secp256k1_fe xr;
#endif
secp256k1_gej pubkeyj;
secp256k1_gej pr;
if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
return 0;
}
secp256k1_scalar_inverse_var(&sn, sigs);
secp256k1_scalar_mul(&u1, &sn, message);
secp256k1_scalar_mul(&u2, &sn, sigr);
secp256k1_gej_set_ge(&pubkeyj, pubkey);
secp256k1_ecmult(&pr, &pubkeyj, &u2, &u1);
if (secp256k1_gej_is_infinity(&pr)) {
return 0;
}
#if defined(EXHAUSTIVE_TEST_ORDER)
{
secp256k1_scalar computed_r;
secp256k1_ge pr_ge;
secp256k1_ge_set_gej(&pr_ge, &pr);
secp256k1_fe_normalize(&pr_ge.x);
secp256k1_fe_get_b32(c, &pr_ge.x);
secp256k1_scalar_set_b32(&computed_r, c, NULL);
return secp256k1_scalar_eq(sigr, &computed_r);
}
#else
secp256k1_scalar_get_b32(c, sigr);
/* we can ignore the fe_set_b32_limit return value, because we know the input is in range */
(void)secp256k1_fe_set_b32_limit(&xr, c);
/** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n)
* in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p),
* compute the remainder modulo n, and compare it to xr. However:
*
* xr == X(pr) mod n
* <=> exists h. (xr + h * n < p && xr + h * n == X(pr))
* [Since 2 * n > p, h can only be 0 or 1]
* <=> (xr == X(pr)) || (xr + n < p && xr + n == X(pr))
* [In Jacobian coordinates, X(pr) is pr.x / pr.z^2 mod p]
* <=> (xr == pr.x / pr.z^2 mod p) || (xr + n < p && xr + n == pr.x / pr.z^2 mod p)
* [Multiplying both sides of the equations by pr.z^2 mod p]
* <=> (xr * pr.z^2 mod p == pr.x) || (xr + n < p && (xr + n) * pr.z^2 mod p == pr.x)
*
* Thus, we can avoid the inversion, but we have to check both cases separately.
* secp256k1_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test.
*/
if (secp256k1_gej_eq_x_var(&xr, &pr)) {
/* xr * pr.z^2 mod p == pr.x, so the signature is valid. */
return 1;
}
if (secp256k1_fe_cmp_var(&xr, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
/* xr + n >= p, so we can skip testing the second case. */
return 0;
}
secp256k1_fe_add(&xr, &secp256k1_ecdsa_const_order_as_fe);
if (secp256k1_gej_eq_x_var(&xr, &pr)) {
/* (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid. */
return 1;
}
return 0;
#endif
}
static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid) {
unsigned char b[32];
secp256k1_gej rp;
secp256k1_ge r;
secp256k1_scalar n;
int overflow = 0;
int high;
secp256k1_ecmult_gen(ctx, &rp, nonce);
secp256k1_ge_set_gej(&r, &rp);
secp256k1_fe_normalize(&r.x);
secp256k1_fe_normalize(&r.y);
secp256k1_fe_get_b32(b, &r.x);
secp256k1_scalar_set_b32(sigr, b, &overflow);
if (recid) {
/* The overflow condition is cryptographically unreachable as hitting it requires finding the discrete log
* of some P where P.x >= order, and only 1 in about 2^127 points meet this criteria.
*/
*recid = (overflow << 1) | secp256k1_fe_is_odd(&r.y);
}
secp256k1_scalar_mul(&n, sigr, seckey);
secp256k1_scalar_add(&n, &n, message);
secp256k1_scalar_inverse(sigs, nonce);
secp256k1_scalar_mul(sigs, sigs, &n);
secp256k1_scalar_clear(&n);
secp256k1_gej_clear(&rp);
secp256k1_ge_clear(&r);
high = secp256k1_scalar_is_high(sigs);
secp256k1_scalar_cond_negate(sigs, high);
if (recid) {
*recid ^= high;
}
/* P.x = order is on the curve, so technically sig->r could end up being zero, which would be an invalid signature.
* This is cryptographically unreachable as hitting it requires finding the discrete log of P.x = N.
*/
return (int)(!secp256k1_scalar_is_zero(sigr)) & (int)(!secp256k1_scalar_is_zero(sigs));
}
#endif /* SECP256K1_ECDSA_IMPL_H */

25
secp256k1/src/eckey.h Normal file
View File

@ -0,0 +1,25 @@
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ECKEY_H
#define SECP256K1_ECKEY_H
#include <stddef.h>
#include "group.h"
#include "scalar.h"
#include "ecmult.h"
#include "ecmult_gen.h"
static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size);
static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, int compressed);
static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak);
static int secp256k1_eckey_pubkey_tweak_add(secp256k1_ge *key, const secp256k1_scalar *tweak);
static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp256k1_scalar *tweak);
static int secp256k1_eckey_pubkey_tweak_mul(secp256k1_ge *key, const secp256k1_scalar *tweak);
#endif /* SECP256K1_ECKEY_H */

View File

@ -0,0 +1,95 @@
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ECKEY_IMPL_H
#define SECP256K1_ECKEY_IMPL_H
#include "eckey.h"
#include "util.h"
#include "scalar.h"
#include "field.h"
#include "group.h"
#include "ecmult_gen.h"
static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size) {
if (size == 33 && (pub[0] == SECP256K1_TAG_PUBKEY_EVEN || pub[0] == SECP256K1_TAG_PUBKEY_ODD)) {
secp256k1_fe x;
return secp256k1_fe_set_b32_limit(&x, pub+1) && secp256k1_ge_set_xo_var(elem, &x, pub[0] == SECP256K1_TAG_PUBKEY_ODD);
} else if (size == 65 && (pub[0] == SECP256K1_TAG_PUBKEY_UNCOMPRESSED || pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_EVEN || pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_ODD)) {
secp256k1_fe x, y;
if (!secp256k1_fe_set_b32_limit(&x, pub+1) || !secp256k1_fe_set_b32_limit(&y, pub+33)) {
return 0;
}
secp256k1_ge_set_xy(elem, &x, &y);
if ((pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_EVEN || pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_ODD) &&
secp256k1_fe_is_odd(&y) != (pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_ODD)) {
return 0;
}
return secp256k1_ge_is_valid_var(elem);
} else {
return 0;
}
}
static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, int compressed) {
VERIFY_CHECK(compressed == 0 || compressed == 1);
if (secp256k1_ge_is_infinity(elem)) {
return 0;
}
secp256k1_fe_normalize_var(&elem->x);
secp256k1_fe_normalize_var(&elem->y);
secp256k1_fe_get_b32(&pub[1], &elem->x);
if (compressed) {
*size = 33;
pub[0] = secp256k1_fe_is_odd(&elem->y) ? SECP256K1_TAG_PUBKEY_ODD : SECP256K1_TAG_PUBKEY_EVEN;
} else {
*size = 65;
pub[0] = SECP256K1_TAG_PUBKEY_UNCOMPRESSED;
secp256k1_fe_get_b32(&pub[33], &elem->y);
}
return 1;
}
static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak) {
secp256k1_scalar_add(key, key, tweak);
return !secp256k1_scalar_is_zero(key);
}
static int secp256k1_eckey_pubkey_tweak_add(secp256k1_ge *key, const secp256k1_scalar *tweak) {
secp256k1_gej pt;
secp256k1_gej_set_ge(&pt, key);
secp256k1_ecmult(&pt, &pt, &secp256k1_scalar_one, tweak);
if (secp256k1_gej_is_infinity(&pt)) {
return 0;
}
secp256k1_ge_set_gej(key, &pt);
return 1;
}
static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp256k1_scalar *tweak) {
int ret;
ret = !secp256k1_scalar_is_zero(tweak);
secp256k1_scalar_mul(key, key, tweak);
return ret;
}
static int secp256k1_eckey_pubkey_tweak_mul(secp256k1_ge *key, const secp256k1_scalar *tweak) {
secp256k1_gej pt;
if (secp256k1_scalar_is_zero(tweak)) {
return 0;
}
secp256k1_gej_set_ge(&pt, key);
secp256k1_ecmult(&pt, &pt, tweak, &secp256k1_scalar_zero);
secp256k1_ge_set_gej(key, &pt);
return 1;
}
#endif /* SECP256K1_ECKEY_IMPL_H */

61
secp256k1/src/ecmult.h Normal file
View File

@ -0,0 +1,61 @@
/***********************************************************************
* Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ECMULT_H
#define SECP256K1_ECMULT_H
#include "group.h"
#include "scalar.h"
#include "scratch.h"
#ifndef ECMULT_WINDOW_SIZE
# define ECMULT_WINDOW_SIZE 15
# ifdef DEBUG_CONFIG
# pragma message DEBUG_CONFIG_MSG("ECMULT_WINDOW_SIZE undefined, assuming default value")
# endif
#endif
#ifdef DEBUG_CONFIG
# pragma message DEBUG_CONFIG_DEF(ECMULT_WINDOW_SIZE)
#endif
/* No one will ever need more than a window size of 24. The code might
* be correct for larger values of ECMULT_WINDOW_SIZE but this is not
* tested.
*
* The following limitations are known, and there are probably more:
* If WINDOW_G > 27 and size_t has 32 bits, then the code is incorrect
* because the size of the memory object that we allocate (in bytes)
* will not fit in a size_t.
* If WINDOW_G > 31 and int has 32 bits, then the code is incorrect
* because certain expressions will overflow.
*/
#if ECMULT_WINDOW_SIZE < 2 || ECMULT_WINDOW_SIZE > 24
# error Set ECMULT_WINDOW_SIZE to an integer in range [2..24].
#endif
/** The number of entries a table with precomputed multiples needs to have. */
#define ECMULT_TABLE_SIZE(w) (1L << ((w)-2))
/** Double multiply: R = na*A + ng*G */
static void secp256k1_ecmult(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng);
typedef int (secp256k1_ecmult_multi_callback)(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data);
/**
* Multi-multiply: R = inp_g_sc * G + sum_i ni * Ai.
* Chooses the right algorithm for a given number of points and scratch space
* size. Resets and overwrites the given scratch space. If the points do not
* fit in the scratch space the algorithm is repeatedly run with batches of
* points. If no scratch space is given then a simple algorithm is used that
* simply multiplies the points with the corresponding scalars and adds them up.
* Returns: 1 on success (including when inp_g_sc is NULL and n is 0)
* 0 if there is not enough scratch space for a single point or
* callback returns 0
*/
static int secp256k1_ecmult_multi_var(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n);
#endif /* SECP256K1_ECMULT_H */

View File

@ -0,0 +1,16 @@
/*****************************************************************************************************
* Copyright (c) 2013, 2014, 2017, 2021 Pieter Wuille, Andrew Poelstra, Jonas Nick, Russell O'Connor *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php. *
*****************************************************************************************************/
#ifndef SECP256K1_ECMULT_COMPUTE_TABLE_H
#define SECP256K1_ECMULT_COMPUTE_TABLE_H
/* Construct table of all odd multiples of gen in range 1..(2**(window_g-1)-1). */
static void secp256k1_ecmult_compute_table(secp256k1_ge_storage* table, int window_g, const secp256k1_gej* gen);
/* Like secp256k1_ecmult_compute_table, but one for both gen and gen*2^128. */
static void secp256k1_ecmult_compute_two_tables(secp256k1_ge_storage* table, secp256k1_ge_storage* table_128, int window_g, const secp256k1_ge* gen);
#endif /* SECP256K1_ECMULT_COMPUTE_TABLE_H */

View File

@ -0,0 +1,49 @@
/*****************************************************************************************************
* Copyright (c) 2013, 2014, 2017, 2021 Pieter Wuille, Andrew Poelstra, Jonas Nick, Russell O'Connor *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php. *
*****************************************************************************************************/
#ifndef SECP256K1_ECMULT_COMPUTE_TABLE_IMPL_H
#define SECP256K1_ECMULT_COMPUTE_TABLE_IMPL_H
#include "ecmult_compute_table.h"
#include "group_impl.h"
#include "field_impl.h"
#include "ecmult.h"
#include "util.h"
static void secp256k1_ecmult_compute_table(secp256k1_ge_storage* table, int window_g, const secp256k1_gej* gen) {
secp256k1_gej gj;
secp256k1_ge ge, dgen;
int j;
gj = *gen;
secp256k1_ge_set_gej_var(&ge, &gj);
secp256k1_ge_to_storage(&table[0], &ge);
secp256k1_gej_double_var(&gj, gen, NULL);
secp256k1_ge_set_gej_var(&dgen, &gj);
for (j = 1; j < ECMULT_TABLE_SIZE(window_g); ++j) {
secp256k1_gej_set_ge(&gj, &ge);
secp256k1_gej_add_ge_var(&gj, &gj, &dgen, NULL);
secp256k1_ge_set_gej_var(&ge, &gj);
secp256k1_ge_to_storage(&table[j], &ge);
}
}
/* Like secp256k1_ecmult_compute_table, but one for both gen and gen*2^128. */
static void secp256k1_ecmult_compute_two_tables(secp256k1_ge_storage* table, secp256k1_ge_storage* table_128, int window_g, const secp256k1_ge* gen) {
secp256k1_gej gj;
int i;
secp256k1_gej_set_ge(&gj, gen);
secp256k1_ecmult_compute_table(table, window_g, &gj);
for (i = 0; i < 128; ++i) {
secp256k1_gej_double_var(&gj, &gj, NULL);
}
secp256k1_ecmult_compute_table(table_128, window_g, &gj);
}
#endif /* SECP256K1_ECMULT_COMPUTE_TABLE_IMPL_H */

View File

@ -0,0 +1,38 @@
/***********************************************************************
* Copyright (c) 2015 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ECMULT_CONST_H
#define SECP256K1_ECMULT_CONST_H
#include "scalar.h"
#include "group.h"
/**
* Multiply: R = q*A (in constant-time for q)
*/
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q);
/**
* Same as secp256k1_ecmult_const, but takes in an x coordinate of the base point
* only, specified as fraction n/d (numerator/denominator). Only the x coordinate of the result is
* returned.
*
* If known_on_curve is 0, a verification is performed that n/d is a valid X
* coordinate, and 0 is returned if not. Otherwise, 1 is returned.
*
* d being NULL is interpreted as d=1. If non-NULL, d must not be zero. q must not be zero.
*
* Constant time in the value of q, but not any other inputs.
*/
static int secp256k1_ecmult_const_xonly(
secp256k1_fe *r,
const secp256k1_fe *n,
const secp256k1_fe *d,
const secp256k1_scalar *q,
int known_on_curve
);
#endif /* SECP256K1_ECMULT_CONST_H */

View File

@ -0,0 +1,401 @@
/***********************************************************************
* Copyright (c) 2015, 2022 Pieter Wuille, Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ECMULT_CONST_IMPL_H
#define SECP256K1_ECMULT_CONST_IMPL_H
#include "scalar.h"
#include "group.h"
#include "ecmult_const.h"
#include "ecmult_impl.h"
#if defined(EXHAUSTIVE_TEST_ORDER)
/* We need 2^ECMULT_CONST_GROUP_SIZE - 1 to be less than EXHAUSTIVE_TEST_ORDER, because
* the tables cannot have infinities in them (this breaks the effective-affine technique's
* z-ratio tracking) */
# if EXHAUSTIVE_TEST_ORDER == 199
# define ECMULT_CONST_GROUP_SIZE 4
# elif EXHAUSTIVE_TEST_ORDER == 13
# define ECMULT_CONST_GROUP_SIZE 3
# elif EXHAUSTIVE_TEST_ORDER == 7
# define ECMULT_CONST_GROUP_SIZE 2
# else
# error "Unknown EXHAUSTIVE_TEST_ORDER"
# endif
#else
/* Group size 4 or 5 appears optimal. */
# define ECMULT_CONST_GROUP_SIZE 5
#endif
#define ECMULT_CONST_TABLE_SIZE (1L << (ECMULT_CONST_GROUP_SIZE - 1))
#define ECMULT_CONST_GROUPS ((129 + ECMULT_CONST_GROUP_SIZE - 1) / ECMULT_CONST_GROUP_SIZE)
#define ECMULT_CONST_BITS (ECMULT_CONST_GROUPS * ECMULT_CONST_GROUP_SIZE)
/** Fill a table 'pre' with precomputed odd multiples of a.
*
* The resulting point set is brought to a single constant Z denominator, stores the X and Y
* coordinates as ge points in pre, and stores the global Z in globalz.
*
* 'pre' must be an array of size ECMULT_CONST_TABLE_SIZE.
*/
static void secp256k1_ecmult_const_odd_multiples_table_globalz(secp256k1_ge *pre, secp256k1_fe *globalz, const secp256k1_gej *a) {
secp256k1_fe zr[ECMULT_CONST_TABLE_SIZE];
secp256k1_ecmult_odd_multiples_table(ECMULT_CONST_TABLE_SIZE, pre, zr, globalz, a);
secp256k1_ge_table_set_globalz(ECMULT_CONST_TABLE_SIZE, pre, zr);
}
/* Given a table 'pre' with odd multiples of a point, put in r the signed-bit multiplication of n with that point.
*
* For example, if ECMULT_CONST_GROUP_SIZE is 4, then pre is expected to contain 8 entries:
* [1*P, 3*P, 5*P, 7*P, 9*P, 11*P, 13*P, 15*P]. n is then expected to be a 4-bit integer (range 0-15), and its
* bits are interpreted as signs of powers of two to look up.
*
* For example, if n=4, which is 0100 in binary, which is interpreted as [- + - -], so the looked up value is
* [ -(2^3) + (2^2) - (2^1) - (2^0) ]*P = -7*P. Every valid n translates to an odd number in range [-15,15],
* which means we just need to look up one of the precomputed values, and optionally negate it.
*/
#define ECMULT_CONST_TABLE_GET_GE(r,pre,n) do { \
unsigned int m = 0; \
/* If the top bit of n is 0, we want the negation. */ \
volatile unsigned int negative = ((n) >> (ECMULT_CONST_GROUP_SIZE - 1)) ^ 1; \
/* Let n[i] be the i-th bit of n, then the index is
* sum(cnot(n[i]) * 2^i, i=0..l-2)
* where cnot(b) = b if n[l-1] = 1 and 1 - b otherwise.
* For example, if n = 4, in binary 0100, the index is 3, in binary 011.
*
* Proof:
* Let
* x = sum((2*n[i] - 1)*2^i, i=0..l-1)
* = 2*sum(n[i] * 2^i, i=0..l-1) - 2^l + 1
* be the value represented by n.
* The index is (x - 1)/2 if x > 0 and -(x + 1)/2 otherwise.
* Case x > 0:
* n[l-1] = 1
* index = sum(n[i] * 2^i, i=0..l-1) - 2^(l-1)
* = sum(n[i] * 2^i, i=0..l-2)
* Case x <= 0:
* n[l-1] = 0
* index = -(2*sum(n[i] * 2^i, i=0..l-1) - 2^l + 2)/2
* = 2^(l-1) - 1 - sum(n[i] * 2^i, i=0..l-1)
* = sum((1 - n[i]) * 2^i, i=0..l-2)
*/ \
unsigned int index = ((unsigned int)(-negative) ^ n) & ((1U << (ECMULT_CONST_GROUP_SIZE - 1)) - 1U); \
secp256k1_fe neg_y; \
VERIFY_CHECK((n) < (1U << ECMULT_CONST_GROUP_SIZE)); \
VERIFY_CHECK(index < (1U << (ECMULT_CONST_GROUP_SIZE - 1))); \
/* Unconditionally set r->x = (pre)[m].x. r->y = (pre)[m].y. because it's either the correct one
* or will get replaced in the later iterations, this is needed to make sure `r` is initialized. */ \
(r)->x = (pre)[m].x; \
(r)->y = (pre)[m].y; \
for (m = 1; m < ECMULT_CONST_TABLE_SIZE; m++) { \
/* This loop is used to avoid secret data in array indices. See
* the comment in ecmult_gen_impl.h for rationale. */ \
secp256k1_fe_cmov(&(r)->x, &(pre)[m].x, m == index); \
secp256k1_fe_cmov(&(r)->y, &(pre)[m].y, m == index); \
} \
(r)->infinity = 0; \
secp256k1_fe_negate(&neg_y, &(r)->y, 1); \
secp256k1_fe_cmov(&(r)->y, &neg_y, negative); \
} while(0)
/* For K as defined in the comment of secp256k1_ecmult_const, we have several precomputed
* formulas/constants.
* - in exhaustive test mode, we give an explicit expression to compute it at compile time: */
#ifdef EXHAUSTIVE_TEST_ORDER
static const secp256k1_scalar secp256k1_ecmult_const_K = ((SECP256K1_SCALAR_CONST(0, 0, 0, (1U << (ECMULT_CONST_BITS - 128)) - 2U, 0, 0, 0, 0) + EXHAUSTIVE_TEST_ORDER - 1U) * (1U + EXHAUSTIVE_TEST_LAMBDA)) % EXHAUSTIVE_TEST_ORDER;
/* - for the real secp256k1 group we have constants for various ECMULT_CONST_BITS values. */
#elif ECMULT_CONST_BITS == 129
/* For GROUP_SIZE = 1,3. */
static const secp256k1_scalar secp256k1_ecmult_const_K = SECP256K1_SCALAR_CONST(0xac9c52b3ul, 0x3fa3cf1ful, 0x5ad9e3fdul, 0x77ed9ba4ul, 0xa880b9fcul, 0x8ec739c2ul, 0xe0cfc810ul, 0xb51283ceul);
#elif ECMULT_CONST_BITS == 130
/* For GROUP_SIZE = 2,5. */
static const secp256k1_scalar secp256k1_ecmult_const_K = SECP256K1_SCALAR_CONST(0xa4e88a7dul, 0xcb13034eul, 0xc2bdd6bful, 0x7c118d6bul, 0x589ae848ul, 0x26ba29e4ul, 0xb5c2c1dcul, 0xde9798d9ul);
#elif ECMULT_CONST_BITS == 132
/* For GROUP_SIZE = 4,6 */
static const secp256k1_scalar secp256k1_ecmult_const_K = SECP256K1_SCALAR_CONST(0x76b1d93dul, 0x0fae3c6bul, 0x3215874bul, 0x94e93813ul, 0x7937fe0dul, 0xb66bcaaful, 0xb3749ca5ul, 0xd7b6171bul);
#else
# error "Unknown ECMULT_CONST_BITS"
#endif
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q) {
/* The approach below combines the signed-digit logic from Mike Hamburg's
* "Fast and compact elliptic-curve cryptography" (https://eprint.iacr.org/2012/309)
* Section 3.3, with the GLV endomorphism.
*
* The idea there is to interpret the bits of a scalar as signs (1 = +, 0 = -), and compute a
* point multiplication in that fashion. Let v be an n-bit non-negative integer (0 <= v < 2^n),
* and v[i] its i'th bit (so v = sum(v[i] * 2^i, i=0..n-1)). Then define:
*
* C_l(v, A) = sum((2*v[i] - 1) * 2^i*A, i=0..l-1)
*
* Then it holds that C_l(v, A) = sum((2*v[i] - 1) * 2^i*A, i=0..l-1)
* = (2*sum(v[i] * 2^i, i=0..l-1) + 1 - 2^l) * A
* = (2*v + 1 - 2^l) * A
*
* Thus, one can compute q*A as C_256((q + 2^256 - 1) / 2, A). This is the basis for the
* paper's signed-digit multi-comb algorithm for multiplication using a precomputed table.
*
* It is appealing to try to combine this with the GLV optimization: the idea that a scalar
* s can be written as s1 + lambda*s2, where lambda is a curve-specific constant such that
* lambda*A is easy to compute, and where s1 and s2 are small. In particular we have the
* secp256k1_scalar_split_lambda function which performs such a split with the resulting s1
* and s2 in range (-2^128, 2^128) mod n. This does work, but is uninteresting:
*
* To compute q*A:
* - Let s1, s2 = split_lambda(q)
* - Let R1 = C_256((s1 + 2^256 - 1) / 2, A)
* - Let R2 = C_256((s2 + 2^256 - 1) / 2, lambda*A)
* - Return R1 + R2
*
* The issue is that while s1 and s2 are small-range numbers, (s1 + 2^256 - 1) / 2 (mod n)
* and (s2 + 2^256 - 1) / 2 (mod n) are not, undoing the benefit of the splitting.
*
* To make it work, we want to modify the input scalar q first, before splitting, and then only
* add a 2^128 offset of the split results (so that they end up in the single 129-bit range
* [0,2^129]). A slightly smaller offset would work due to the bounds on the split, but we pick
* 2^128 for simplicity. Let s be the scalar fed to split_lambda, and f(q) the function to
* compute it from q:
*
* To compute q*A:
* - Compute s = f(q)
* - Let s1, s2 = split_lambda(s)
* - Let v1 = s1 + 2^128 (mod n)
* - Let v2 = s2 + 2^128 (mod n)
* - Let R1 = C_l(v1, A)
* - Let R2 = C_l(v2, lambda*A)
* - Return R1 + R2
*
* l will thus need to be at least 129, but we may overshoot by a few bits (see
* further), so keep it as a variable.
*
* To solve for s, we reason:
* q*A = R1 + R2
* <=> q*A = C_l(s1 + 2^128, A) + C_l(s2 + 2^128, lambda*A)
* <=> q*A = (2*(s1 + 2^128) + 1 - 2^l) * A + (2*(s2 + 2^128) + 1 - 2^l) * lambda*A
* <=> q*A = (2*(s1 + s2*lambda) + (2^129 + 1 - 2^l) * (1 + lambda)) * A
* <=> q = 2*(s1 + s2*lambda) + (2^129 + 1 - 2^l) * (1 + lambda) (mod n)
* <=> q = 2*s + (2^129 + 1 - 2^l) * (1 + lambda) (mod n)
* <=> s = (q + (2^l - 2^129 - 1) * (1 + lambda)) / 2 (mod n)
* <=> f(q) = (q + K) / 2 (mod n)
* where K = (2^l - 2^129 - 1)*(1 + lambda) (mod n)
*
* We will process the computation of C_l(v1, A) and C_l(v2, lambda*A) in groups of
* ECMULT_CONST_GROUP_SIZE, so we set l to the smallest multiple of ECMULT_CONST_GROUP_SIZE
* that is not less than 129; this equals ECMULT_CONST_BITS.
*/
/* The offset to add to s1 and s2 to make them non-negative. Equal to 2^128. */
static const secp256k1_scalar S_OFFSET = SECP256K1_SCALAR_CONST(0, 0, 0, 1, 0, 0, 0, 0);
secp256k1_scalar s, v1, v2;
secp256k1_ge pre_a[ECMULT_CONST_TABLE_SIZE];
secp256k1_ge pre_a_lam[ECMULT_CONST_TABLE_SIZE];
secp256k1_fe global_z;
int group, i;
/* We're allowed to be non-constant time in the point, and the code below (in particular,
* secp256k1_ecmult_const_odd_multiples_table_globalz) cannot deal with infinity in a
* constant-time manner anyway. */
if (secp256k1_ge_is_infinity(a)) {
secp256k1_gej_set_infinity(r);
return;
}
/* Compute v1 and v2. */
secp256k1_scalar_add(&s, q, &secp256k1_ecmult_const_K);
secp256k1_scalar_half(&s, &s);
secp256k1_scalar_split_lambda(&v1, &v2, &s);
secp256k1_scalar_add(&v1, &v1, &S_OFFSET);
secp256k1_scalar_add(&v2, &v2, &S_OFFSET);
#ifdef VERIFY
/* Verify that v1 and v2 are in range [0, 2^129-1]. */
for (i = 129; i < 256; ++i) {
VERIFY_CHECK(secp256k1_scalar_get_bits_limb32(&v1, i, 1) == 0);
VERIFY_CHECK(secp256k1_scalar_get_bits_limb32(&v2, i, 1) == 0);
}
#endif
/* Calculate odd multiples of A and A*lambda.
* All multiples are brought to the same Z 'denominator', which is stored
* in global_z. Due to secp256k1' isomorphism we can do all operations pretending
* that the Z coordinate was 1, use affine addition formulae, and correct
* the Z coordinate of the result once at the end.
*/
secp256k1_gej_set_ge(r, a);
secp256k1_ecmult_const_odd_multiples_table_globalz(pre_a, &global_z, r);
for (i = 0; i < ECMULT_CONST_TABLE_SIZE; i++) {
secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
}
/* Next, we compute r = C_l(v1, A) + C_l(v2, lambda*A).
*
* We proceed in groups of ECMULT_CONST_GROUP_SIZE bits, operating on that many bits
* at a time, from high in v1, v2 to low. Call these bits1 (from v1) and bits2 (from v2).
*
* Now note that ECMULT_CONST_TABLE_GET_GE(&t, pre_a, bits1) loads into t a point equal
* to C_{ECMULT_CONST_GROUP_SIZE}(bits1, A), and analogously for pre_lam_a / bits2.
* This means that all we need to do is add these looked up values together, multiplied
* by 2^(ECMULT_GROUP_SIZE * group).
*/
for (group = ECMULT_CONST_GROUPS - 1; group >= 0; --group) {
/* Using the _var get_bits function is ok here, since it's only variable in offset and count, not in the scalar. */
unsigned int bits1 = secp256k1_scalar_get_bits_var(&v1, group * ECMULT_CONST_GROUP_SIZE, ECMULT_CONST_GROUP_SIZE);
unsigned int bits2 = secp256k1_scalar_get_bits_var(&v2, group * ECMULT_CONST_GROUP_SIZE, ECMULT_CONST_GROUP_SIZE);
secp256k1_ge t;
int j;
ECMULT_CONST_TABLE_GET_GE(&t, pre_a, bits1);
if (group == ECMULT_CONST_GROUPS - 1) {
/* Directly set r in the first iteration. */
secp256k1_gej_set_ge(r, &t);
} else {
/* Shift the result so far up. */
for (j = 0; j < ECMULT_CONST_GROUP_SIZE; ++j) {
secp256k1_gej_double(r, r);
}
secp256k1_gej_add_ge(r, r, &t);
}
ECMULT_CONST_TABLE_GET_GE(&t, pre_a_lam, bits2);
secp256k1_gej_add_ge(r, r, &t);
}
/* Map the result back to the secp256k1 curve from the isomorphic curve. */
secp256k1_fe_mul(&r->z, &r->z, &global_z);
}
static int secp256k1_ecmult_const_xonly(secp256k1_fe* r, const secp256k1_fe *n, const secp256k1_fe *d, const secp256k1_scalar *q, int known_on_curve) {
/* This algorithm is a generalization of Peter Dettman's technique for
* avoiding the square root in a random-basepoint x-only multiplication
* on a Weierstrass curve:
* https://mailarchive.ietf.org/arch/msg/cfrg/7DyYY6gg32wDgHAhgSb6XxMDlJA/
*
*
* === Background: the effective affine technique ===
*
* Let phi_u be the isomorphism that maps (x, y) on secp256k1 curve y^2 = x^3 + 7 to
* x' = u^2*x, y' = u^3*y on curve y'^2 = x'^3 + u^6*7. This new curve has the same order as
* the original (it is isomorphic), but moreover, has the same addition/doubling formulas, as
* the curve b=7 coefficient does not appear in those formulas (or at least does not appear in
* the formulas implemented in this codebase, both affine and Jacobian). See also Example 9.5.2
* in https://www.math.auckland.ac.nz/~sgal018/crypto-book/ch9.pdf.
*
* This means any linear combination of secp256k1 points can be computed by applying phi_u
* (with non-zero u) on all input points (including the generator, if used), computing the
* linear combination on the isomorphic curve (using the same group laws), and then applying
* phi_u^{-1} to get back to secp256k1.
*
* Switching to Jacobian coordinates, note that phi_u applied to (X, Y, Z) is simply
* (X, Y, Z/u). Thus, if we want to compute (X1, Y1, Z) + (X2, Y2, Z), with identical Z
* coordinates, we can use phi_Z to transform it to (X1, Y1, 1) + (X2, Y2, 1) on an isomorphic
* curve where the affine addition formula can be used instead.
* If (X3, Y3, Z3) = (X1, Y1) + (X2, Y2) on that curve, then our answer on secp256k1 is
* (X3, Y3, Z3*Z).
*
* This is the effective affine technique: if we have a linear combination of group elements
* to compute, and all those group elements have the same Z coordinate, we can simply pretend
* that all those Z coordinates are 1, perform the computation that way, and then multiply the
* original Z coordinate back in.
*
* The technique works on any a=0 short Weierstrass curve. It is possible to generalize it to
* other curves too, but there the isomorphic curves will have different 'a' coefficients,
* which typically does affect the group laws.
*
*
* === Avoiding the square root for x-only point multiplication ===
*
* In this function, we want to compute the X coordinate of q*(n/d, y), for
* y = sqrt((n/d)^3 + 7). Its negation would also be a valid Y coordinate, but by convention
* we pick whatever sqrt returns (which we assume to be a deterministic function).
*
* Let g = y^2*d^3 = n^3 + 7*d^3. This also means y = sqrt(g/d^3).
* Further let v = sqrt(d*g), which must exist as d*g = y^2*d^4 = (y*d^2)^2.
*
* The input point (n/d, y) also has Jacobian coordinates:
*
* (n/d, y, 1)
* = (n/d * v^2, y * v^3, v)
* = (n/d * d*g, y * sqrt(d^3*g^3), v)
* = (n/d * d*g, sqrt(y^2 * d^3*g^3), v)
* = (n*g, sqrt(g/d^3 * d^3*g^3), v)
* = (n*g, sqrt(g^4), v)
* = (n*g, g^2, v)
*
* It is easy to verify that both (n*g, g^2, v) and its negation (n*g, -g^2, v) have affine X
* coordinate n/d, and this holds even when the square root function doesn't have a
* deterministic sign. We choose the (n*g, g^2, v) version.
*
* Now switch to the effective affine curve using phi_v, where the input point has coordinates
* (n*g, g^2). Compute (X, Y, Z) = q * (n*g, g^2) there.
*
* Back on secp256k1, that means q * (n*g, g^2, v) = (X, Y, v*Z). This last point has affine X
* coordinate X / (v^2*Z^2) = X / (d*g*Z^2). Determining the affine Y coordinate would involve
* a square root, but as long as we only care about the resulting X coordinate, no square root
* is needed anywhere in this computation.
*/
secp256k1_fe g, i;
secp256k1_ge p;
secp256k1_gej rj;
/* Compute g = (n^3 + B*d^3). */
secp256k1_fe_sqr(&g, n);
secp256k1_fe_mul(&g, &g, n);
if (d) {
secp256k1_fe b;
VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero(d));
secp256k1_fe_sqr(&b, d);
VERIFY_CHECK(SECP256K1_B <= 8); /* magnitude of b will be <= 8 after the next call */
secp256k1_fe_mul_int(&b, SECP256K1_B);
secp256k1_fe_mul(&b, &b, d);
secp256k1_fe_add(&g, &b);
if (!known_on_curve) {
/* We need to determine whether (n/d)^3 + 7 is square.
*
* is_square((n/d)^3 + 7)
* <=> is_square(((n/d)^3 + 7) * d^4)
* <=> is_square((n^3 + 7*d^3) * d)
* <=> is_square(g * d)
*/
secp256k1_fe c;
secp256k1_fe_mul(&c, &g, d);
if (!secp256k1_fe_is_square_var(&c)) return 0;
}
} else {
secp256k1_fe_add_int(&g, SECP256K1_B);
if (!known_on_curve) {
/* g at this point equals x^3 + 7. Test if it is square. */
if (!secp256k1_fe_is_square_var(&g)) return 0;
}
}
SECP256K1_FE_VERIFY_MAGNITUDE(&g, 2);
/* Compute base point P = (n*g, g^2), the effective affine version of (n*g, g^2, v), which has
* corresponding affine X coordinate n/d. */
secp256k1_fe_mul(&p.x, &g, n);
secp256k1_fe_sqr(&p.y, &g);
p.infinity = 0;
/* Perform x-only EC multiplication of P with q. */
VERIFY_CHECK(!secp256k1_scalar_is_zero(q));
secp256k1_ecmult_const(&rj, &p, q);
VERIFY_CHECK(!secp256k1_gej_is_infinity(&rj));
/* The resulting (X, Y, Z) point on the effective-affine isomorphic curve corresponds to
* (X, Y, Z*v) on the secp256k1 curve. The affine version of that has X coordinate
* (X / (Z^2*d*g)). */
secp256k1_fe_sqr(&i, &rj.z);
secp256k1_fe_mul(&i, &i, &g);
if (d) secp256k1_fe_mul(&i, &i, d);
secp256k1_fe_inv(&i, &i);
secp256k1_fe_mul(r, &rj.x, &i);
return 1;
}
#endif /* SECP256K1_ECMULT_CONST_IMPL_H */

143
secp256k1/src/ecmult_gen.h Normal file
View File

@ -0,0 +1,143 @@
/***********************************************************************
* Copyright (c) Pieter Wuille, Peter Dettman *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ECMULT_GEN_H
#define SECP256K1_ECMULT_GEN_H
#include "scalar.h"
#include "group.h"
/* Configuration parameters for the signed-digit multi-comb algorithm:
*
* - COMB_BLOCKS is the number of blocks the input is split into. Each
* has a corresponding table.
* - COMB_TEETH is the number of bits simultaneously covered by one table.
* - COMB_RANGE is the number of bits in supported scalars. For production
* purposes, only 256 is reasonable, but smaller numbers are supported for
* exhaustive test mode.
*
* The comb's spacing (COMB_SPACING), or the distance between the teeth,
* is defined as ceil(COMB_RANGE / (COMB_BLOCKS * COMB_TEETH)). Each block covers
* COMB_SPACING * COMB_TEETH consecutive bits in the input.
*
* The size of the precomputed table is COMB_BLOCKS * (1 << (COMB_TEETH - 1))
* secp256k1_ge_storages.
*
* The number of point additions equals COMB_BLOCKS * COMB_SPACING. Each point
* addition involves a cmov from (1 << (COMB_TEETH - 1)) table entries and a
* conditional negation.
*
* The number of point doublings is COMB_SPACING - 1. */
#if defined(EXHAUSTIVE_TEST_ORDER)
/* We need to control these values for exhaustive tests because
* the table cannot have infinities in them (secp256k1_ge_storage
* doesn't support infinities) */
# undef COMB_BLOCKS
# undef COMB_TEETH
# if EXHAUSTIVE_TEST_ORDER == 7
# define COMB_RANGE 3
# define COMB_BLOCKS 1
# define COMB_TEETH 2
# elif EXHAUSTIVE_TEST_ORDER == 13
# define COMB_RANGE 4
# define COMB_BLOCKS 1
# define COMB_TEETH 2
# elif EXHAUSTIVE_TEST_ORDER == 199
# define COMB_RANGE 8
# define COMB_BLOCKS 2
# define COMB_TEETH 3
# else
# error "Unknown exhaustive test order"
# endif
# if (COMB_RANGE >= 32) || ((EXHAUSTIVE_TEST_ORDER >> (COMB_RANGE - 1)) != 1)
# error "COMB_RANGE != ceil(log2(EXHAUSTIVE_TEST_ORDER+1))"
# endif
#else /* !defined(EXHAUSTIVE_TEST_ORDER) */
# define COMB_RANGE 256
#endif /* defined(EXHAUSTIVE_TEST_ORDER) */
/* Use (11, 6) as default configuration, which results in a 22 kB table. */
#ifndef COMB_BLOCKS
# define COMB_BLOCKS 11
# ifdef DEBUG_CONFIG
# pragma message DEBUG_CONFIG_MSG("COMB_BLOCKS undefined, assuming default value")
# endif
#endif
#ifndef COMB_TEETH
# define COMB_TEETH 6
# ifdef DEBUG_CONFIG
# pragma message DEBUG_CONFIG_MSG("COMB_TEETH undefined, assuming default value")
# endif
#endif
/* Use ceil(COMB_RANGE / (COMB_BLOCKS * COMB_TEETH)) as COMB_SPACING. */
#define COMB_SPACING CEIL_DIV(COMB_RANGE, COMB_BLOCKS * COMB_TEETH)
/* Range checks on the parameters. */
/* The remaining COMB_* parameters are derived values, don't modify these. */
/* - The number of bits covered by all the blocks; must be at least COMB_RANGE. */
#define COMB_BITS (COMB_BLOCKS * COMB_TEETH * COMB_SPACING)
/* - The number of entries per table. */
#define COMB_POINTS (1 << (COMB_TEETH - 1))
/* Sanity checks. */
#if !(1 <= COMB_BLOCKS && COMB_BLOCKS <= 256)
# error "COMB_BLOCKS must be in the range [1, 256]"
#endif
#if !(1 <= COMB_TEETH && COMB_TEETH <= 8)
# error "COMB_TEETH must be in the range [1, 8]"
#endif
#if COMB_BITS < COMB_RANGE
# error "COMB_BLOCKS * COMB_TEETH * COMB_SPACING is too low"
#endif
/* These last 2 checks are not strictly required, but prevent gratuitously inefficient
* configurations. Note that they compare with 256 rather than COMB_RANGE, so they do
* permit somewhat excessive values for the exhaustive test case, where testing with
* suboptimal parameters may be desirable. */
#if (COMB_BLOCKS - 1) * COMB_TEETH * COMB_SPACING >= 256
# error "COMB_BLOCKS can be reduced"
#endif
#if COMB_BLOCKS * (COMB_TEETH - 1) * COMB_SPACING >= 256
# error "COMB_TEETH can be reduced"
#endif
#ifdef DEBUG_CONFIG
# pragma message DEBUG_CONFIG_DEF(COMB_RANGE)
# pragma message DEBUG_CONFIG_DEF(COMB_BLOCKS)
# pragma message DEBUG_CONFIG_DEF(COMB_TEETH)
# pragma message DEBUG_CONFIG_DEF(COMB_SPACING)
#endif
typedef struct {
/* Whether the context has been built. */
int built;
/* Values chosen such that
*
* n*G == comb(n + scalar_offset, G/2) + ge_offset.
*
* This expression lets us use scalar blinding and optimize the comb precomputation. See
* ecmult_gen_impl.h for more details. */
secp256k1_scalar scalar_offset;
secp256k1_ge ge_offset;
/* Factor used for projective blinding. This value is used to rescale the Z
* coordinate of the first table lookup. */
secp256k1_fe proj_blind;
} secp256k1_ecmult_gen_context;
static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context* ctx);
static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context* ctx);
/** Multiply with the generator: R = a*G */
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context* ctx, secp256k1_gej *r, const secp256k1_scalar *a);
static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32);
#endif /* SECP256K1_ECMULT_GEN_H */

View File

@ -0,0 +1,14 @@
/***********************************************************************
* Copyright (c) Pieter Wuille, Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ECMULT_GEN_COMPUTE_TABLE_H
#define SECP256K1_ECMULT_GEN_COMPUTE_TABLE_H
#include "ecmult_gen.h"
static void secp256k1_ecmult_gen_compute_table(secp256k1_ge_storage* table, const secp256k1_ge* gen, int blocks, int teeth, int spacing);
#endif /* SECP256K1_ECMULT_GEN_COMPUTE_TABLE_H */

View File

@ -0,0 +1,108 @@
/***********************************************************************
* Copyright (c) Pieter Wuille, Gregory Maxwell, Peter Dettman *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ECMULT_GEN_COMPUTE_TABLE_IMPL_H
#define SECP256K1_ECMULT_GEN_COMPUTE_TABLE_IMPL_H
#include "ecmult_gen_compute_table.h"
#include "group_impl.h"
#include "field_impl.h"
#include "scalar_impl.h"
#include "ecmult_gen.h"
#include "util.h"
static void secp256k1_ecmult_gen_compute_table(secp256k1_ge_storage* table, const secp256k1_ge* gen, int blocks, int teeth, int spacing) {
size_t points = ((size_t)1) << (teeth - 1);
size_t points_total = points * blocks;
secp256k1_ge* prec = checked_malloc(&default_error_callback, points_total * sizeof(*prec));
secp256k1_gej* ds = checked_malloc(&default_error_callback, teeth * sizeof(*ds));
secp256k1_gej* vs = checked_malloc(&default_error_callback, points_total * sizeof(*vs));
secp256k1_gej u;
size_t vs_pos = 0;
secp256k1_scalar half;
int block, i;
VERIFY_CHECK(points_total > 0);
/* u is the running power of two times gen we're working with, initially gen/2. */
secp256k1_scalar_half(&half, &secp256k1_scalar_one);
secp256k1_gej_set_infinity(&u);
for (i = 255; i >= 0; --i) {
/* Use a very simple multiplication ladder to avoid dependency on ecmult. */
secp256k1_gej_double_var(&u, &u, NULL);
if (secp256k1_scalar_get_bits_limb32(&half, i, 1)) {
secp256k1_gej_add_ge_var(&u, &u, gen, NULL);
}
}
#ifdef VERIFY
{
/* Verify that u*2 = gen. */
secp256k1_gej double_u;
secp256k1_gej_double_var(&double_u, &u, NULL);
VERIFY_CHECK(secp256k1_gej_eq_ge_var(&double_u, gen));
}
#endif
for (block = 0; block < blocks; ++block) {
int tooth;
/* Here u = 2^(block*teeth*spacing) * gen/2. */
secp256k1_gej sum;
secp256k1_gej_set_infinity(&sum);
for (tooth = 0; tooth < teeth; ++tooth) {
/* Here u = 2^((block*teeth + tooth)*spacing) * gen/2. */
/* Make sum = sum(2^((block*teeth + t)*spacing), t=0..tooth) * gen/2. */
secp256k1_gej_add_var(&sum, &sum, &u, NULL);
/* Make u = 2^((block*teeth + tooth)*spacing + 1) * gen/2. */
secp256k1_gej_double_var(&u, &u, NULL);
/* Make ds[tooth] = u = 2^((block*teeth + tooth)*spacing + 1) * gen/2. */
ds[tooth] = u;
/* Make u = 2^((block*teeth + tooth + 1)*spacing) * gen/2, unless at the end. */
if (block + tooth != blocks + teeth - 2) {
int bit_off;
for (bit_off = 1; bit_off < spacing; ++bit_off) {
secp256k1_gej_double_var(&u, &u, NULL);
}
}
}
/* Now u = 2^((block*teeth + teeth)*spacing) * gen/2
* = 2^((block+1)*teeth*spacing) * gen/2 */
/* Next, compute the table entries for block number block in Jacobian coordinates.
* The entries will occupy vs[block*points + i] for i=0..points-1.
* We start by computing the first (i=0) value corresponding to all summed
* powers of two times G being negative. */
secp256k1_gej_neg(&vs[vs_pos++], &sum);
/* And then teeth-1 times "double" the range of i values for which the table
* is computed: in each iteration, double the table by taking an existing
* table entry and adding ds[tooth]. */
for (tooth = 0; tooth < teeth - 1; ++tooth) {
size_t stride = ((size_t)1) << tooth;
size_t index;
for (index = 0; index < stride; ++index, ++vs_pos) {
secp256k1_gej_add_var(&vs[vs_pos], &vs[vs_pos - stride], &ds[tooth], NULL);
}
}
}
VERIFY_CHECK(vs_pos == points_total);
/* Convert all points simultaneously from secp256k1_gej to secp256k1_ge. */
secp256k1_ge_set_all_gej_var(prec, vs, points_total);
/* Convert all points from secp256k1_ge to secp256k1_ge_storage output. */
for (block = 0; block < blocks; ++block) {
size_t index;
for (index = 0; index < points; ++index) {
VERIFY_CHECK(!secp256k1_ge_is_infinity(&prec[block * points + index]));
secp256k1_ge_to_storage(&table[block * points + index], &prec[block * points + index]);
}
}
/* Free memory. */
free(vs);
free(ds);
free(prec);
}
#endif /* SECP256K1_ECMULT_GEN_COMPUTE_TABLE_IMPL_H */

View File

@ -0,0 +1,341 @@
/***********************************************************************
* Copyright (c) Pieter Wuille, Gregory Maxwell, Peter Dettman *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ECMULT_GEN_IMPL_H
#define SECP256K1_ECMULT_GEN_IMPL_H
#include "util.h"
#include "scalar.h"
#include "group.h"
#include "ecmult_gen.h"
#include "hash_impl.h"
#include "precomputed_ecmult_gen.h"
static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx) {
secp256k1_ecmult_gen_blind(ctx, NULL);
ctx->built = 1;
}
static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) {
return ctx->built;
}
static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) {
ctx->built = 0;
secp256k1_scalar_clear(&ctx->scalar_offset);
secp256k1_ge_clear(&ctx->ge_offset);
secp256k1_fe_clear(&ctx->proj_blind);
}
/* Compute the scalar (2^COMB_BITS - 1) / 2, the difference between the gn argument to
* secp256k1_ecmult_gen, and the scalar whose encoding the table lookup bits are drawn
* from (before applying blinding). */
static void secp256k1_ecmult_gen_scalar_diff(secp256k1_scalar* diff) {
int i;
/* Compute scalar -1/2. */
secp256k1_scalar neghalf;
secp256k1_scalar_half(&neghalf, &secp256k1_scalar_one);
secp256k1_scalar_negate(&neghalf, &neghalf);
/* Compute offset = 2^(COMB_BITS - 1). */
*diff = secp256k1_scalar_one;
for (i = 0; i < COMB_BITS - 1; ++i) {
secp256k1_scalar_add(diff, diff, diff);
}
/* The result is the sum 2^(COMB_BITS - 1) + (-1/2). */
secp256k1_scalar_add(diff, diff, &neghalf);
}
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) {
uint32_t comb_off;
secp256k1_ge add;
secp256k1_fe neg;
secp256k1_ge_storage adds;
secp256k1_scalar d;
/* Array of uint32_t values large enough to store COMB_BITS bits. Only the bottom
* 8 are ever nonzero, but having the zero padding at the end if COMB_BITS>256
* avoids the need to deal with out-of-bounds reads from a scalar. */
uint32_t recoded[(COMB_BITS + 31) >> 5] = {0};
int first = 1, i;
memset(&adds, 0, sizeof(adds));
/* We want to compute R = gn*G.
*
* To blind the scalar used in the computation, we rewrite this to be
* R = (gn - b)*G + b*G, with a blinding value b determined by the context.
*
* The multiplication (gn-b)*G will be performed using a signed-digit multi-comb (see Section
* 3.3 of "Fast and compact elliptic-curve cryptography" by Mike Hamburg,
* https://eprint.iacr.org/2012/309).
*
* Let comb(s, P) = sum((2*s[i]-1)*2^i*P for i=0..COMB_BITS-1), where s[i] is the i'th bit of
* the binary representation of scalar s. So the s[i] values determine whether -2^i*P (s[i]=0)
* or +2^i*P (s[i]=1) are added together. COMB_BITS is at least 256, so all bits of s are
* covered. By manipulating:
*
* comb(s, P) = sum((2*s[i]-1)*2^i*P for i=0..COMB_BITS-1)
* <=> comb(s, P) = sum((2*s[i]-1)*2^i for i=0..COMB_BITS-1) * P
* <=> comb(s, P) = (2*sum(s[i]*2^i for i=0..COMB_BITS-1) - sum(2^i for i=0..COMB_BITS-1)) * P
* <=> comb(s, P) = (2*s - (2^COMB_BITS - 1)) * P
*
* If we wanted to compute (gn-b)*G as comb(s, G), it would need to hold that
*
* (gn - b) * G = (2*s - (2^COMB_BITS - 1)) * G
* <=> s = (gn - b + (2^COMB_BITS - 1))/2 (mod order)
*
* We use an alternative here that avoids the modular division by two: instead we compute
* (gn-b)*G as comb(d, G/2). For that to hold it must be the case that
*
* (gn - b) * G = (2*d - (2^COMB_BITS - 1)) * (G/2)
* <=> d = gn - b + (2^COMB_BITS - 1)/2 (mod order)
*
* Adding precomputation, our final equations become:
*
* ctx->scalar_offset = (2^COMB_BITS - 1)/2 - b (mod order)
* ctx->ge_offset = b*G
* d = gn + ctx->scalar_offset (mod order)
* R = comb(d, G/2) + ctx->ge_offset
*
* comb(d, G/2) function is then computed by summing + or - 2^(i-1)*G, for i=0..COMB_BITS-1,
* depending on the value of the bits d[i] of the binary representation of scalar d.
*/
/* Compute the scalar d = (gn + ctx->scalar_offset). */
secp256k1_scalar_add(&d, &ctx->scalar_offset, gn);
/* Convert to recoded array. */
for (i = 0; i < 8 && i < ((COMB_BITS + 31) >> 5); ++i) {
recoded[i] = secp256k1_scalar_get_bits_limb32(&d, 32 * i, 32);
}
secp256k1_scalar_clear(&d);
/* In secp256k1_ecmult_gen_prec_table we have precomputed sums of the
* (2*d[i]-1) * 2^(i-1) * G points, for various combinations of i positions.
* We rewrite our equation in terms of these table entries.
*
* Let mask(b) = sum(2^((b*COMB_TEETH + t)*COMB_SPACING) for t=0..COMB_TEETH-1),
* with b ranging from 0 to COMB_BLOCKS-1. So for example with COMB_BLOCKS=11,
* COMB_TEETH=6, COMB_SPACING=4, we would have:
* mask(0) = 2^0 + 2^4 + 2^8 + 2^12 + 2^16 + 2^20,
* mask(1) = 2^24 + 2^28 + 2^32 + 2^36 + 2^40 + 2^44,
* mask(2) = 2^48 + 2^52 + 2^56 + 2^60 + 2^64 + 2^68,
* ...
* mask(10) = 2^240 + 2^244 + 2^248 + 2^252 + 2^256 + 2^260
*
* We will split up the bits d[i] using these masks. Specifically, each mask is
* used COMB_SPACING times, with different shifts:
*
* d = (d & mask(0)<<0) + (d & mask(1)<<0) + ... + (d & mask(COMB_BLOCKS-1)<<0) +
* (d & mask(0)<<1) + (d & mask(1)<<1) + ... + (d & mask(COMB_BLOCKS-1)<<1) +
* ...
* (d & mask(0)<<(COMB_SPACING-1)) + ...
*
* Now define table(b, m) = (m - mask(b)/2) * G, and we will precompute these values for
* b=0..COMB_BLOCKS-1, and for all values m which (d & mask(b)) can take (so m can take on
* 2^COMB_TEETH distinct values).
*
* If m=(d & mask(b)), then table(b, m) is the sum of 2^i * (2*d[i]-1) * G/2, with i
* iterating over the set bits in mask(b). In our example, table(2, 2^48 + 2^56 + 2^68)
* would equal (2^48 - 2^52 + 2^56 - 2^60 - 2^64 + 2^68) * G/2.
*
* With that, we can rewrite comb(d, G/2) as:
*
* 2^0 * (table(0, d>>0 & mask(0)) + ... + table(COMB_BLOCKS-1, d>>0 & mask(COMP_BLOCKS-1)))
* + 2^1 * (table(0, d>>1 & mask(0)) + ... + table(COMB_BLOCKS-1, d>>1 & mask(COMP_BLOCKS-1)))
* + 2^2 * (table(0, d>>2 & mask(0)) + ... + table(COMB_BLOCKS-1, d>>2 & mask(COMP_BLOCKS-1)))
* + ...
* + 2^(COMB_SPACING-1) * (table(0, d>>(COMB_SPACING-1) & mask(0)) + ...)
*
* Or more generically as
*
* sum(2^i * sum(table(b, d>>i & mask(b)), b=0..COMB_BLOCKS-1), i=0..COMB_SPACING-1)
*
* This is implemented using an outer loop that runs in reverse order over the lines of this
* equation, which in each iteration runs an inner loop that adds the terms of that line and
* then doubles the result before proceeding to the next line.
*
* In pseudocode:
* c = infinity
* for comb_off in range(COMB_SPACING - 1, -1, -1):
* for block in range(COMB_BLOCKS):
* c += table(block, (d >> comb_off) & mask(block))
* if comb_off > 0:
* c = 2*c
* return c
*
* This computes c = comb(d, G/2), and thus finally R = c + ctx->ge_offset. Note that it would
* be possible to apply an initial offset instead of a final offset (moving ge_offset to take
* the place of infinity above), but the chosen approach allows using (in a future improvement)
* an incomplete addition formula for most of the multiplication.
*
* The last question is how to implement the table(b, m) function. For any value of b,
* m=(d & mask(b)) can only take on at most 2^COMB_TEETH possible values (the last one may have
* fewer as there mask(b) may exceed the curve order). So we could create COMB_BLOCK tables
* which contain a value for each such m value.
*
* Now note that if m=(d & mask(b)), then flipping the relevant bits of m results in negating
* the result of table(b, m). This is because table(b,m XOR mask(b)) = table(b, mask(b) - m) =
* (mask(b) - m - mask(b)/2)*G = (-m + mask(b)/2)*G = -(m - mask(b)/2)*G = -table(b, m).
* Because of this it suffices to only store the first half of the m values for every b. If an
* entry from the second half is needed, we look up its bit-flipped version instead, and negate
* it.
*
* secp256k1_ecmult_gen_prec_table[b][index] stores the table(b, m) entries. Index
* is the relevant mask(b) bits of m packed together without gaps. */
/* Outer loop: iterate over comb_off from COMB_SPACING - 1 down to 0. */
comb_off = COMB_SPACING - 1;
while (1) {
uint32_t block;
uint32_t bit_pos = comb_off;
/* Inner loop: for each block, add table entries to the result. */
for (block = 0; block < COMB_BLOCKS; ++block) {
/* Gather the mask(block)-selected bits of d into bits. They're packed:
* bits[tooth] = d[(block*COMB_TEETH + tooth)*COMB_SPACING + comb_off]. */
uint32_t bits = 0, sign, abs, index, tooth;
/* Instead of reading individual bits here to construct the bits variable,
* build up the result by xoring rotated reads together. In every iteration,
* one additional bit is made correct, starting at the bottom. The bits
* above that contain junk. This reduces leakage by avoiding computations
* on variables that can have only a low number of possible values (e.g.,
* just two values when reading a single bit into a variable.) See:
* https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-alam.pdf
*/
for (tooth = 0; tooth < COMB_TEETH; ++tooth) {
/* Construct bitdata s.t. the bottom bit is the bit we'd like to read.
*
* We could just set bitdata = recoded[bit_pos >> 5] >> (bit_pos & 0x1f)
* but this would simply discard the bits that fall off at the bottom,
* and thus, for example, bitdata could still have only two values if we
* happen to shift by exactly 31 positions. We use a rotation instead,
* which ensures that bitdata doesn't lose entropy. This relies on the
* rotation being atomic, i.e., the compiler emitting an actual rot
* instruction. */
uint32_t bitdata = secp256k1_rotr32(recoded[bit_pos >> 5], bit_pos & 0x1f);
/* Clear the bit at position tooth, but sssh, don't tell clang. */
uint32_t volatile vmask = ~(1 << tooth);
bits &= vmask;
/* Write the bit into position tooth (and junk into higher bits). */
bits ^= bitdata << tooth;
bit_pos += COMB_SPACING;
}
/* If the top bit of bits is 1, flip them all (corresponding to looking up
* the negated table value), and remember to negate the result in sign. */
sign = (bits >> (COMB_TEETH - 1)) & 1;
abs = (bits ^ -sign) & (COMB_POINTS - 1);
VERIFY_CHECK(sign == 0 || sign == 1);
VERIFY_CHECK(abs < COMB_POINTS);
/** This uses a conditional move to avoid any secret data in array indexes.
* _Any_ use of secret indexes has been demonstrated to result in timing
* sidechannels, even when the cache-line access patterns are uniform.
* See also:
* "A word of warning", CHES 2013 Rump Session, by Daniel J. Bernstein and Peter Schwabe
* (https://cryptojedi.org/peter/data/chesrump-20130822.pdf) and
* "Cache Attacks and Countermeasures: the Case of AES", RSA 2006,
* by Dag Arne Osvik, Adi Shamir, and Eran Tromer
* (https://www.tau.ac.il/~tromer/papers/cache.pdf)
*/
for (index = 0; index < COMB_POINTS; ++index) {
secp256k1_ge_storage_cmov(&adds, &secp256k1_ecmult_gen_prec_table[block][index], index == abs);
}
/* Set add=adds or add=-adds, in constant time, based on sign. */
secp256k1_ge_from_storage(&add, &adds);
secp256k1_fe_negate(&neg, &add.y, 1);
secp256k1_fe_cmov(&add.y, &neg, sign);
/* Add the looked up and conditionally negated value to r. */
if (EXPECT(first, 0)) {
/* If this is the first table lookup, we can skip addition. */
secp256k1_gej_set_ge(r, &add);
/* Give the entry a random Z coordinate to blind intermediary results. */
secp256k1_gej_rescale(r, &ctx->proj_blind);
first = 0;
} else {
secp256k1_gej_add_ge(r, r, &add);
}
}
/* Double the result, except in the last iteration. */
if (comb_off-- == 0) break;
secp256k1_gej_double(r, r);
}
/* Correct for the scalar_offset added at the start (ge_offset = b*G, while b was
* subtracted from the input scalar gn). */
secp256k1_gej_add_ge(r, r, &ctx->ge_offset);
/* Cleanup. */
secp256k1_fe_clear(&neg);
secp256k1_ge_clear(&add);
secp256k1_memclear(&adds, sizeof(adds));
secp256k1_memclear(&recoded, sizeof(recoded));
}
/* Setup blinding values for secp256k1_ecmult_gen. */
static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) {
secp256k1_scalar b;
secp256k1_scalar diff;
secp256k1_gej gb;
secp256k1_fe f;
unsigned char nonce32[32];
secp256k1_rfc6979_hmac_sha256 rng;
unsigned char keydata[64];
/* Compute the (2^COMB_BITS - 1)/2 term once. */
secp256k1_ecmult_gen_scalar_diff(&diff);
if (seed32 == NULL) {
/* When seed is NULL, reset the final point and blinding value. */
secp256k1_ge_neg(&ctx->ge_offset, &secp256k1_ge_const_g);
secp256k1_scalar_add(&ctx->scalar_offset, &secp256k1_scalar_one, &diff);
ctx->proj_blind = secp256k1_fe_one;
return;
}
/* The prior blinding value (if not reset) is chained forward by including it in the hash. */
secp256k1_scalar_get_b32(keydata, &ctx->scalar_offset);
/** Using a CSPRNG allows a failure free interface, avoids needing large amounts of random data,
* and guards against weak or adversarial seeds. This is a simpler and safer interface than
* asking the caller for blinding values directly and expecting them to retry on failure.
*/
VERIFY_CHECK(seed32 != NULL);
memcpy(keydata + 32, seed32, 32);
secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, 64);
secp256k1_memclear(keydata, sizeof(keydata));
/* Compute projective blinding factor (cannot be 0). */
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
secp256k1_fe_set_b32_mod(&f, nonce32);
secp256k1_fe_cmov(&f, &secp256k1_fe_one, secp256k1_fe_normalizes_to_zero(&f));
ctx->proj_blind = f;
/* For a random blinding value b, set scalar_offset=diff-b, ge_offset=bG */
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
secp256k1_scalar_set_b32(&b, nonce32, NULL);
/* The blinding value cannot be zero, as that would mean ge_offset = infinity,
* which secp256k1_gej_add_ge cannot handle. */
secp256k1_scalar_cmov(&b, &secp256k1_scalar_one, secp256k1_scalar_is_zero(&b));
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
secp256k1_ecmult_gen(ctx, &gb, &b);
secp256k1_scalar_negate(&b, &b);
secp256k1_scalar_add(&ctx->scalar_offset, &b, &diff);
secp256k1_ge_set_gej(&ctx->ge_offset, &gb);
/* Clean up. */
secp256k1_memclear(nonce32, sizeof(nonce32));
secp256k1_scalar_clear(&b);
secp256k1_gej_clear(&gb);
secp256k1_fe_clear(&f);
secp256k1_rfc6979_hmac_sha256_clear(&rng);
}
#endif /* SECP256K1_ECMULT_GEN_IMPL_H */

853
secp256k1/src/ecmult_impl.h Normal file
View File

@ -0,0 +1,853 @@
/******************************************************************************
* Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra, Jonas Nick *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php. *
******************************************************************************/
#ifndef SECP256K1_ECMULT_IMPL_H
#define SECP256K1_ECMULT_IMPL_H
#include <string.h>
#include <stdint.h>
#include "util.h"
#include "group.h"
#include "scalar.h"
#include "ecmult.h"
#include "precomputed_ecmult.h"
#if defined(EXHAUSTIVE_TEST_ORDER)
/* We need to lower these values for exhaustive tests because
* the tables cannot have infinities in them (this breaks the
* affine-isomorphism stuff which tracks z-ratios) */
# if EXHAUSTIVE_TEST_ORDER > 128
# define WINDOW_A 5
# elif EXHAUSTIVE_TEST_ORDER > 8
# define WINDOW_A 4
# else
# define WINDOW_A 2
# endif
#else
/* optimal for 128-bit and 256-bit exponents. */
# define WINDOW_A 5
/** Larger values for ECMULT_WINDOW_SIZE result in possibly better
* performance at the cost of an exponentially larger precomputed
* table. The exact table size is
* (1 << (WINDOW_G - 2)) * sizeof(secp256k1_ge_storage) bytes,
* where sizeof(secp256k1_ge_storage) is typically 64 bytes but can
* be larger due to platform-specific padding and alignment.
* Two tables of this size are used (due to the endomorphism
* optimization).
*/
#endif
#define WNAF_BITS 128
#define WNAF_SIZE_BITS(bits, w) CEIL_DIV(bits, w)
#define WNAF_SIZE(w) WNAF_SIZE_BITS(WNAF_BITS, w)
/* The number of objects allocated on the scratch space for ecmult_multi algorithms */
#define PIPPENGER_SCRATCH_OBJECTS 6
#define STRAUSS_SCRATCH_OBJECTS 5
#define PIPPENGER_MAX_BUCKET_WINDOW 12
/* Minimum number of points for which pippenger_wnaf is faster than strauss wnaf */
#define ECMULT_PIPPENGER_THRESHOLD 88
#define ECMULT_MAX_POINTS_PER_BATCH 5000000
/** Fill a table 'pre_a' with precomputed odd multiples of a.
* pre_a will contain [1*a,3*a,...,(2*n-1)*a], so it needs space for n group elements.
* zr needs space for n field elements.
*
* Although pre_a is an array of _ge rather than _gej, it actually represents elements
* in Jacobian coordinates with their z coordinates omitted. The omitted z-coordinates
* can be recovered using z and zr. Using the notation z(b) to represent the omitted
* z coordinate of b:
* - z(pre_a[n-1]) = 'z'
* - z(pre_a[i-1]) = z(pre_a[i]) / zr[i] for n > i > 0
*
* Lastly the zr[0] value, which isn't used above, is set so that:
* - a.z = z(pre_a[0]) / zr[0]
*/
static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_ge *pre_a, secp256k1_fe *zr, secp256k1_fe *z, const secp256k1_gej *a) {
secp256k1_gej d, ai;
secp256k1_ge d_ge;
int i;
VERIFY_CHECK(!a->infinity);
secp256k1_gej_double_var(&d, a, NULL);
/*
* Perform the additions using an isomorphic curve Y^2 = X^3 + 7*C^6 where C := d.z.
* The isomorphism, phi, maps a secp256k1 point (x, y) to the point (x*C^2, y*C^3) on the other curve.
* In Jacobian coordinates phi maps (x, y, z) to (x*C^2, y*C^3, z) or, equivalently to (x, y, z/C).
*
* phi(x, y, z) = (x*C^2, y*C^3, z) = (x, y, z/C)
* d_ge := phi(d) = (d.x, d.y, 1)
* ai := phi(a) = (a.x*C^2, a.y*C^3, a.z)
*
* The group addition functions work correctly on these isomorphic curves.
* In particular phi(d) is easy to represent in affine coordinates under this isomorphism.
* This lets us use the faster secp256k1_gej_add_ge_var group addition function that we wouldn't be able to use otherwise.
*/
secp256k1_ge_set_xy(&d_ge, &d.x, &d.y);
secp256k1_ge_set_gej_zinv(&pre_a[0], a, &d.z);
secp256k1_gej_set_ge(&ai, &pre_a[0]);
ai.z = a->z;
/* pre_a[0] is the point (a.x*C^2, a.y*C^3, a.z*C) which is equivalent to a.
* Set zr[0] to C, which is the ratio between the omitted z(pre_a[0]) value and a.z.
*/
zr[0] = d.z;
for (i = 1; i < n; i++) {
secp256k1_gej_add_ge_var(&ai, &ai, &d_ge, &zr[i]);
secp256k1_ge_set_xy(&pre_a[i], &ai.x, &ai.y);
}
/* Multiply the last z-coordinate by C to undo the isomorphism.
* Since the z-coordinates of the pre_a values are implied by the zr array of z-coordinate ratios,
* undoing the isomorphism here undoes the isomorphism for all pre_a values.
*/
secp256k1_fe_mul(z, &ai.z, &d.z);
}
SECP256K1_INLINE static void secp256k1_ecmult_table_verify(int n, int w) {
(void)n;
(void)w;
VERIFY_CHECK(((n) & 1) == 1);
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1));
VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1));
}
SECP256K1_INLINE static void secp256k1_ecmult_table_get_ge(secp256k1_ge *r, const secp256k1_ge *pre, int n, int w) {
secp256k1_ecmult_table_verify(n,w);
if (n > 0) {
*r = pre[(n-1)/2];
} else {
*r = pre[(-n-1)/2];
secp256k1_fe_negate(&(r->y), &(r->y), 1);
}
}
SECP256K1_INLINE static void secp256k1_ecmult_table_get_ge_lambda(secp256k1_ge *r, const secp256k1_ge *pre, const secp256k1_fe *x, int n, int w) {
secp256k1_ecmult_table_verify(n,w);
if (n > 0) {
secp256k1_ge_set_xy(r, &x[(n-1)/2], &pre[(n-1)/2].y);
} else {
secp256k1_ge_set_xy(r, &x[(-n-1)/2], &pre[(-n-1)/2].y);
secp256k1_fe_negate(&(r->y), &(r->y), 1);
}
}
SECP256K1_INLINE static void secp256k1_ecmult_table_get_ge_storage(secp256k1_ge *r, const secp256k1_ge_storage *pre, int n, int w) {
secp256k1_ecmult_table_verify(n,w);
if (n > 0) {
secp256k1_ge_from_storage(r, &pre[(n-1)/2]);
} else {
secp256k1_ge_from_storage(r, &pre[(-n-1)/2]);
secp256k1_fe_negate(&(r->y), &(r->y), 1);
}
}
/** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits),
* with the following guarantees:
* - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1)
* - two non-zero entries in wnaf are separated by at least w-1 zeroes.
* - the number of set values in wnaf is returned. This number is at most 256, and at most one more
* than the number of bits in the (absolute value) of the input.
*/
static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w) {
secp256k1_scalar s;
int last_set_bit = -1;
int bit = 0;
int sign = 1;
int carry = 0;
VERIFY_CHECK(wnaf != NULL);
VERIFY_CHECK(0 <= len && len <= 256);
VERIFY_CHECK(a != NULL);
VERIFY_CHECK(2 <= w && w <= 31);
for (bit = 0; bit < len; bit++) {
wnaf[bit] = 0;
}
s = *a;
if (secp256k1_scalar_get_bits_limb32(&s, 255, 1)) {
secp256k1_scalar_negate(&s, &s);
sign = -1;
}
bit = 0;
while (bit < len) {
int now;
int word;
if (secp256k1_scalar_get_bits_limb32(&s, bit, 1) == (unsigned int)carry) {
bit++;
continue;
}
now = w;
if (now > len - bit) {
now = len - bit;
}
word = secp256k1_scalar_get_bits_var(&s, bit, now) + carry;
carry = (word >> (w-1)) & 1;
word -= carry << w;
wnaf[bit] = sign * word;
last_set_bit = bit;
bit += now;
}
#ifdef VERIFY
{
int verify_bit = bit;
VERIFY_CHECK(carry == 0);
while (verify_bit < 256) {
VERIFY_CHECK(secp256k1_scalar_get_bits_limb32(&s, verify_bit, 1) == 0);
verify_bit++;
}
}
#endif
return last_set_bit + 1;
}
struct secp256k1_strauss_point_state {
int wnaf_na_1[129];
int wnaf_na_lam[129];
int bits_na_1;
int bits_na_lam;
};
struct secp256k1_strauss_state {
/* aux is used to hold z-ratios, and then used to hold pre_a[i].x * BETA values. */
secp256k1_fe* aux;
secp256k1_ge* pre_a;
struct secp256k1_strauss_point_state* ps;
};
static void secp256k1_ecmult_strauss_wnaf(const struct secp256k1_strauss_state *state, secp256k1_gej *r, size_t num, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
secp256k1_ge tmpa;
secp256k1_fe Z;
/* Split G factors. */
secp256k1_scalar ng_1, ng_128;
int wnaf_ng_1[129];
int bits_ng_1 = 0;
int wnaf_ng_128[129];
int bits_ng_128 = 0;
int i;
int bits = 0;
size_t np;
size_t no = 0;
secp256k1_fe_set_int(&Z, 1);
for (np = 0; np < num; ++np) {
secp256k1_gej tmp;
secp256k1_scalar na_1, na_lam;
if (secp256k1_scalar_is_zero(&na[np]) || secp256k1_gej_is_infinity(&a[np])) {
continue;
}
/* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */
secp256k1_scalar_split_lambda(&na_1, &na_lam, &na[np]);
/* build wnaf representation for na_1 and na_lam. */
state->ps[no].bits_na_1 = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_1, 129, &na_1, WINDOW_A);
state->ps[no].bits_na_lam = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_lam, 129, &na_lam, WINDOW_A);
VERIFY_CHECK(state->ps[no].bits_na_1 <= 129);
VERIFY_CHECK(state->ps[no].bits_na_lam <= 129);
if (state->ps[no].bits_na_1 > bits) {
bits = state->ps[no].bits_na_1;
}
if (state->ps[no].bits_na_lam > bits) {
bits = state->ps[no].bits_na_lam;
}
/* Calculate odd multiples of a.
* All multiples are brought to the same Z 'denominator', which is stored
* in Z. Due to secp256k1' isomorphism we can do all operations pretending
* that the Z coordinate was 1, use affine addition formulae, and correct
* the Z coordinate of the result once at the end.
* The exception is the precomputed G table points, which are actually
* affine. Compared to the base used for other points, they have a Z ratio
* of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same
* isomorphism to efficiently add with a known Z inverse.
*/
tmp = a[np];
if (no) {
secp256k1_gej_rescale(&tmp, &Z);
}
secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->pre_a + no * ECMULT_TABLE_SIZE(WINDOW_A), state->aux + no * ECMULT_TABLE_SIZE(WINDOW_A), &Z, &tmp);
if (no) secp256k1_fe_mul(state->aux + no * ECMULT_TABLE_SIZE(WINDOW_A), state->aux + no * ECMULT_TABLE_SIZE(WINDOW_A), &(a[np].z));
++no;
}
/* Bring them to the same Z denominator. */
if (no) {
secp256k1_ge_table_set_globalz(ECMULT_TABLE_SIZE(WINDOW_A) * no, state->pre_a, state->aux);
}
for (np = 0; np < no; ++np) {
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
secp256k1_fe_mul(&state->aux[np * ECMULT_TABLE_SIZE(WINDOW_A) + i], &state->pre_a[np * ECMULT_TABLE_SIZE(WINDOW_A) + i].x, &secp256k1_const_beta);
}
}
if (ng) {
/* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */
secp256k1_scalar_split_128(&ng_1, &ng_128, ng);
/* Build wnaf representation for ng_1 and ng_128 */
bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, 129, &ng_1, WINDOW_G);
bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G);
if (bits_ng_1 > bits) {
bits = bits_ng_1;
}
if (bits_ng_128 > bits) {
bits = bits_ng_128;
}
}
secp256k1_gej_set_infinity(r);
for (i = bits - 1; i >= 0; i--) {
int n;
secp256k1_gej_double_var(r, r, NULL);
for (np = 0; np < no; ++np) {
if (i < state->ps[np].bits_na_1 && (n = state->ps[np].wnaf_na_1[i])) {
secp256k1_ecmult_table_get_ge(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A);
secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
}
if (i < state->ps[np].bits_na_lam && (n = state->ps[np].wnaf_na_lam[i])) {
secp256k1_ecmult_table_get_ge_lambda(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), state->aux + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A);
secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
}
}
if (i < bits_ng_1 && (n = wnaf_ng_1[i])) {
secp256k1_ecmult_table_get_ge_storage(&tmpa, secp256k1_pre_g, n, WINDOW_G);
secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
}
if (i < bits_ng_128 && (n = wnaf_ng_128[i])) {
secp256k1_ecmult_table_get_ge_storage(&tmpa, secp256k1_pre_g_128, n, WINDOW_G);
secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
}
}
if (!r->infinity) {
secp256k1_fe_mul(&r->z, &r->z, &Z);
}
}
static void secp256k1_ecmult(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
secp256k1_fe aux[ECMULT_TABLE_SIZE(WINDOW_A)];
secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
struct secp256k1_strauss_point_state ps[1];
struct secp256k1_strauss_state state;
state.aux = aux;
state.pre_a = pre_a;
state.ps = ps;
secp256k1_ecmult_strauss_wnaf(&state, r, 1, a, na, ng);
}
static size_t secp256k1_strauss_scratch_size(size_t n_points) {
static const size_t point_size = (sizeof(secp256k1_ge) + sizeof(secp256k1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct secp256k1_strauss_point_state) + sizeof(secp256k1_gej) + sizeof(secp256k1_scalar);
return n_points*point_size;
}
static int secp256k1_ecmult_strauss_batch(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) {
secp256k1_gej* points;
secp256k1_scalar* scalars;
struct secp256k1_strauss_state state;
size_t i;
const size_t scratch_checkpoint = secp256k1_scratch_checkpoint(error_callback, scratch);
secp256k1_gej_set_infinity(r);
if (inp_g_sc == NULL && n_points == 0) {
return 1;
}
/* We allocate STRAUSS_SCRATCH_OBJECTS objects on the scratch space. If these
* allocations change, make sure to update the STRAUSS_SCRATCH_OBJECTS
* constant and strauss_scratch_size accordingly. */
points = (secp256k1_gej*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(secp256k1_gej));
scalars = (secp256k1_scalar*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(secp256k1_scalar));
state.aux = (secp256k1_fe*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_fe));
state.pre_a = (secp256k1_ge*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge));
state.ps = (struct secp256k1_strauss_point_state*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(struct secp256k1_strauss_point_state));
if (points == NULL || scalars == NULL || state.aux == NULL || state.pre_a == NULL || state.ps == NULL) {
secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
return 0;
}
for (i = 0; i < n_points; i++) {
secp256k1_ge point;
if (!cb(&scalars[i], &point, i+cb_offset, cbdata)) {
secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
return 0;
}
secp256k1_gej_set_ge(&points[i], &point);
}
secp256k1_ecmult_strauss_wnaf(&state, r, n_points, points, scalars, inp_g_sc);
secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
return 1;
}
/* Wrapper for secp256k1_ecmult_multi_func interface */
static int secp256k1_ecmult_strauss_batch_single(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) {
return secp256k1_ecmult_strauss_batch(error_callback, scratch, r, inp_g_sc, cb, cbdata, n, 0);
}
static size_t secp256k1_strauss_max_points(const secp256k1_callback* error_callback, secp256k1_scratch *scratch) {
return secp256k1_scratch_max_allocation(error_callback, scratch, STRAUSS_SCRATCH_OBJECTS) / secp256k1_strauss_scratch_size(1);
}
/** Convert a number to WNAF notation.
* The number becomes represented by sum(2^{wi} * wnaf[i], i=0..WNAF_SIZE(w)+1) - return_val.
* It has the following guarantees:
* - each wnaf[i] is either 0 or an odd integer between -(1 << w) and (1 << w)
* - the number of words set is always WNAF_SIZE(w)
* - the returned skew is 0 or 1
*/
static int secp256k1_wnaf_fixed(int *wnaf, const secp256k1_scalar *s, int w) {
int skew = 0;
int pos;
int max_pos;
int last_w;
const secp256k1_scalar *work = s;
if (secp256k1_scalar_is_zero(s)) {
for (pos = 0; pos < WNAF_SIZE(w); pos++) {
wnaf[pos] = 0;
}
return 0;
}
if (secp256k1_scalar_is_even(s)) {
skew = 1;
}
wnaf[0] = secp256k1_scalar_get_bits_var(work, 0, w) + skew;
/* Compute last window size. Relevant when window size doesn't divide the
* number of bits in the scalar */
last_w = WNAF_BITS - (WNAF_SIZE(w) - 1) * w;
/* Store the position of the first nonzero word in max_pos to allow
* skipping leading zeros when calculating the wnaf. */
for (pos = WNAF_SIZE(w) - 1; pos > 0; pos--) {
int val = secp256k1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w);
if(val != 0) {
break;
}
wnaf[pos] = 0;
}
max_pos = pos;
pos = 1;
while (pos <= max_pos) {
int val = secp256k1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w);
if ((val & 1) == 0) {
wnaf[pos - 1] -= (1 << w);
wnaf[pos] = (val + 1);
} else {
wnaf[pos] = val;
}
/* Set a coefficient to zero if it is 1 or -1 and the proceeding digit
* is strictly negative or strictly positive respectively. Only change
* coefficients at previous positions because above code assumes that
* wnaf[pos - 1] is odd.
*/
if (pos >= 2 && ((wnaf[pos - 1] == 1 && wnaf[pos - 2] < 0) || (wnaf[pos - 1] == -1 && wnaf[pos - 2] > 0))) {
if (wnaf[pos - 1] == 1) {
wnaf[pos - 2] += 1 << w;
} else {
wnaf[pos - 2] -= 1 << w;
}
wnaf[pos - 1] = 0;
}
++pos;
}
return skew;
}
struct secp256k1_pippenger_point_state {
int skew_na;
size_t input_pos;
};
struct secp256k1_pippenger_state {
int *wnaf_na;
struct secp256k1_pippenger_point_state* ps;
};
/*
* pippenger_wnaf computes the result of a multi-point multiplication as
* follows: The scalars are brought into wnaf with n_wnaf elements each. Then
* for every i < n_wnaf, first each point is added to a "bucket" corresponding
* to the point's wnaf[i]. Second, the buckets are added together such that
* r += 1*bucket[0] + 3*bucket[1] + 5*bucket[2] + ...
*/
static int secp256k1_ecmult_pippenger_wnaf(secp256k1_gej *buckets, int bucket_window, struct secp256k1_pippenger_state *state, secp256k1_gej *r, const secp256k1_scalar *sc, const secp256k1_ge *pt, size_t num) {
size_t n_wnaf = WNAF_SIZE(bucket_window+1);
size_t np;
size_t no = 0;
int i;
int j;
for (np = 0; np < num; ++np) {
if (secp256k1_scalar_is_zero(&sc[np]) || secp256k1_ge_is_infinity(&pt[np])) {
continue;
}
state->ps[no].input_pos = np;
state->ps[no].skew_na = secp256k1_wnaf_fixed(&state->wnaf_na[no*n_wnaf], &sc[np], bucket_window+1);
no++;
}
secp256k1_gej_set_infinity(r);
if (no == 0) {
return 1;
}
for (i = n_wnaf - 1; i >= 0; i--) {
secp256k1_gej running_sum;
for(j = 0; j < ECMULT_TABLE_SIZE(bucket_window+2); j++) {
secp256k1_gej_set_infinity(&buckets[j]);
}
for (np = 0; np < no; ++np) {
int n = state->wnaf_na[np*n_wnaf + i];
struct secp256k1_pippenger_point_state point_state = state->ps[np];
secp256k1_ge tmp;
int idx;
if (i == 0) {
/* correct for wnaf skew */
int skew = point_state.skew_na;
if (skew) {
secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]);
secp256k1_gej_add_ge_var(&buckets[0], &buckets[0], &tmp, NULL);
}
}
if (n > 0) {
idx = (n - 1)/2;
secp256k1_gej_add_ge_var(&buckets[idx], &buckets[idx], &pt[point_state.input_pos], NULL);
} else if (n < 0) {
idx = -(n + 1)/2;
secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]);
secp256k1_gej_add_ge_var(&buckets[idx], &buckets[idx], &tmp, NULL);
}
}
for(j = 0; j < bucket_window; j++) {
secp256k1_gej_double_var(r, r, NULL);
}
secp256k1_gej_set_infinity(&running_sum);
/* Accumulate the sum: bucket[0] + 3*bucket[1] + 5*bucket[2] + 7*bucket[3] + ...
* = bucket[0] + bucket[1] + bucket[2] + bucket[3] + ...
* + 2 * (bucket[1] + 2*bucket[2] + 3*bucket[3] + ...)
* using an intermediate running sum:
* running_sum = bucket[0] + bucket[1] + bucket[2] + ...
*
* The doubling is done implicitly by deferring the final window doubling (of 'r').
*/
for(j = ECMULT_TABLE_SIZE(bucket_window+2) - 1; j > 0; j--) {
secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[j], NULL);
secp256k1_gej_add_var(r, r, &running_sum, NULL);
}
secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[0], NULL);
secp256k1_gej_double_var(r, r, NULL);
secp256k1_gej_add_var(r, r, &running_sum, NULL);
}
return 1;
}
/**
* Returns optimal bucket_window (number of bits of a scalar represented by a
* set of buckets) for a given number of points.
*/
static int secp256k1_pippenger_bucket_window(size_t n) {
if (n <= 1) {
return 1;
} else if (n <= 4) {
return 2;
} else if (n <= 20) {
return 3;
} else if (n <= 57) {
return 4;
} else if (n <= 136) {
return 5;
} else if (n <= 235) {
return 6;
} else if (n <= 1260) {
return 7;
} else if (n <= 4420) {
return 9;
} else if (n <= 7880) {
return 10;
} else if (n <= 16050) {
return 11;
} else {
return PIPPENGER_MAX_BUCKET_WINDOW;
}
}
/**
* Returns the maximum optimal number of points for a bucket_window.
*/
static size_t secp256k1_pippenger_bucket_window_inv(int bucket_window) {
switch(bucket_window) {
case 1: return 1;
case 2: return 4;
case 3: return 20;
case 4: return 57;
case 5: return 136;
case 6: return 235;
case 7: return 1260;
case 8: return 1260;
case 9: return 4420;
case 10: return 7880;
case 11: return 16050;
case PIPPENGER_MAX_BUCKET_WINDOW: return SIZE_MAX;
}
return 0;
}
SECP256K1_INLINE static void secp256k1_ecmult_endo_split(secp256k1_scalar *s1, secp256k1_scalar *s2, secp256k1_ge *p1, secp256k1_ge *p2) {
secp256k1_scalar tmp = *s1;
secp256k1_scalar_split_lambda(s1, s2, &tmp);
secp256k1_ge_mul_lambda(p2, p1);
if (secp256k1_scalar_is_high(s1)) {
secp256k1_scalar_negate(s1, s1);
secp256k1_ge_neg(p1, p1);
}
if (secp256k1_scalar_is_high(s2)) {
secp256k1_scalar_negate(s2, s2);
secp256k1_ge_neg(p2, p2);
}
}
/**
* Returns the scratch size required for a given number of points (excluding
* base point G) without considering alignment.
*/
static size_t secp256k1_pippenger_scratch_size(size_t n_points, int bucket_window) {
size_t entries = 2*n_points + 2;
size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int);
return (sizeof(secp256k1_gej) << bucket_window) + sizeof(struct secp256k1_pippenger_state) + entries * entry_size;
}
static int secp256k1_ecmult_pippenger_batch(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) {
const size_t scratch_checkpoint = secp256k1_scratch_checkpoint(error_callback, scratch);
/* Use 2(n+1) with the endomorphism, when calculating batch
* sizes. The reason for +1 is that we add the G scalar to the list of
* other scalars. */
size_t entries = 2*n_points + 2;
secp256k1_ge *points;
secp256k1_scalar *scalars;
secp256k1_gej *buckets;
struct secp256k1_pippenger_state *state_space;
size_t idx = 0;
size_t point_idx = 0;
int bucket_window;
secp256k1_gej_set_infinity(r);
if (inp_g_sc == NULL && n_points == 0) {
return 1;
}
bucket_window = secp256k1_pippenger_bucket_window(n_points);
/* We allocate PIPPENGER_SCRATCH_OBJECTS objects on the scratch space. If
* these allocations change, make sure to update the
* PIPPENGER_SCRATCH_OBJECTS constant and pippenger_scratch_size
* accordingly. */
points = (secp256k1_ge *) secp256k1_scratch_alloc(error_callback, scratch, entries * sizeof(*points));
scalars = (secp256k1_scalar *) secp256k1_scratch_alloc(error_callback, scratch, entries * sizeof(*scalars));
state_space = (struct secp256k1_pippenger_state *) secp256k1_scratch_alloc(error_callback, scratch, sizeof(*state_space));
if (points == NULL || scalars == NULL || state_space == NULL) {
secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
return 0;
}
state_space->ps = (struct secp256k1_pippenger_point_state *) secp256k1_scratch_alloc(error_callback, scratch, entries * sizeof(*state_space->ps));
state_space->wnaf_na = (int *) secp256k1_scratch_alloc(error_callback, scratch, entries*(WNAF_SIZE(bucket_window+1)) * sizeof(int));
buckets = (secp256k1_gej *) secp256k1_scratch_alloc(error_callback, scratch, ((size_t)1 << bucket_window) * sizeof(*buckets));
if (state_space->ps == NULL || state_space->wnaf_na == NULL || buckets == NULL) {
secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
return 0;
}
if (inp_g_sc != NULL) {
scalars[0] = *inp_g_sc;
points[0] = secp256k1_ge_const_g;
idx++;
secp256k1_ecmult_endo_split(&scalars[0], &scalars[1], &points[0], &points[1]);
idx++;
}
while (point_idx < n_points) {
if (!cb(&scalars[idx], &points[idx], point_idx + cb_offset, cbdata)) {
secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
return 0;
}
idx++;
secp256k1_ecmult_endo_split(&scalars[idx - 1], &scalars[idx], &points[idx - 1], &points[idx]);
idx++;
point_idx++;
}
secp256k1_ecmult_pippenger_wnaf(buckets, bucket_window, state_space, r, scalars, points, idx);
secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
return 1;
}
/* Wrapper for secp256k1_ecmult_multi_func interface */
static int secp256k1_ecmult_pippenger_batch_single(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) {
return secp256k1_ecmult_pippenger_batch(error_callback, scratch, r, inp_g_sc, cb, cbdata, n, 0);
}
/**
* Returns the maximum number of points in addition to G that can be used with
* a given scratch space. The function ensures that fewer points may also be
* used.
*/
static size_t secp256k1_pippenger_max_points(const secp256k1_callback* error_callback, secp256k1_scratch *scratch) {
size_t max_alloc = secp256k1_scratch_max_allocation(error_callback, scratch, PIPPENGER_SCRATCH_OBJECTS);
int bucket_window;
size_t res = 0;
for (bucket_window = 1; bucket_window <= PIPPENGER_MAX_BUCKET_WINDOW; bucket_window++) {
size_t n_points;
size_t max_points = secp256k1_pippenger_bucket_window_inv(bucket_window);
size_t space_for_points;
size_t space_overhead;
size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int);
entry_size = 2*entry_size;
space_overhead = (sizeof(secp256k1_gej) << bucket_window) + entry_size + sizeof(struct secp256k1_pippenger_state);
if (space_overhead > max_alloc) {
break;
}
space_for_points = max_alloc - space_overhead;
n_points = space_for_points/entry_size;
n_points = n_points > max_points ? max_points : n_points;
if (n_points > res) {
res = n_points;
}
if (n_points < max_points) {
/* A larger bucket_window may support even more points. But if we
* would choose that then the caller couldn't safely use any number
* smaller than what this function returns */
break;
}
}
return res;
}
/* Computes ecmult_multi by simply multiplying and adding each point. Does not
* require a scratch space */
static int secp256k1_ecmult_multi_simple_var(secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points) {
size_t point_idx;
secp256k1_gej tmpj;
secp256k1_gej_set_infinity(r);
secp256k1_gej_set_infinity(&tmpj);
/* r = inp_g_sc*G */
secp256k1_ecmult(r, &tmpj, &secp256k1_scalar_zero, inp_g_sc);
for (point_idx = 0; point_idx < n_points; point_idx++) {
secp256k1_ge point;
secp256k1_gej pointj;
secp256k1_scalar scalar;
if (!cb(&scalar, &point, point_idx, cbdata)) {
return 0;
}
/* r += scalar*point */
secp256k1_gej_set_ge(&pointj, &point);
secp256k1_ecmult(&tmpj, &pointj, &scalar, NULL);
secp256k1_gej_add_var(r, r, &tmpj, NULL);
}
return 1;
}
/* Compute the number of batches and the batch size given the maximum batch size and the
* total number of points */
static int secp256k1_ecmult_multi_batch_size_helper(size_t *n_batches, size_t *n_batch_points, size_t max_n_batch_points, size_t n) {
if (max_n_batch_points == 0) {
return 0;
}
if (max_n_batch_points > ECMULT_MAX_POINTS_PER_BATCH) {
max_n_batch_points = ECMULT_MAX_POINTS_PER_BATCH;
}
if (n == 0) {
*n_batches = 0;
*n_batch_points = 0;
return 1;
}
/* Compute ceil(n/max_n_batch_points) and ceil(n/n_batches) */
*n_batches = CEIL_DIV(n, max_n_batch_points);
*n_batch_points = CEIL_DIV(n, *n_batches);
return 1;
}
typedef int (*secp256k1_ecmult_multi_func)(const secp256k1_callback* error_callback, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t);
static int secp256k1_ecmult_multi_var(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) {
size_t i;
int (*f)(const secp256k1_callback* error_callback, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t, size_t);
size_t n_batches;
size_t n_batch_points;
secp256k1_gej_set_infinity(r);
if (inp_g_sc == NULL && n == 0) {
return 1;
} else if (n == 0) {
secp256k1_ecmult(r, r, &secp256k1_scalar_zero, inp_g_sc);
return 1;
}
if (scratch == NULL) {
return secp256k1_ecmult_multi_simple_var(r, inp_g_sc, cb, cbdata, n);
}
/* Compute the batch sizes for Pippenger's algorithm given a scratch space. If it's greater than
* a threshold use Pippenger's algorithm. Otherwise use Strauss' algorithm.
* As a first step check if there's enough space for Pippenger's algo (which requires less space
* than Strauss' algo) and if not, use the simple algorithm. */
if (!secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, secp256k1_pippenger_max_points(error_callback, scratch), n)) {
return secp256k1_ecmult_multi_simple_var(r, inp_g_sc, cb, cbdata, n);
}
if (n_batch_points >= ECMULT_PIPPENGER_THRESHOLD) {
f = secp256k1_ecmult_pippenger_batch;
} else {
if (!secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, secp256k1_strauss_max_points(error_callback, scratch), n)) {
return secp256k1_ecmult_multi_simple_var(r, inp_g_sc, cb, cbdata, n);
}
f = secp256k1_ecmult_strauss_batch;
}
for(i = 0; i < n_batches; i++) {
size_t nbp = n < n_batch_points ? n : n_batch_points;
size_t offset = n_batch_points*i;
secp256k1_gej tmp;
if (!f(error_callback, scratch, &tmp, i == 0 ? inp_g_sc : NULL, cb, cbdata, nbp, offset)) {
return 0;
}
secp256k1_gej_add_var(r, r, &tmp, NULL);
n -= nbp;
}
return 1;
}
#endif /* SECP256K1_ECMULT_IMPL_H */

350
secp256k1/src/field.h Normal file
View File

@ -0,0 +1,350 @@
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_FIELD_H
#define SECP256K1_FIELD_H
#include "util.h"
/* This file defines the generic interface for working with secp256k1_fe
* objects, which represent field elements (integers modulo 2^256 - 2^32 - 977).
*
* The actual definition of the secp256k1_fe type depends on the chosen field
* implementation; see the field_5x52.h and field_10x26.h files for details.
*
* All secp256k1_fe objects have implicit properties that determine what
* operations are permitted on it. These are purely a function of what
* secp256k1_fe_ operations are applied on it, generally (implicitly) fixed at
* compile time, and do not depend on the chosen field implementation. Despite
* that, what these properties actually entail for the field representation
* values depends on the chosen field implementation. These properties are:
* - magnitude: an integer in [0,32]
* - normalized: 0 or 1; normalized=1 implies magnitude <= 1.
*
* In VERIFY mode, they are materialized explicitly as fields in the struct,
* allowing run-time verification of these properties. In that case, the field
* implementation also provides a secp256k1_fe_verify routine to verify that
* these fields match the run-time value and perform internal consistency
* checks. */
#ifdef VERIFY
# define SECP256K1_FE_VERIFY_FIELDS \
int magnitude; \
int normalized;
#else
# define SECP256K1_FE_VERIFY_FIELDS
#endif
#if defined(SECP256K1_WIDEMUL_INT128)
#include "field_5x52.h"
#elif defined(SECP256K1_WIDEMUL_INT64)
#include "field_10x26.h"
#else
#error "Please select wide multiplication implementation"
#endif
#ifdef VERIFY
/* Magnitude and normalized value for constants. */
#define SECP256K1_FE_VERIFY_CONST(d7, d6, d5, d4, d3, d2, d1, d0) \
/* Magnitude is 0 for constant 0; 1 otherwise. */ \
, (((d7) | (d6) | (d5) | (d4) | (d3) | (d2) | (d1) | (d0)) != 0) \
/* Normalized is 1 unless sum(d_i<<(32*i) for i=0..7) exceeds field modulus. */ \
, (!(((d7) & (d6) & (d5) & (d4) & (d3) & (d2)) == 0xfffffffful && ((d1) == 0xfffffffful || ((d1) == 0xfffffffe && (d0 >= 0xfffffc2f)))))
#else
#define SECP256K1_FE_VERIFY_CONST(d7, d6, d5, d4, d3, d2, d1, d0)
#endif
/** This expands to an initializer for a secp256k1_fe valued sum((i*32) * d_i, i=0..7) mod p.
*
* It has magnitude 1, unless d_i are all 0, in which case the magnitude is 0.
* It is normalized, unless sum(2^(i*32) * d_i, i=0..7) >= p.
*
* SECP256K1_FE_CONST_INNER is provided by the implementation.
*/
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)) SECP256K1_FE_VERIFY_CONST((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)) }
static const secp256k1_fe secp256k1_fe_one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
static const secp256k1_fe secp256k1_const_beta = SECP256K1_FE_CONST(
0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul,
0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul
);
#ifndef VERIFY
/* In non-VERIFY mode, we #define the fe operations to be identical to their
* internal field implementation, to avoid the potential overhead of a
* function call (even though presumably inlinable). */
# define secp256k1_fe_normalize secp256k1_fe_impl_normalize
# define secp256k1_fe_normalize_weak secp256k1_fe_impl_normalize_weak
# define secp256k1_fe_normalize_var secp256k1_fe_impl_normalize_var
# define secp256k1_fe_normalizes_to_zero secp256k1_fe_impl_normalizes_to_zero
# define secp256k1_fe_normalizes_to_zero_var secp256k1_fe_impl_normalizes_to_zero_var
# define secp256k1_fe_set_int secp256k1_fe_impl_set_int
# define secp256k1_fe_is_zero secp256k1_fe_impl_is_zero
# define secp256k1_fe_is_odd secp256k1_fe_impl_is_odd
# define secp256k1_fe_cmp_var secp256k1_fe_impl_cmp_var
# define secp256k1_fe_set_b32_mod secp256k1_fe_impl_set_b32_mod
# define secp256k1_fe_set_b32_limit secp256k1_fe_impl_set_b32_limit
# define secp256k1_fe_get_b32 secp256k1_fe_impl_get_b32
# define secp256k1_fe_negate_unchecked secp256k1_fe_impl_negate_unchecked
# define secp256k1_fe_mul_int_unchecked secp256k1_fe_impl_mul_int_unchecked
# define secp256k1_fe_add secp256k1_fe_impl_add
# define secp256k1_fe_mul secp256k1_fe_impl_mul
# define secp256k1_fe_sqr secp256k1_fe_impl_sqr
# define secp256k1_fe_cmov secp256k1_fe_impl_cmov
# define secp256k1_fe_to_storage secp256k1_fe_impl_to_storage
# define secp256k1_fe_from_storage secp256k1_fe_impl_from_storage
# define secp256k1_fe_inv secp256k1_fe_impl_inv
# define secp256k1_fe_inv_var secp256k1_fe_impl_inv_var
# define secp256k1_fe_get_bounds secp256k1_fe_impl_get_bounds
# define secp256k1_fe_half secp256k1_fe_impl_half
# define secp256k1_fe_add_int secp256k1_fe_impl_add_int
# define secp256k1_fe_is_square_var secp256k1_fe_impl_is_square_var
#endif /* !defined(VERIFY) */
/** Normalize a field element.
*
* On input, r must be a valid field element.
* On output, r represents the same value but has normalized=1 and magnitude=1.
*/
static void secp256k1_fe_normalize(secp256k1_fe *r);
/** Give a field element magnitude 1.
*
* On input, r must be a valid field element.
* On output, r represents the same value but has magnitude=1. Normalized is unchanged.
*/
static void secp256k1_fe_normalize_weak(secp256k1_fe *r);
/** Normalize a field element, without constant-time guarantee.
*
* Identical in behavior to secp256k1_fe_normalize, but not constant time in r.
*/
static void secp256k1_fe_normalize_var(secp256k1_fe *r);
/** Determine whether r represents field element 0.
*
* On input, r must be a valid field element.
* Returns whether r = 0 (mod p).
*/
static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r);
/** Determine whether r represents field element 0, without constant-time guarantee.
*
* Identical in behavior to secp256k1_normalizes_to_zero, but not constant time in r.
*/
static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r);
/** Set a field element to an integer in range [0,0x7FFF].
*
* On input, r does not need to be initialized, a must be in [0,0x7FFF].
* On output, r represents value a, is normalized and has magnitude (a!=0).
*/
static void secp256k1_fe_set_int(secp256k1_fe *r, int a);
/** Clear a field element to prevent leaking sensitive information. */
static void secp256k1_fe_clear(secp256k1_fe *a);
/** Determine whether a represents field element 0.
*
* On input, a must be a valid normalized field element.
* Returns whether a = 0 (mod p).
*
* This behaves identical to secp256k1_normalizes_to_zero{,_var}, but requires
* normalized input (and is much faster).
*/
static int secp256k1_fe_is_zero(const secp256k1_fe *a);
/** Determine whether a (mod p) is odd.
*
* On input, a must be a valid normalized field element.
* Returns (int(a) mod p) & 1.
*/
static int secp256k1_fe_is_odd(const secp256k1_fe *a);
/** Determine whether two field elements are equal.
*
* On input, a and b must be valid field elements with magnitudes not exceeding
* 1 and 31, respectively.
* Returns a = b (mod p).
*/
static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b);
/** Compare the values represented by 2 field elements, without constant-time guarantee.
*
* On input, a and b must be valid normalized field elements.
* Returns 1 if a > b, -1 if a < b, and 0 if a = b (comparisons are done as integers
* in range 0..p-1).
*/
static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b);
/** Set a field element equal to the element represented by a provided 32-byte big endian value
* interpreted modulo p.
*
* On input, r does not need to be initialized. a must be a pointer to an initialized 32-byte array.
* On output, r = a (mod p). It will have magnitude 1, and not be normalized.
*/
static void secp256k1_fe_set_b32_mod(secp256k1_fe *r, const unsigned char *a);
/** Set a field element equal to a provided 32-byte big endian value, checking for overflow.
*
* On input, r does not need to be initialized. a must be a pointer to an initialized 32-byte array.
* On output, r = a if (a < p), it will be normalized with magnitude 1, and 1 is returned.
* If a >= p, 0 is returned, and r will be made invalid (and must not be used without overwriting).
*/
static int secp256k1_fe_set_b32_limit(secp256k1_fe *r, const unsigned char *a);
/** Convert a field element to 32-byte big endian byte array.
* On input, a must be a valid normalized field element, and r a pointer to a 32-byte array.
* On output, r = a (mod p).
*/
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a);
/** Negate a field element.
*
* On input, r does not need to be initialized. a must be a valid field element with
* magnitude not exceeding m. m must be an integer constant expression in [0,31].
* Performs {r = -a}.
* On output, r will not be normalized, and will have magnitude m+1.
*/
#define secp256k1_fe_negate(r, a, m) ASSERT_INT_CONST_AND_DO(m, secp256k1_fe_negate_unchecked(r, a, m))
/** Like secp256k1_fe_negate_unchecked but m is not checked to be an integer constant expression.
*
* Should not be called directly outside of tests.
*/
static void secp256k1_fe_negate_unchecked(secp256k1_fe *r, const secp256k1_fe *a, int m);
/** Add a small integer to a field element.
*
* Performs {r += a}. The magnitude of r increases by 1, and normalized is cleared.
* a must be in range [0,0x7FFF].
*/
static void secp256k1_fe_add_int(secp256k1_fe *r, int a);
/** Multiply a field element with a small integer.
*
* On input, r must be a valid field element. a must be an integer constant expression in [0,32].
* The magnitude of r times a must not exceed 32.
* Performs {r *= a}.
* On output, r's magnitude is multiplied by a, and r will not be normalized.
*/
#define secp256k1_fe_mul_int(r, a) ASSERT_INT_CONST_AND_DO(a, secp256k1_fe_mul_int_unchecked(r, a))
/** Like secp256k1_fe_mul_int but a is not checked to be an integer constant expression.
*
* Should not be called directly outside of tests.
*/
static void secp256k1_fe_mul_int_unchecked(secp256k1_fe *r, int a);
/** Increment a field element by another.
*
* On input, r and a must be valid field elements, not necessarily normalized.
* The sum of their magnitudes must not exceed 32.
* Performs {r += a}.
* On output, r will not be normalized, and will have magnitude incremented by a's.
*/
static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a);
/** Multiply two field elements.
*
* On input, a and b must be valid field elements; r does not need to be initialized.
* r and a may point to the same object, but neither may point to the object pointed
* to by b. The magnitudes of a and b must not exceed 8.
* Performs {r = a * b}
* On output, r will have magnitude 1, but won't be normalized.
*/
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b);
/** Square a field element.
*
* On input, a must be a valid field element; r does not need to be initialized. The magnitude
* of a must not exceed 8.
* Performs {r = a**2}
* On output, r will have magnitude 1, but won't be normalized.
*/
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a);
/** Compute a square root of a field element.
*
* On input, a must be a valid field element with magnitude<=8; r need not be initialized.
* If sqrt(a) exists, performs {r = sqrt(a)} and returns 1.
* Otherwise, sqrt(-a) exists. The function performs {r = sqrt(-a)} and returns 0.
* The resulting value represented by r will be a square itself.
* Variables r and a must not point to the same object.
* On output, r will have magnitude 1 but will not be normalized.
*/
static int secp256k1_fe_sqrt(secp256k1_fe * SECP256K1_RESTRICT r, const secp256k1_fe * SECP256K1_RESTRICT a);
/** Compute the modular inverse of a field element.
*
* On input, a must be a valid field element; r need not be initialized.
* Performs {r = a**(p-2)} (which maps 0 to 0, and every other element to its
* inverse).
* On output, r will have magnitude (a.magnitude != 0) and be normalized.
*/
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a);
/** Compute the modular inverse of a field element, without constant-time guarantee.
*
* Behaves identically to secp256k1_fe_inv, but is not constant-time in a.
*/
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a);
/** Convert a field element to secp256k1_fe_storage.
*
* On input, a must be a valid normalized field element.
* Performs {r = a}.
*/
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a);
/** Convert a field element back from secp256k1_fe_storage.
*
* On input, r need not be initialized.
* Performs {r = a}.
* On output, r will be normalized and will have magnitude 1.
*/
static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a);
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/
static void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag);
/** Conditionally move a field element in constant time.
*
* On input, both r and a must be valid field elements. Flag must be 0 or 1.
* Performs {r = flag ? a : r}.
*
* On output, r's magnitude will be the maximum of both input magnitudes.
* It will be normalized if and only if both inputs were normalized.
*/
static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag);
/** Halve the value of a field element modulo the field prime in constant-time.
*
* On input, r must be a valid field element.
* On output, r will be normalized and have magnitude floor(m/2) + 1 where m is
* the magnitude of r on input.
*/
static void secp256k1_fe_half(secp256k1_fe *r);
/** Sets r to a field element with magnitude m, normalized if (and only if) m==0.
* The value is chosen so that it is likely to trigger edge cases related to
* internal overflows. */
static void secp256k1_fe_get_bounds(secp256k1_fe *r, int m);
/** Determine whether a is a square (modulo p).
*
* On input, a must be a valid field element.
*/
static int secp256k1_fe_is_square_var(const secp256k1_fe *a);
/** Check invariants on a field element (no-op unless VERIFY is enabled). */
static void secp256k1_fe_verify(const secp256k1_fe *a);
#define SECP256K1_FE_VERIFY(a) secp256k1_fe_verify(a)
/** Check that magnitude of a is at most m (no-op unless VERIFY is enabled). */
static void secp256k1_fe_verify_magnitude(const secp256k1_fe *a, int m);
#define SECP256K1_FE_VERIFY_MAGNITUDE(a, m) secp256k1_fe_verify_magnitude(a, m)
#endif /* SECP256K1_FIELD_H */

View File

@ -0,0 +1,57 @@
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_FIELD_REPR_H
#define SECP256K1_FIELD_REPR_H
#include <stdint.h>
/** This field implementation represents the value as 10 uint32_t limbs in base
* 2^26. */
typedef struct {
/* A field element f represents the sum(i=0..9, f.n[i] << (i*26)) mod p,
* where p is the field modulus, 2^256 - 2^32 - 977.
*
* The individual limbs f.n[i] can exceed 2^26; the field's magnitude roughly
* corresponds to how much excess is allowed. The value
* sum(i=0..9, f.n[i] << (i*26)) may exceed p, unless the field element is
* normalized. */
uint32_t n[10];
/*
* Magnitude m requires:
* n[i] <= 2 * m * (2^26 - 1) for i=0..8
* n[9] <= 2 * m * (2^22 - 1)
*
* Normalized requires:
* n[i] <= (2^26 - 1) for i=0..8
* sum(i=0..9, n[i] << (i*26)) < p
* (together these imply n[9] <= 2^22 - 1)
*/
SECP256K1_FE_VERIFY_FIELDS
} secp256k1_fe;
/* Unpacks a constant into a overlapping multi-limbed FE element. */
#define SECP256K1_FE_CONST_INNER(d7, d6, d5, d4, d3, d2, d1, d0) { \
(d0) & 0x3FFFFFFUL, \
(((uint32_t)d0) >> 26) | (((uint32_t)(d1) & 0xFFFFFUL) << 6), \
(((uint32_t)d1) >> 20) | (((uint32_t)(d2) & 0x3FFFUL) << 12), \
(((uint32_t)d2) >> 14) | (((uint32_t)(d3) & 0xFFUL) << 18), \
(((uint32_t)d3) >> 8) | (((uint32_t)(d4) & 0x3UL) << 24), \
(((uint32_t)d4) >> 2) & 0x3FFFFFFUL, \
(((uint32_t)d4) >> 28) | (((uint32_t)(d5) & 0x3FFFFFUL) << 4), \
(((uint32_t)d5) >> 22) | (((uint32_t)(d6) & 0xFFFFUL) << 10), \
(((uint32_t)d6) >> 16) | (((uint32_t)(d7) & 0x3FFUL) << 16), \
(((uint32_t)d7) >> 10) \
}
typedef struct {
uint32_t n[8];
} secp256k1_fe_storage;
#define SECP256K1_FE_STORAGE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{ (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }}
#define SECP256K1_FE_STORAGE_CONST_GET(d) d.n[7], d.n[6], d.n[5], d.n[4],d.n[3], d.n[2], d.n[1], d.n[0]
#endif /* SECP256K1_FIELD_REPR_H */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,62 @@
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_FIELD_REPR_H
#define SECP256K1_FIELD_REPR_H
#include <stdint.h>
/** This field implementation represents the value as 5 uint64_t limbs in base
* 2^52. */
typedef struct {
/* A field element f represents the sum(i=0..4, f.n[i] << (i*52)) mod p,
* where p is the field modulus, 2^256 - 2^32 - 977.
*
* The individual limbs f.n[i] can exceed 2^52; the field's magnitude roughly
* corresponds to how much excess is allowed. The value
* sum(i=0..4, f.n[i] << (i*52)) may exceed p, unless the field element is
* normalized. */
uint64_t n[5];
/*
* Magnitude m requires:
* n[i] <= 2 * m * (2^52 - 1) for i=0..3
* n[4] <= 2 * m * (2^48 - 1)
*
* Normalized requires:
* n[i] <= (2^52 - 1) for i=0..3
* sum(i=0..4, n[i] << (i*52)) < p
* (together these imply n[4] <= 2^48 - 1)
*/
SECP256K1_FE_VERIFY_FIELDS
} secp256k1_fe;
/* Unpacks a constant into a overlapping multi-limbed FE element. */
#define SECP256K1_FE_CONST_INNER(d7, d6, d5, d4, d3, d2, d1, d0) { \
(d0) | (((uint64_t)(d1) & 0xFFFFFUL) << 32), \
((uint64_t)(d1) >> 20) | (((uint64_t)(d2)) << 12) | (((uint64_t)(d3) & 0xFFUL) << 44), \
((uint64_t)(d3) >> 8) | (((uint64_t)(d4) & 0xFFFFFFFUL) << 24), \
((uint64_t)(d4) >> 28) | (((uint64_t)(d5)) << 4) | (((uint64_t)(d6) & 0xFFFFUL) << 36), \
((uint64_t)(d6) >> 16) | (((uint64_t)(d7)) << 16) \
}
typedef struct {
uint64_t n[4];
} secp256k1_fe_storage;
#define SECP256K1_FE_STORAGE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{ \
(d0) | (((uint64_t)(d1)) << 32), \
(d2) | (((uint64_t)(d3)) << 32), \
(d4) | (((uint64_t)(d5)) << 32), \
(d6) | (((uint64_t)(d7)) << 32) \
}}
#define SECP256K1_FE_STORAGE_CONST_GET(d) \
(uint32_t)(d.n[3] >> 32), (uint32_t)d.n[3], \
(uint32_t)(d.n[2] >> 32), (uint32_t)d.n[2], \
(uint32_t)(d.n[1] >> 32), (uint32_t)d.n[1], \
(uint32_t)(d.n[0] >> 32), (uint32_t)d.n[0]
#endif /* SECP256K1_FIELD_REPR_H */

View File

@ -0,0 +1,522 @@
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_FIELD_REPR_IMPL_H
#define SECP256K1_FIELD_REPR_IMPL_H
#include "checkmem.h"
#include "util.h"
#include "field.h"
#include "modinv64_impl.h"
#include "field_5x52_int128_impl.h"
#ifdef VERIFY
static void secp256k1_fe_impl_verify(const secp256k1_fe *a) {
const uint64_t *d = a->n;
int m = a->normalized ? 1 : 2 * a->magnitude;
/* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
VERIFY_CHECK(d[0] <= 0xFFFFFFFFFFFFFULL * m);
VERIFY_CHECK(d[1] <= 0xFFFFFFFFFFFFFULL * m);
VERIFY_CHECK(d[2] <= 0xFFFFFFFFFFFFFULL * m);
VERIFY_CHECK(d[3] <= 0xFFFFFFFFFFFFFULL * m);
VERIFY_CHECK(d[4] <= 0x0FFFFFFFFFFFFULL * m);
if (a->normalized) {
if ((d[4] == 0x0FFFFFFFFFFFFULL) && ((d[3] & d[2] & d[1]) == 0xFFFFFFFFFFFFFULL)) {
VERIFY_CHECK(d[0] < 0xFFFFEFFFFFC2FULL);
}
}
}
#endif
static void secp256k1_fe_impl_get_bounds(secp256k1_fe *r, int m) {
r->n[0] = 0xFFFFFFFFFFFFFULL * 2 * m;
r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * m;
r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * m;
r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * m;
r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * m;
}
static void secp256k1_fe_impl_normalize(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
uint64_t m;
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
/* At most a single final reduction is needed; check if the value is >= the field characteristic */
x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
& (t0 >= 0xFFFFEFFFFFC2FULL));
/* Apply the final reduction (for constant-time behaviour, we do it always) */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
/* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
VERIFY_CHECK(t4 >> 48 == x);
/* Mask off the possible multiple of 2^256 from the final reduction */
t4 &= 0x0FFFFFFFFFFFFULL;
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
}
static void secp256k1_fe_impl_normalize_weak(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
}
static void secp256k1_fe_impl_normalize_var(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
uint64_t m;
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
/* At most a single final reduction is needed; check if the value is >= the field characteristic */
x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
& (t0 >= 0xFFFFEFFFFFC2FULL));
if (x) {
t0 += 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
/* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
VERIFY_CHECK(t4 >> 48 == x);
/* Mask off the possible multiple of 2^256 from the final reduction */
t4 &= 0x0FFFFFFFFFFFFULL;
}
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
}
static int secp256k1_fe_impl_normalizes_to_zero(const secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
uint64_t z0, z1;
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; z0 = t0; z1 = t0 ^ 0x1000003D0ULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
}
static int secp256k1_fe_impl_normalizes_to_zero_var(const secp256k1_fe *r) {
uint64_t t0, t1, t2, t3, t4;
uint64_t z0, z1;
uint64_t x;
t0 = r->n[0];
t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
x = t4 >> 48;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
/* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
z0 = t0 & 0xFFFFFFFFFFFFFULL;
z1 = z0 ^ 0x1000003D0ULL;
/* Fast return path should catch the majority of cases */
if ((z0 != 0ULL) & (z1 != 0xFFFFFFFFFFFFFULL)) {
return 0;
}
t1 = r->n[1];
t2 = r->n[2];
t3 = r->n[3];
t4 &= 0x0FFFFFFFFFFFFULL;
t1 += (t0 >> 52);
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
}
SECP256K1_INLINE static void secp256k1_fe_impl_set_int(secp256k1_fe *r, int a) {
r->n[0] = a;
r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
}
SECP256K1_INLINE static int secp256k1_fe_impl_is_zero(const secp256k1_fe *a) {
const uint64_t *t = a->n;
return (t[0] | t[1] | t[2] | t[3] | t[4]) == 0;
}
SECP256K1_INLINE static int secp256k1_fe_impl_is_odd(const secp256k1_fe *a) {
return a->n[0] & 1;
}
static int secp256k1_fe_impl_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
int i;
for (i = 4; i >= 0; i--) {
if (a->n[i] > b->n[i]) {
return 1;
}
if (a->n[i] < b->n[i]) {
return -1;
}
}
return 0;
}
static void secp256k1_fe_impl_set_b32_mod(secp256k1_fe *r, const unsigned char *a) {
r->n[0] = (uint64_t)a[31]
| ((uint64_t)a[30] << 8)
| ((uint64_t)a[29] << 16)
| ((uint64_t)a[28] << 24)
| ((uint64_t)a[27] << 32)
| ((uint64_t)a[26] << 40)
| ((uint64_t)(a[25] & 0xF) << 48);
r->n[1] = (uint64_t)((a[25] >> 4) & 0xF)
| ((uint64_t)a[24] << 4)
| ((uint64_t)a[23] << 12)
| ((uint64_t)a[22] << 20)
| ((uint64_t)a[21] << 28)
| ((uint64_t)a[20] << 36)
| ((uint64_t)a[19] << 44);
r->n[2] = (uint64_t)a[18]
| ((uint64_t)a[17] << 8)
| ((uint64_t)a[16] << 16)
| ((uint64_t)a[15] << 24)
| ((uint64_t)a[14] << 32)
| ((uint64_t)a[13] << 40)
| ((uint64_t)(a[12] & 0xF) << 48);
r->n[3] = (uint64_t)((a[12] >> 4) & 0xF)
| ((uint64_t)a[11] << 4)
| ((uint64_t)a[10] << 12)
| ((uint64_t)a[9] << 20)
| ((uint64_t)a[8] << 28)
| ((uint64_t)a[7] << 36)
| ((uint64_t)a[6] << 44);
r->n[4] = (uint64_t)a[5]
| ((uint64_t)a[4] << 8)
| ((uint64_t)a[3] << 16)
| ((uint64_t)a[2] << 24)
| ((uint64_t)a[1] << 32)
| ((uint64_t)a[0] << 40);
}
static int secp256k1_fe_impl_set_b32_limit(secp256k1_fe *r, const unsigned char *a) {
secp256k1_fe_impl_set_b32_mod(r, a);
return !((r->n[4] == 0x0FFFFFFFFFFFFULL) & ((r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL) & (r->n[0] >= 0xFFFFEFFFFFC2FULL));
}
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
static void secp256k1_fe_impl_get_b32(unsigned char *r, const secp256k1_fe *a) {
r[0] = (a->n[4] >> 40) & 0xFF;
r[1] = (a->n[4] >> 32) & 0xFF;
r[2] = (a->n[4] >> 24) & 0xFF;
r[3] = (a->n[4] >> 16) & 0xFF;
r[4] = (a->n[4] >> 8) & 0xFF;
r[5] = a->n[4] & 0xFF;
r[6] = (a->n[3] >> 44) & 0xFF;
r[7] = (a->n[3] >> 36) & 0xFF;
r[8] = (a->n[3] >> 28) & 0xFF;
r[9] = (a->n[3] >> 20) & 0xFF;
r[10] = (a->n[3] >> 12) & 0xFF;
r[11] = (a->n[3] >> 4) & 0xFF;
r[12] = ((a->n[2] >> 48) & 0xF) | ((a->n[3] & 0xF) << 4);
r[13] = (a->n[2] >> 40) & 0xFF;
r[14] = (a->n[2] >> 32) & 0xFF;
r[15] = (a->n[2] >> 24) & 0xFF;
r[16] = (a->n[2] >> 16) & 0xFF;
r[17] = (a->n[2] >> 8) & 0xFF;
r[18] = a->n[2] & 0xFF;
r[19] = (a->n[1] >> 44) & 0xFF;
r[20] = (a->n[1] >> 36) & 0xFF;
r[21] = (a->n[1] >> 28) & 0xFF;
r[22] = (a->n[1] >> 20) & 0xFF;
r[23] = (a->n[1] >> 12) & 0xFF;
r[24] = (a->n[1] >> 4) & 0xFF;
r[25] = ((a->n[0] >> 48) & 0xF) | ((a->n[1] & 0xF) << 4);
r[26] = (a->n[0] >> 40) & 0xFF;
r[27] = (a->n[0] >> 32) & 0xFF;
r[28] = (a->n[0] >> 24) & 0xFF;
r[29] = (a->n[0] >> 16) & 0xFF;
r[30] = (a->n[0] >> 8) & 0xFF;
r[31] = a->n[0] & 0xFF;
}
SECP256K1_INLINE static void secp256k1_fe_impl_negate_unchecked(secp256k1_fe *r, const secp256k1_fe *a, int m) {
/* For all legal values of m (0..31), the following properties hold: */
VERIFY_CHECK(0xFFFFEFFFFFC2FULL * 2 * (m + 1) >= 0xFFFFFFFFFFFFFULL * 2 * m);
VERIFY_CHECK(0xFFFFFFFFFFFFFULL * 2 * (m + 1) >= 0xFFFFFFFFFFFFFULL * 2 * m);
VERIFY_CHECK(0x0FFFFFFFFFFFFULL * 2 * (m + 1) >= 0x0FFFFFFFFFFFFULL * 2 * m);
/* Due to the properties above, the left hand in the subtractions below is never less than
* the right hand. */
r->n[0] = 0xFFFFEFFFFFC2FULL * 2 * (m + 1) - a->n[0];
r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[1];
r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[2];
r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[3];
r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * (m + 1) - a->n[4];
}
SECP256K1_INLINE static void secp256k1_fe_impl_mul_int_unchecked(secp256k1_fe *r, int a) {
r->n[0] *= a;
r->n[1] *= a;
r->n[2] *= a;
r->n[3] *= a;
r->n[4] *= a;
}
SECP256K1_INLINE static void secp256k1_fe_impl_add_int(secp256k1_fe *r, int a) {
r->n[0] += a;
}
SECP256K1_INLINE static void secp256k1_fe_impl_add(secp256k1_fe *r, const secp256k1_fe *a) {
r->n[0] += a->n[0];
r->n[1] += a->n[1];
r->n[2] += a->n[2];
r->n[3] += a->n[3];
r->n[4] += a->n[4];
}
SECP256K1_INLINE static void secp256k1_fe_impl_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
secp256k1_fe_mul_inner(r->n, a->n, b->n);
}
SECP256K1_INLINE static void secp256k1_fe_impl_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
secp256k1_fe_sqr_inner(r->n, a->n);
}
SECP256K1_INLINE static void secp256k1_fe_impl_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
uint64_t mask0, mask1;
volatile int vflag = flag;
SECP256K1_CHECKMEM_CHECK_VERIFY(r->n, sizeof(r->n));
mask0 = vflag + ~((uint64_t)0);
mask1 = ~mask0;
r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1);
}
static SECP256K1_INLINE void secp256k1_fe_impl_half(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
uint64_t one = (uint64_t)1;
uint64_t mask = -(t0 & one) >> 12;
/* Bounds analysis (over the rationals).
*
* Let m = r->magnitude
* C = 0xFFFFFFFFFFFFFULL * 2
* D = 0x0FFFFFFFFFFFFULL * 2
*
* Initial bounds: t0..t3 <= C * m
* t4 <= D * m
*/
t0 += 0xFFFFEFFFFFC2FULL & mask;
t1 += mask;
t2 += mask;
t3 += mask;
t4 += mask >> 4;
VERIFY_CHECK((t0 & one) == 0);
/* t0..t3: added <= C/2
* t4: added <= D/2
*
* Current bounds: t0..t3 <= C * (m + 1/2)
* t4 <= D * (m + 1/2)
*/
r->n[0] = (t0 >> 1) + ((t1 & one) << 51);
r->n[1] = (t1 >> 1) + ((t2 & one) << 51);
r->n[2] = (t2 >> 1) + ((t3 & one) << 51);
r->n[3] = (t3 >> 1) + ((t4 & one) << 51);
r->n[4] = (t4 >> 1);
/* t0..t3: shifted right and added <= C/4 + 1/2
* t4: shifted right
*
* Current bounds: t0..t3 <= C * (m/2 + 1/2)
* t4 <= D * (m/2 + 1/4)
*
* Therefore the output magnitude (M) has to be set such that:
* t0..t3: C * M >= C * (m/2 + 1/2)
* t4: D * M >= D * (m/2 + 1/4)
*
* It suffices for all limbs that, for any input magnitude m:
* M >= m/2 + 1/2
*
* and since we want the smallest such integer value for M:
* M == floor(m/2) + 1
*/
}
static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) {
uint64_t mask0, mask1;
volatile int vflag = flag;
SECP256K1_CHECKMEM_CHECK_VERIFY(r->n, sizeof(r->n));
mask0 = vflag + ~((uint64_t)0);
mask1 = ~mask0;
r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
}
static void secp256k1_fe_impl_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
r->n[0] = a->n[0] | a->n[1] << 52;
r->n[1] = a->n[1] >> 12 | a->n[2] << 40;
r->n[2] = a->n[2] >> 24 | a->n[3] << 28;
r->n[3] = a->n[3] >> 36 | a->n[4] << 16;
}
static SECP256K1_INLINE void secp256k1_fe_impl_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
r->n[0] = a->n[0] & 0xFFFFFFFFFFFFFULL;
r->n[1] = a->n[0] >> 52 | ((a->n[1] << 12) & 0xFFFFFFFFFFFFFULL);
r->n[2] = a->n[1] >> 40 | ((a->n[2] << 24) & 0xFFFFFFFFFFFFFULL);
r->n[3] = a->n[2] >> 28 | ((a->n[3] << 36) & 0xFFFFFFFFFFFFFULL);
r->n[4] = a->n[3] >> 16;
}
static void secp256k1_fe_from_signed62(secp256k1_fe *r, const secp256k1_modinv64_signed62 *a) {
const uint64_t M52 = UINT64_MAX >> 12;
const uint64_t a0 = a->v[0], a1 = a->v[1], a2 = a->v[2], a3 = a->v[3], a4 = a->v[4];
/* The output from secp256k1_modinv64{_var} should be normalized to range [0,modulus), and
* have limbs in [0,2^62). The modulus is < 2^256, so the top limb must be below 2^(256-62*4).
*/
VERIFY_CHECK(a0 >> 62 == 0);
VERIFY_CHECK(a1 >> 62 == 0);
VERIFY_CHECK(a2 >> 62 == 0);
VERIFY_CHECK(a3 >> 62 == 0);
VERIFY_CHECK(a4 >> 8 == 0);
r->n[0] = a0 & M52;
r->n[1] = (a0 >> 52 | a1 << 10) & M52;
r->n[2] = (a1 >> 42 | a2 << 20) & M52;
r->n[3] = (a2 >> 32 | a3 << 30) & M52;
r->n[4] = (a3 >> 22 | a4 << 40);
}
static void secp256k1_fe_to_signed62(secp256k1_modinv64_signed62 *r, const secp256k1_fe *a) {
const uint64_t M62 = UINT64_MAX >> 2;
const uint64_t a0 = a->n[0], a1 = a->n[1], a2 = a->n[2], a3 = a->n[3], a4 = a->n[4];
r->v[0] = (a0 | a1 << 52) & M62;
r->v[1] = (a1 >> 10 | a2 << 42) & M62;
r->v[2] = (a2 >> 20 | a3 << 32) & M62;
r->v[3] = (a3 >> 30 | a4 << 22) & M62;
r->v[4] = a4 >> 40;
}
static const secp256k1_modinv64_modinfo secp256k1_const_modinfo_fe = {
{{-0x1000003D1LL, 0, 0, 0, 256}},
0x27C7F6E22DDACACFLL
};
static void secp256k1_fe_impl_inv(secp256k1_fe *r, const secp256k1_fe *x) {
secp256k1_fe tmp = *x;
secp256k1_modinv64_signed62 s;
secp256k1_fe_normalize(&tmp);
secp256k1_fe_to_signed62(&s, &tmp);
secp256k1_modinv64(&s, &secp256k1_const_modinfo_fe);
secp256k1_fe_from_signed62(r, &s);
}
static void secp256k1_fe_impl_inv_var(secp256k1_fe *r, const secp256k1_fe *x) {
secp256k1_fe tmp = *x;
secp256k1_modinv64_signed62 s;
secp256k1_fe_normalize_var(&tmp);
secp256k1_fe_to_signed62(&s, &tmp);
secp256k1_modinv64_var(&s, &secp256k1_const_modinfo_fe);
secp256k1_fe_from_signed62(r, &s);
}
static int secp256k1_fe_impl_is_square_var(const secp256k1_fe *x) {
secp256k1_fe tmp;
secp256k1_modinv64_signed62 s;
int jac, ret;
tmp = *x;
secp256k1_fe_normalize_var(&tmp);
/* secp256k1_jacobi64_maybe_var cannot deal with input 0. */
if (secp256k1_fe_is_zero(&tmp)) return 1;
secp256k1_fe_to_signed62(&s, &tmp);
jac = secp256k1_jacobi64_maybe_var(&s, &secp256k1_const_modinfo_fe);
if (jac == 0) {
/* secp256k1_jacobi64_maybe_var failed to compute the Jacobi symbol. Fall back
* to computing a square root. This should be extremely rare with random
* input (except in VERIFY mode, where a lower iteration count is used). */
secp256k1_fe dummy;
ret = secp256k1_fe_sqrt(&dummy, &tmp);
} else {
ret = jac >= 0;
}
return ret;
}
#endif /* SECP256K1_FIELD_REPR_IMPL_H */

View File

@ -0,0 +1,274 @@
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_FIELD_INNER5X52_IMPL_H
#define SECP256K1_FIELD_INNER5X52_IMPL_H
#include <stdint.h>
#include "int128.h"
#include "util.h"
#define VERIFY_BITS(x, n) VERIFY_CHECK(((x) >> (n)) == 0)
#define VERIFY_BITS_128(x, n) VERIFY_CHECK(secp256k1_u128_check_bits((x), (n)))
SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t *a, const uint64_t * SECP256K1_RESTRICT b) {
secp256k1_uint128 c, d;
uint64_t t3, t4, tx, u0;
uint64_t a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4];
const uint64_t M = 0xFFFFFFFFFFFFFULL, R = 0x1000003D10ULL;
VERIFY_BITS(a[0], 56);
VERIFY_BITS(a[1], 56);
VERIFY_BITS(a[2], 56);
VERIFY_BITS(a[3], 56);
VERIFY_BITS(a[4], 52);
VERIFY_BITS(b[0], 56);
VERIFY_BITS(b[1], 56);
VERIFY_BITS(b[2], 56);
VERIFY_BITS(b[3], 56);
VERIFY_BITS(b[4], 52);
VERIFY_CHECK(r != b);
VERIFY_CHECK(a != b);
/* [... a b c] is a shorthand for ... + a<<104 + b<<52 + c<<0 mod n.
* for 0 <= x <= 4, px is a shorthand for sum(a[i]*b[x-i], i=0..x).
* for 4 <= x <= 8, px is a shorthand for sum(a[i]*b[x-i], i=(x-4)..4)
* Note that [x 0 0 0 0 0] = [x*R].
*/
secp256k1_u128_mul(&d, a0, b[3]);
secp256k1_u128_accum_mul(&d, a1, b[2]);
secp256k1_u128_accum_mul(&d, a2, b[1]);
secp256k1_u128_accum_mul(&d, a3, b[0]);
VERIFY_BITS_128(&d, 114);
/* [d 0 0 0] = [p3 0 0 0] */
secp256k1_u128_mul(&c, a4, b[4]);
VERIFY_BITS_128(&c, 112);
/* [c 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
secp256k1_u128_accum_mul(&d, R, secp256k1_u128_to_u64(&c)); secp256k1_u128_rshift(&c, 64);
VERIFY_BITS_128(&d, 115);
VERIFY_BITS_128(&c, 48);
/* [(c<<12) 0 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
t3 = secp256k1_u128_to_u64(&d) & M; secp256k1_u128_rshift(&d, 52);
VERIFY_BITS(t3, 52);
VERIFY_BITS_128(&d, 63);
/* [(c<<12) 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
secp256k1_u128_accum_mul(&d, a0, b[4]);
secp256k1_u128_accum_mul(&d, a1, b[3]);
secp256k1_u128_accum_mul(&d, a2, b[2]);
secp256k1_u128_accum_mul(&d, a3, b[1]);
secp256k1_u128_accum_mul(&d, a4, b[0]);
VERIFY_BITS_128(&d, 115);
/* [(c<<12) 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
secp256k1_u128_accum_mul(&d, R << 12, secp256k1_u128_to_u64(&c));
VERIFY_BITS_128(&d, 116);
/* [d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
t4 = secp256k1_u128_to_u64(&d) & M; secp256k1_u128_rshift(&d, 52);
VERIFY_BITS(t4, 52);
VERIFY_BITS_128(&d, 64);
/* [d t4 t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
tx = (t4 >> 48); t4 &= (M >> 4);
VERIFY_BITS(tx, 4);
VERIFY_BITS(t4, 48);
/* [d t4+(tx<<48) t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
secp256k1_u128_mul(&c, a0, b[0]);
VERIFY_BITS_128(&c, 112);
/* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 0 p4 p3 0 0 p0] */
secp256k1_u128_accum_mul(&d, a1, b[4]);
secp256k1_u128_accum_mul(&d, a2, b[3]);
secp256k1_u128_accum_mul(&d, a3, b[2]);
secp256k1_u128_accum_mul(&d, a4, b[1]);
VERIFY_BITS_128(&d, 114);
/* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
u0 = secp256k1_u128_to_u64(&d) & M; secp256k1_u128_rshift(&d, 52);
VERIFY_BITS(u0, 52);
VERIFY_BITS_128(&d, 62);
/* [d u0 t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
/* [d 0 t4+(tx<<48)+(u0<<52) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
u0 = (u0 << 4) | tx;
VERIFY_BITS(u0, 56);
/* [d 0 t4+(u0<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
secp256k1_u128_accum_mul(&c, u0, R >> 4);
VERIFY_BITS_128(&c, 113);
/* [d 0 t4 t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
r[0] = secp256k1_u128_to_u64(&c) & M; secp256k1_u128_rshift(&c, 52);
VERIFY_BITS(r[0], 52);
VERIFY_BITS_128(&c, 61);
/* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 0 p0] */
secp256k1_u128_accum_mul(&c, a0, b[1]);
secp256k1_u128_accum_mul(&c, a1, b[0]);
VERIFY_BITS_128(&c, 114);
/* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 p1 p0] */
secp256k1_u128_accum_mul(&d, a2, b[4]);
secp256k1_u128_accum_mul(&d, a3, b[3]);
secp256k1_u128_accum_mul(&d, a4, b[2]);
VERIFY_BITS_128(&d, 114);
/* [d 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
secp256k1_u128_accum_mul(&c, secp256k1_u128_to_u64(&d) & M, R); secp256k1_u128_rshift(&d, 52);
VERIFY_BITS_128(&c, 115);
VERIFY_BITS_128(&d, 62);
/* [d 0 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
r[1] = secp256k1_u128_to_u64(&c) & M; secp256k1_u128_rshift(&c, 52);
VERIFY_BITS(r[1], 52);
VERIFY_BITS_128(&c, 63);
/* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
secp256k1_u128_accum_mul(&c, a0, b[2]);
secp256k1_u128_accum_mul(&c, a1, b[1]);
secp256k1_u128_accum_mul(&c, a2, b[0]);
VERIFY_BITS_128(&c, 114);
/* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 p2 p1 p0] */
secp256k1_u128_accum_mul(&d, a3, b[4]);
secp256k1_u128_accum_mul(&d, a4, b[3]);
VERIFY_BITS_128(&d, 114);
/* [d 0 0 t4 t3 c t1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
secp256k1_u128_accum_mul(&c, R, secp256k1_u128_to_u64(&d)); secp256k1_u128_rshift(&d, 64);
VERIFY_BITS_128(&c, 115);
VERIFY_BITS_128(&d, 50);
/* [(d<<12) 0 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[2] = secp256k1_u128_to_u64(&c) & M; secp256k1_u128_rshift(&c, 52);
VERIFY_BITS(r[2], 52);
VERIFY_BITS_128(&c, 63);
/* [(d<<12) 0 0 0 t4 t3+c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
secp256k1_u128_accum_mul(&c, R << 12, secp256k1_u128_to_u64(&d));
secp256k1_u128_accum_u64(&c, t3);
VERIFY_BITS_128(&c, 100);
/* [t4 c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[3] = secp256k1_u128_to_u64(&c) & M; secp256k1_u128_rshift(&c, 52);
VERIFY_BITS(r[3], 52);
VERIFY_BITS_128(&c, 48);
/* [t4+c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[4] = secp256k1_u128_to_u64(&c) + t4;
VERIFY_BITS(r[4], 49);
/* [r4 r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
}
SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint64_t *r, const uint64_t *a) {
secp256k1_uint128 c, d;
uint64_t a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4];
uint64_t t3, t4, tx, u0;
const uint64_t M = 0xFFFFFFFFFFFFFULL, R = 0x1000003D10ULL;
VERIFY_BITS(a[0], 56);
VERIFY_BITS(a[1], 56);
VERIFY_BITS(a[2], 56);
VERIFY_BITS(a[3], 56);
VERIFY_BITS(a[4], 52);
/** [... a b c] is a shorthand for ... + a<<104 + b<<52 + c<<0 mod n.
* px is a shorthand for sum(a[i]*a[x-i], i=0..x).
* Note that [x 0 0 0 0 0] = [x*R].
*/
secp256k1_u128_mul(&d, a0*2, a3);
secp256k1_u128_accum_mul(&d, a1*2, a2);
VERIFY_BITS_128(&d, 114);
/* [d 0 0 0] = [p3 0 0 0] */
secp256k1_u128_mul(&c, a4, a4);
VERIFY_BITS_128(&c, 112);
/* [c 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
secp256k1_u128_accum_mul(&d, R, secp256k1_u128_to_u64(&c)); secp256k1_u128_rshift(&c, 64);
VERIFY_BITS_128(&d, 115);
VERIFY_BITS_128(&c, 48);
/* [(c<<12) 0 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
t3 = secp256k1_u128_to_u64(&d) & M; secp256k1_u128_rshift(&d, 52);
VERIFY_BITS(t3, 52);
VERIFY_BITS_128(&d, 63);
/* [(c<<12) 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
a4 *= 2;
secp256k1_u128_accum_mul(&d, a0, a4);
secp256k1_u128_accum_mul(&d, a1*2, a3);
secp256k1_u128_accum_mul(&d, a2, a2);
VERIFY_BITS_128(&d, 115);
/* [(c<<12) 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
secp256k1_u128_accum_mul(&d, R << 12, secp256k1_u128_to_u64(&c));
VERIFY_BITS_128(&d, 116);
/* [d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
t4 = secp256k1_u128_to_u64(&d) & M; secp256k1_u128_rshift(&d, 52);
VERIFY_BITS(t4, 52);
VERIFY_BITS_128(&d, 64);
/* [d t4 t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
tx = (t4 >> 48); t4 &= (M >> 4);
VERIFY_BITS(tx, 4);
VERIFY_BITS(t4, 48);
/* [d t4+(tx<<48) t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
secp256k1_u128_mul(&c, a0, a0);
VERIFY_BITS_128(&c, 112);
/* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 0 p4 p3 0 0 p0] */
secp256k1_u128_accum_mul(&d, a1, a4);
secp256k1_u128_accum_mul(&d, a2*2, a3);
VERIFY_BITS_128(&d, 114);
/* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
u0 = secp256k1_u128_to_u64(&d) & M; secp256k1_u128_rshift(&d, 52);
VERIFY_BITS(u0, 52);
VERIFY_BITS_128(&d, 62);
/* [d u0 t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
/* [d 0 t4+(tx<<48)+(u0<<52) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
u0 = (u0 << 4) | tx;
VERIFY_BITS(u0, 56);
/* [d 0 t4+(u0<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
secp256k1_u128_accum_mul(&c, u0, R >> 4);
VERIFY_BITS_128(&c, 113);
/* [d 0 t4 t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
r[0] = secp256k1_u128_to_u64(&c) & M; secp256k1_u128_rshift(&c, 52);
VERIFY_BITS(r[0], 52);
VERIFY_BITS_128(&c, 61);
/* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 0 p0] */
a0 *= 2;
secp256k1_u128_accum_mul(&c, a0, a1);
VERIFY_BITS_128(&c, 114);
/* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 p1 p0] */
secp256k1_u128_accum_mul(&d, a2, a4);
secp256k1_u128_accum_mul(&d, a3, a3);
VERIFY_BITS_128(&d, 114);
/* [d 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
secp256k1_u128_accum_mul(&c, secp256k1_u128_to_u64(&d) & M, R); secp256k1_u128_rshift(&d, 52);
VERIFY_BITS_128(&c, 115);
VERIFY_BITS_128(&d, 62);
/* [d 0 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
r[1] = secp256k1_u128_to_u64(&c) & M; secp256k1_u128_rshift(&c, 52);
VERIFY_BITS(r[1], 52);
VERIFY_BITS_128(&c, 63);
/* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
secp256k1_u128_accum_mul(&c, a0, a2);
secp256k1_u128_accum_mul(&c, a1, a1);
VERIFY_BITS_128(&c, 114);
/* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 p2 p1 p0] */
secp256k1_u128_accum_mul(&d, a3, a4);
VERIFY_BITS_128(&d, 114);
/* [d 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
secp256k1_u128_accum_mul(&c, R, secp256k1_u128_to_u64(&d)); secp256k1_u128_rshift(&d, 64);
VERIFY_BITS_128(&c, 115);
VERIFY_BITS_128(&d, 50);
/* [(d<<12) 0 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[2] = secp256k1_u128_to_u64(&c) & M; secp256k1_u128_rshift(&c, 52);
VERIFY_BITS(r[2], 52);
VERIFY_BITS_128(&c, 63);
/* [(d<<12) 0 0 0 t4 t3+c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
secp256k1_u128_accum_mul(&c, R << 12, secp256k1_u128_to_u64(&d));
secp256k1_u128_accum_u64(&c, t3);
VERIFY_BITS_128(&c, 100);
/* [t4 c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[3] = secp256k1_u128_to_u64(&c) & M; secp256k1_u128_rshift(&c, 52);
VERIFY_BITS(r[3], 52);
VERIFY_BITS_128(&c, 48);
/* [t4+c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[4] = secp256k1_u128_to_u64(&c) + t4;
VERIFY_BITS(r[4], 49);
/* [r4 r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
}
#endif /* SECP256K1_FIELD_INNER5X52_IMPL_H */

457
secp256k1/src/field_impl.h Normal file
View File

@ -0,0 +1,457 @@
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_FIELD_IMPL_H
#define SECP256K1_FIELD_IMPL_H
#include "field.h"
#include "util.h"
#if defined(SECP256K1_WIDEMUL_INT128)
#include "field_5x52_impl.h"
#elif defined(SECP256K1_WIDEMUL_INT64)
#include "field_10x26_impl.h"
#else
#error "Please select wide multiplication implementation"
#endif
SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) {
secp256k1_memclear(a, sizeof(secp256k1_fe));
}
SECP256K1_INLINE static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) {
secp256k1_fe na;
SECP256K1_FE_VERIFY(a);
SECP256K1_FE_VERIFY(b);
SECP256K1_FE_VERIFY_MAGNITUDE(a, 1);
SECP256K1_FE_VERIFY_MAGNITUDE(b, 31);
secp256k1_fe_negate(&na, a, 1);
secp256k1_fe_add(&na, b);
return secp256k1_fe_normalizes_to_zero(&na);
}
static int secp256k1_fe_sqrt(secp256k1_fe * SECP256K1_RESTRICT r, const secp256k1_fe * SECP256K1_RESTRICT a) {
/** Given that p is congruent to 3 mod 4, we can compute the square root of
* a mod p as the (p+1)/4'th power of a.
*
* As (p+1)/4 is an even number, it will have the same result for a and for
* (-a). Only one of these two numbers actually has a square root however,
* so we test at the end by squaring and comparing to the input.
* Also because (p+1)/4 is an even number, the computed square root is
* itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)).
*/
secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
int j, ret;
VERIFY_CHECK(r != a);
SECP256K1_FE_VERIFY(a);
SECP256K1_FE_VERIFY_MAGNITUDE(a, 8);
/** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
* { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
* 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
*/
secp256k1_fe_sqr(&x2, a);
secp256k1_fe_mul(&x2, &x2, a);
secp256k1_fe_sqr(&x3, &x2);
secp256k1_fe_mul(&x3, &x3, a);
x6 = x3;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x6, &x6);
}
secp256k1_fe_mul(&x6, &x6, &x3);
x9 = x6;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x9, &x9);
}
secp256k1_fe_mul(&x9, &x9, &x3);
x11 = x9;
for (j=0; j<2; j++) {
secp256k1_fe_sqr(&x11, &x11);
}
secp256k1_fe_mul(&x11, &x11, &x2);
x22 = x11;
for (j=0; j<11; j++) {
secp256k1_fe_sqr(&x22, &x22);
}
secp256k1_fe_mul(&x22, &x22, &x11);
x44 = x22;
for (j=0; j<22; j++) {
secp256k1_fe_sqr(&x44, &x44);
}
secp256k1_fe_mul(&x44, &x44, &x22);
x88 = x44;
for (j=0; j<44; j++) {
secp256k1_fe_sqr(&x88, &x88);
}
secp256k1_fe_mul(&x88, &x88, &x44);
x176 = x88;
for (j=0; j<88; j++) {
secp256k1_fe_sqr(&x176, &x176);
}
secp256k1_fe_mul(&x176, &x176, &x88);
x220 = x176;
for (j=0; j<44; j++) {
secp256k1_fe_sqr(&x220, &x220);
}
secp256k1_fe_mul(&x220, &x220, &x44);
x223 = x220;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x223, &x223);
}
secp256k1_fe_mul(&x223, &x223, &x3);
/* The final result is then assembled using a sliding window over the blocks. */
t1 = x223;
for (j=0; j<23; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, &x22);
for (j=0; j<6; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, &x2);
secp256k1_fe_sqr(&t1, &t1);
secp256k1_fe_sqr(r, &t1);
/* Check that a square root was actually calculated */
secp256k1_fe_sqr(&t1, r);
ret = secp256k1_fe_equal(&t1, a);
#ifdef VERIFY
if (!ret) {
secp256k1_fe_negate(&t1, &t1, 1);
secp256k1_fe_normalize_var(&t1);
VERIFY_CHECK(secp256k1_fe_equal(&t1, a));
}
#endif
return ret;
}
#ifndef VERIFY
static void secp256k1_fe_verify(const secp256k1_fe *a) { (void)a; }
static void secp256k1_fe_verify_magnitude(const secp256k1_fe *a, int m) { (void)a; (void)m; }
#else
static void secp256k1_fe_impl_verify(const secp256k1_fe *a);
static void secp256k1_fe_verify(const secp256k1_fe *a) {
/* Magnitude between 0 and 32. */
SECP256K1_FE_VERIFY_MAGNITUDE(a, 32);
/* Normalized is 0 or 1. */
VERIFY_CHECK((a->normalized == 0) || (a->normalized == 1));
/* If normalized, magnitude must be 0 or 1. */
if (a->normalized) SECP256K1_FE_VERIFY_MAGNITUDE(a, 1);
/* Invoke implementation-specific checks. */
secp256k1_fe_impl_verify(a);
}
static void secp256k1_fe_verify_magnitude(const secp256k1_fe *a, int m) {
VERIFY_CHECK(m >= 0);
VERIFY_CHECK(m <= 32);
VERIFY_CHECK(a->magnitude <= m);
}
static void secp256k1_fe_impl_normalize(secp256k1_fe *r);
SECP256K1_INLINE static void secp256k1_fe_normalize(secp256k1_fe *r) {
SECP256K1_FE_VERIFY(r);
secp256k1_fe_impl_normalize(r);
r->magnitude = 1;
r->normalized = 1;
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_normalize_weak(secp256k1_fe *r);
SECP256K1_INLINE static void secp256k1_fe_normalize_weak(secp256k1_fe *r) {
SECP256K1_FE_VERIFY(r);
secp256k1_fe_impl_normalize_weak(r);
r->magnitude = 1;
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_normalize_var(secp256k1_fe *r);
SECP256K1_INLINE static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
SECP256K1_FE_VERIFY(r);
secp256k1_fe_impl_normalize_var(r);
r->magnitude = 1;
r->normalized = 1;
SECP256K1_FE_VERIFY(r);
}
static int secp256k1_fe_impl_normalizes_to_zero(const secp256k1_fe *r);
SECP256K1_INLINE static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r) {
SECP256K1_FE_VERIFY(r);
return secp256k1_fe_impl_normalizes_to_zero(r);
}
static int secp256k1_fe_impl_normalizes_to_zero_var(const secp256k1_fe *r);
SECP256K1_INLINE static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r) {
SECP256K1_FE_VERIFY(r);
return secp256k1_fe_impl_normalizes_to_zero_var(r);
}
static void secp256k1_fe_impl_set_int(secp256k1_fe *r, int a);
SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) {
VERIFY_CHECK(0 <= a && a <= 0x7FFF);
secp256k1_fe_impl_set_int(r, a);
r->magnitude = (a != 0);
r->normalized = 1;
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_add_int(secp256k1_fe *r, int a);
SECP256K1_INLINE static void secp256k1_fe_add_int(secp256k1_fe *r, int a) {
VERIFY_CHECK(0 <= a && a <= 0x7FFF);
SECP256K1_FE_VERIFY(r);
secp256k1_fe_impl_add_int(r, a);
r->magnitude += 1;
r->normalized = 0;
SECP256K1_FE_VERIFY(r);
}
static int secp256k1_fe_impl_is_zero(const secp256k1_fe *a);
SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) {
SECP256K1_FE_VERIFY(a);
VERIFY_CHECK(a->normalized);
return secp256k1_fe_impl_is_zero(a);
}
static int secp256k1_fe_impl_is_odd(const secp256k1_fe *a);
SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) {
SECP256K1_FE_VERIFY(a);
VERIFY_CHECK(a->normalized);
return secp256k1_fe_impl_is_odd(a);
}
static int secp256k1_fe_impl_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b);
SECP256K1_INLINE static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
SECP256K1_FE_VERIFY(a);
SECP256K1_FE_VERIFY(b);
VERIFY_CHECK(a->normalized);
VERIFY_CHECK(b->normalized);
return secp256k1_fe_impl_cmp_var(a, b);
}
static void secp256k1_fe_impl_set_b32_mod(secp256k1_fe *r, const unsigned char *a);
SECP256K1_INLINE static void secp256k1_fe_set_b32_mod(secp256k1_fe *r, const unsigned char *a) {
secp256k1_fe_impl_set_b32_mod(r, a);
r->magnitude = 1;
r->normalized = 0;
SECP256K1_FE_VERIFY(r);
}
static int secp256k1_fe_impl_set_b32_limit(secp256k1_fe *r, const unsigned char *a);
SECP256K1_INLINE static int secp256k1_fe_set_b32_limit(secp256k1_fe *r, const unsigned char *a) {
if (secp256k1_fe_impl_set_b32_limit(r, a)) {
r->magnitude = 1;
r->normalized = 1;
SECP256K1_FE_VERIFY(r);
return 1;
} else {
/* Mark the output field element as invalid. */
r->magnitude = -1;
return 0;
}
}
static void secp256k1_fe_impl_get_b32(unsigned char *r, const secp256k1_fe *a);
SECP256K1_INLINE static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
SECP256K1_FE_VERIFY(a);
VERIFY_CHECK(a->normalized);
secp256k1_fe_impl_get_b32(r, a);
}
static void secp256k1_fe_impl_negate_unchecked(secp256k1_fe *r, const secp256k1_fe *a, int m);
SECP256K1_INLINE static void secp256k1_fe_negate_unchecked(secp256k1_fe *r, const secp256k1_fe *a, int m) {
SECP256K1_FE_VERIFY(a);
VERIFY_CHECK(m >= 0 && m <= 31);
SECP256K1_FE_VERIFY_MAGNITUDE(a, m);
secp256k1_fe_impl_negate_unchecked(r, a, m);
r->magnitude = m + 1;
r->normalized = 0;
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_mul_int_unchecked(secp256k1_fe *r, int a);
SECP256K1_INLINE static void secp256k1_fe_mul_int_unchecked(secp256k1_fe *r, int a) {
SECP256K1_FE_VERIFY(r);
VERIFY_CHECK(a >= 0 && a <= 32);
VERIFY_CHECK(a*r->magnitude <= 32);
secp256k1_fe_impl_mul_int_unchecked(r, a);
r->magnitude *= a;
r->normalized = 0;
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_add(secp256k1_fe *r, const secp256k1_fe *a);
SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) {
SECP256K1_FE_VERIFY(r);
SECP256K1_FE_VERIFY(a);
VERIFY_CHECK(r->magnitude + a->magnitude <= 32);
secp256k1_fe_impl_add(r, a);
r->magnitude += a->magnitude;
r->normalized = 0;
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b);
SECP256K1_INLINE static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
SECP256K1_FE_VERIFY(a);
SECP256K1_FE_VERIFY(b);
SECP256K1_FE_VERIFY_MAGNITUDE(a, 8);
SECP256K1_FE_VERIFY_MAGNITUDE(b, 8);
VERIFY_CHECK(r != b);
VERIFY_CHECK(a != b);
secp256k1_fe_impl_mul(r, a, b);
r->magnitude = 1;
r->normalized = 0;
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_sqr(secp256k1_fe *r, const secp256k1_fe *a);
SECP256K1_INLINE static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
SECP256K1_FE_VERIFY(a);
SECP256K1_FE_VERIFY_MAGNITUDE(a, 8);
secp256k1_fe_impl_sqr(r, a);
r->magnitude = 1;
r->normalized = 0;
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag);
SECP256K1_INLINE static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
VERIFY_CHECK(flag == 0 || flag == 1);
SECP256K1_FE_VERIFY(a);
SECP256K1_FE_VERIFY(r);
secp256k1_fe_impl_cmov(r, a, flag);
if (a->magnitude > r->magnitude) r->magnitude = a->magnitude;
if (!a->normalized) r->normalized = 0;
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a);
SECP256K1_INLINE static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
SECP256K1_FE_VERIFY(a);
VERIFY_CHECK(a->normalized);
secp256k1_fe_impl_to_storage(r, a);
}
static void secp256k1_fe_impl_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a);
SECP256K1_INLINE static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
secp256k1_fe_impl_from_storage(r, a);
r->magnitude = 1;
r->normalized = 1;
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_inv(secp256k1_fe *r, const secp256k1_fe *x);
SECP256K1_INLINE static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *x) {
int input_is_zero = secp256k1_fe_normalizes_to_zero(x);
SECP256K1_FE_VERIFY(x);
secp256k1_fe_impl_inv(r, x);
r->magnitude = x->magnitude > 0;
r->normalized = 1;
VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == input_is_zero);
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_inv_var(secp256k1_fe *r, const secp256k1_fe *x);
SECP256K1_INLINE static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *x) {
int input_is_zero = secp256k1_fe_normalizes_to_zero(x);
SECP256K1_FE_VERIFY(x);
secp256k1_fe_impl_inv_var(r, x);
r->magnitude = x->magnitude > 0;
r->normalized = 1;
VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == input_is_zero);
SECP256K1_FE_VERIFY(r);
}
static int secp256k1_fe_impl_is_square_var(const secp256k1_fe *x);
SECP256K1_INLINE static int secp256k1_fe_is_square_var(const secp256k1_fe *x) {
int ret;
secp256k1_fe tmp = *x, sqrt;
SECP256K1_FE_VERIFY(x);
ret = secp256k1_fe_impl_is_square_var(x);
secp256k1_fe_normalize_weak(&tmp);
VERIFY_CHECK(ret == secp256k1_fe_sqrt(&sqrt, &tmp));
return ret;
}
static void secp256k1_fe_impl_get_bounds(secp256k1_fe* r, int m);
SECP256K1_INLINE static void secp256k1_fe_get_bounds(secp256k1_fe* r, int m) {
VERIFY_CHECK(m >= 0);
VERIFY_CHECK(m <= 32);
secp256k1_fe_impl_get_bounds(r, m);
r->magnitude = m;
r->normalized = (m == 0);
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_half(secp256k1_fe *r);
SECP256K1_INLINE static void secp256k1_fe_half(secp256k1_fe *r) {
SECP256K1_FE_VERIFY(r);
SECP256K1_FE_VERIFY_MAGNITUDE(r, 31);
secp256k1_fe_impl_half(r);
r->magnitude = (r->magnitude >> 1) + 1;
r->normalized = 0;
SECP256K1_FE_VERIFY(r);
}
#endif /* defined(VERIFY) */
#endif /* SECP256K1_FIELD_IMPL_H */

216
secp256k1/src/group.h Normal file
View File

@ -0,0 +1,216 @@
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_GROUP_H
#define SECP256K1_GROUP_H
#include "field.h"
/** A group element in affine coordinates on the secp256k1 curve,
* or occasionally on an isomorphic curve of the form y^2 = x^3 + 7*t^6.
* Note: For exhaustive test mode, secp256k1 is replaced by a small subgroup of a different curve.
*/
typedef struct {
secp256k1_fe x;
secp256k1_fe y;
int infinity; /* whether this represents the point at infinity */
} secp256k1_ge;
#define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), 0}
#define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
/** A group element of the secp256k1 curve, in jacobian coordinates.
* Note: For exhastive test mode, secp256k1 is replaced by a small subgroup of a different curve.
*/
typedef struct {
secp256k1_fe x; /* actual X: x/z^2 */
secp256k1_fe y; /* actual Y: y/z^3 */
secp256k1_fe z;
int infinity; /* whether this represents the point at infinity */
} secp256k1_gej;
#define SECP256K1_GEJ_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), 0}
#define SECP256K1_GEJ_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
typedef struct {
secp256k1_fe_storage x;
secp256k1_fe_storage y;
} secp256k1_ge_storage;
#define SECP256K1_GE_STORAGE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_STORAGE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_STORAGE_CONST((i),(j),(k),(l),(m),(n),(o),(p))}
#define SECP256K1_GE_STORAGE_CONST_GET(t) SECP256K1_FE_STORAGE_CONST_GET(t.x), SECP256K1_FE_STORAGE_CONST_GET(t.y)
/** Maximum allowed magnitudes for group element coordinates
* in affine (x, y) and jacobian (x, y, z) representation. */
#define SECP256K1_GE_X_MAGNITUDE_MAX 4
#define SECP256K1_GE_Y_MAGNITUDE_MAX 3
#define SECP256K1_GEJ_X_MAGNITUDE_MAX 4
#define SECP256K1_GEJ_Y_MAGNITUDE_MAX 4
#define SECP256K1_GEJ_Z_MAGNITUDE_MAX 1
/** Set a group element equal to the point with given X and Y coordinates */
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y);
/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
* for Y. Return value indicates whether the result is valid. */
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd);
/** Determine whether x is a valid X coordinate on the curve. */
static int secp256k1_ge_x_on_curve_var(const secp256k1_fe *x);
/** Determine whether fraction xn/xd is a valid X coordinate on the curve (xd != 0). */
static int secp256k1_ge_x_frac_on_curve_var(const secp256k1_fe *xn, const secp256k1_fe *xd);
/** Check whether a group element is the point at infinity. */
static int secp256k1_ge_is_infinity(const secp256k1_ge *a);
/** Check whether a group element is valid (i.e., on the curve). */
static int secp256k1_ge_is_valid_var(const secp256k1_ge *a);
/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a);
/** Set a group element equal to another which is given in jacobian coordinates. Constant time. */
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a);
/** Set a group element equal to another which is given in jacobian coordinates. */
static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a);
/** Set group elements r[0:len] (affine) equal to group elements a[0:len] (jacobian).
* None of the group elements in a[0:len] may be infinity. Constant time. */
static void secp256k1_ge_set_all_gej(secp256k1_ge *r, const secp256k1_gej *a, size_t len);
/** Set group elements r[0:len] (affine) equal to group elements a[0:len] (jacobian). */
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len);
/** Bring a batch of inputs to the same global z "denominator", based on ratios between
* (omitted) z coordinates of adjacent elements.
*
* Although the elements a[i] are _ge rather than _gej, they actually represent elements
* in Jacobian coordinates with their z coordinates omitted.
*
* Using the notation z(b) to represent the omitted z coordinate of b, the array zr of
* z coordinate ratios must satisfy zr[i] == z(a[i]) / z(a[i-1]) for 0 < 'i' < len.
* The zr[0] value is unused.
*
* This function adjusts the coordinates of 'a' in place so that for all 'i', z(a[i]) == z(a[len-1]).
* In other words, the initial value of z(a[len-1]) becomes the global z "denominator". Only the
* a[i].x and a[i].y coordinates are explicitly modified; the adjustment of the omitted z coordinate is
* implicit.
*
* The coordinates of the final element a[len-1] are not changed.
*/
static void secp256k1_ge_table_set_globalz(size_t len, secp256k1_ge *a, const secp256k1_fe *zr);
/** Check two group elements (affine) for equality in variable time. */
static int secp256k1_ge_eq_var(const secp256k1_ge *a, const secp256k1_ge *b);
/** Set a group element (affine) equal to the point at infinity. */
static void secp256k1_ge_set_infinity(secp256k1_ge *r);
/** Set a group element (jacobian) equal to the point at infinity. */
static void secp256k1_gej_set_infinity(secp256k1_gej *r);
/** Set a group element (jacobian) equal to another which is given in affine coordinates. */
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a);
/** Check two group elements (jacobian) for equality in variable time. */
static int secp256k1_gej_eq_var(const secp256k1_gej *a, const secp256k1_gej *b);
/** Check two group elements (jacobian and affine) for equality in variable time. */
static int secp256k1_gej_eq_ge_var(const secp256k1_gej *a, const secp256k1_ge *b);
/** Compare the X coordinate of a group element (jacobian).
* The magnitude of the group element's X coordinate must not exceed 31. */
static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a);
/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a);
/** Check whether a group element is the point at infinity. */
static int secp256k1_gej_is_infinity(const secp256k1_gej *a);
/** Set r equal to the double of a. Constant time. */
static void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a);
/** Set r equal to the double of a. If rzr is not-NULL this sets *rzr such that r->z == a->z * *rzr (where infinity means an implicit z = 0). */
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
/** Set r equal to the sum of a and b. If rzr is non-NULL this sets *rzr such that r->z == a->z * *rzr (a cannot be infinity in that case). */
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr);
/** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b);
/** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient
than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time
guarantee, and b is allowed to be infinity. If rzr is non-NULL this sets *rzr such that r->z == a->z * *rzr (a cannot be infinity in that case). */
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr);
/** Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv). */
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv);
/** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a);
/** Clear a secp256k1_gej to prevent leaking sensitive information. */
static void secp256k1_gej_clear(secp256k1_gej *r);
/** Clear a secp256k1_ge to prevent leaking sensitive information. */
static void secp256k1_ge_clear(secp256k1_ge *r);
/** Convert a group element to the storage type. */
static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a);
/** Convert a group element back from the storage type. */
static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a);
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/
static void secp256k1_gej_cmov(secp256k1_gej *r, const secp256k1_gej *a, int flag);
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/
static void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag);
/** Rescale a jacobian point by b which must be non-zero. Constant-time. */
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b);
/** Convert a group element that is not infinity to a 64-byte array. The output
* array is platform-dependent. */
static void secp256k1_ge_to_bytes(unsigned char *buf, const secp256k1_ge *a);
/** Convert a 64-byte array into group element. This function assumes that the
* provided buffer correctly encodes a group element. */
static void secp256k1_ge_from_bytes(secp256k1_ge *r, const unsigned char *buf);
/** Convert a group element (that is allowed to be infinity) to a 64-byte
* array. The output array is platform-dependent. */
static void secp256k1_ge_to_bytes_ext(unsigned char *data, const secp256k1_ge *ge);
/** Convert a 64-byte array into a group element. This function assumes that the
* provided buffer is the output of secp256k1_ge_to_bytes_ext. */
static void secp256k1_ge_from_bytes_ext(secp256k1_ge *ge, const unsigned char *data);
/** Determine if a point (which is assumed to be on the curve) is in the correct (sub)group of the curve.
*
* In normal mode, the used group is secp256k1, which has cofactor=1 meaning that every point on the curve is in the
* group, and this function returns always true.
*
* When compiling in exhaustive test mode, a slightly different curve equation is used, leading to a group with a
* (very) small subgroup, and that subgroup is what is used for all cryptographic operations. In that mode, this
* function checks whether a point that is on the curve is in fact also in that subgroup.
*/
static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge);
/** Check invariants on an affine group element (no-op unless VERIFY is enabled). */
static void secp256k1_ge_verify(const secp256k1_ge *a);
#define SECP256K1_GE_VERIFY(a) secp256k1_ge_verify(a)
/** Check invariants on a Jacobian group element (no-op unless VERIFY is enabled). */
static void secp256k1_gej_verify(const secp256k1_gej *a);
#define SECP256K1_GEJ_VERIFY(a) secp256k1_gej_verify(a)
#endif /* SECP256K1_GROUP_H */

1012
secp256k1/src/group_impl.h Normal file

File diff suppressed because it is too large Load Diff

44
secp256k1/src/hash.h Normal file
View File

@ -0,0 +1,44 @@
/***********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_HASH_H
#define SECP256K1_HASH_H
#include <stdlib.h>
#include <stdint.h>
typedef struct {
uint32_t s[8];
unsigned char buf[64];
uint64_t bytes;
} secp256k1_sha256;
static void secp256k1_sha256_initialize(secp256k1_sha256 *hash);
static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t size);
static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32);
static void secp256k1_sha256_clear(secp256k1_sha256 *hash);
typedef struct {
secp256k1_sha256 inner, outer;
} secp256k1_hmac_sha256;
static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256 *hash, const unsigned char *key, size_t size);
static void secp256k1_hmac_sha256_write(secp256k1_hmac_sha256 *hash, const unsigned char *data, size_t size);
static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256 *hash, unsigned char *out32);
static void secp256k1_hmac_sha256_clear(secp256k1_hmac_sha256 *hash);
typedef struct {
unsigned char v[32];
unsigned char k[32];
int retry;
} secp256k1_rfc6979_hmac_sha256;
static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256 *rng, const unsigned char *key, size_t keylen);
static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256 *rng, unsigned char *out, size_t outlen);
static void secp256k1_rfc6979_hmac_sha256_finalize(secp256k1_rfc6979_hmac_sha256 *rng);
static void secp256k1_rfc6979_hmac_sha256_clear(secp256k1_rfc6979_hmac_sha256 *rng);
#endif /* SECP256K1_HASH_H */

299
secp256k1/src/hash_impl.h Normal file
View File

@ -0,0 +1,299 @@
/***********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_HASH_IMPL_H
#define SECP256K1_HASH_IMPL_H
#include "hash.h"
#include "util.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#define Ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
#define Maj(x,y,z) (((x) & (y)) | ((z) & ((x) | (y))))
#define Sigma0(x) (((x) >> 2 | (x) << 30) ^ ((x) >> 13 | (x) << 19) ^ ((x) >> 22 | (x) << 10))
#define Sigma1(x) (((x) >> 6 | (x) << 26) ^ ((x) >> 11 | (x) << 21) ^ ((x) >> 25 | (x) << 7))
#define sigma0(x) (((x) >> 7 | (x) << 25) ^ ((x) >> 18 | (x) << 14) ^ ((x) >> 3))
#define sigma1(x) (((x) >> 17 | (x) << 15) ^ ((x) >> 19 | (x) << 13) ^ ((x) >> 10))
#define Round(a,b,c,d,e,f,g,h,k,w) do { \
uint32_t t1 = (h) + Sigma1(e) + Ch((e), (f), (g)) + (k) + (w); \
uint32_t t2 = Sigma0(a) + Maj((a), (b), (c)); \
(d) += t1; \
(h) = t1 + t2; \
} while(0)
static void secp256k1_sha256_initialize(secp256k1_sha256 *hash) {
hash->s[0] = 0x6a09e667ul;
hash->s[1] = 0xbb67ae85ul;
hash->s[2] = 0x3c6ef372ul;
hash->s[3] = 0xa54ff53aul;
hash->s[4] = 0x510e527ful;
hash->s[5] = 0x9b05688cul;
hash->s[6] = 0x1f83d9abul;
hash->s[7] = 0x5be0cd19ul;
hash->bytes = 0;
}
/** Perform one SHA-256 transformation, processing 16 big endian 32-bit words. */
static void secp256k1_sha256_transform(uint32_t* s, const unsigned char* buf) {
uint32_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7];
uint32_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
Round(a, b, c, d, e, f, g, h, 0x428a2f98, w0 = secp256k1_read_be32(&buf[0]));
Round(h, a, b, c, d, e, f, g, 0x71374491, w1 = secp256k1_read_be32(&buf[4]));
Round(g, h, a, b, c, d, e, f, 0xb5c0fbcf, w2 = secp256k1_read_be32(&buf[8]));
Round(f, g, h, a, b, c, d, e, 0xe9b5dba5, w3 = secp256k1_read_be32(&buf[12]));
Round(e, f, g, h, a, b, c, d, 0x3956c25b, w4 = secp256k1_read_be32(&buf[16]));
Round(d, e, f, g, h, a, b, c, 0x59f111f1, w5 = secp256k1_read_be32(&buf[20]));
Round(c, d, e, f, g, h, a, b, 0x923f82a4, w6 = secp256k1_read_be32(&buf[24]));
Round(b, c, d, e, f, g, h, a, 0xab1c5ed5, w7 = secp256k1_read_be32(&buf[28]));
Round(a, b, c, d, e, f, g, h, 0xd807aa98, w8 = secp256k1_read_be32(&buf[32]));
Round(h, a, b, c, d, e, f, g, 0x12835b01, w9 = secp256k1_read_be32(&buf[36]));
Round(g, h, a, b, c, d, e, f, 0x243185be, w10 = secp256k1_read_be32(&buf[40]));
Round(f, g, h, a, b, c, d, e, 0x550c7dc3, w11 = secp256k1_read_be32(&buf[44]));
Round(e, f, g, h, a, b, c, d, 0x72be5d74, w12 = secp256k1_read_be32(&buf[48]));
Round(d, e, f, g, h, a, b, c, 0x80deb1fe, w13 = secp256k1_read_be32(&buf[52]));
Round(c, d, e, f, g, h, a, b, 0x9bdc06a7, w14 = secp256k1_read_be32(&buf[56]));
Round(b, c, d, e, f, g, h, a, 0xc19bf174, w15 = secp256k1_read_be32(&buf[60]));
Round(a, b, c, d, e, f, g, h, 0xe49b69c1, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, c, d, e, f, g, 0xefbe4786, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, b, c, d, e, f, 0x0fc19dc6, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, a, b, c, d, e, 0x240ca1cc, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, h, a, b, c, d, 0x2de92c6f, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, g, h, a, b, c, 0x4a7484aa, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, f, g, h, a, b, 0x5cb0a9dc, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, e, f, g, h, a, 0x76f988da, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, d, e, f, g, h, 0x983e5152, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, c, d, e, f, g, 0xa831c66d, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0xb00327c8, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0xbf597fc7, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0xc6e00bf3, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xd5a79147, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0x06ca6351, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0x14292967, w15 += sigma1(w13) + w8 + sigma0(w0));
Round(a, b, c, d, e, f, g, h, 0x27b70a85, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, c, d, e, f, g, 0x2e1b2138, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, b, c, d, e, f, 0x4d2c6dfc, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, a, b, c, d, e, 0x53380d13, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, h, a, b, c, d, 0x650a7354, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, g, h, a, b, c, 0x766a0abb, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, f, g, h, a, b, 0x81c2c92e, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, e, f, g, h, a, 0x92722c85, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, d, e, f, g, h, 0xa2bfe8a1, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, c, d, e, f, g, 0xa81a664b, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0xc24b8b70, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0xc76c51a3, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0xd192e819, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xd6990624, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0xf40e3585, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0x106aa070, w15 += sigma1(w13) + w8 + sigma0(w0));
Round(a, b, c, d, e, f, g, h, 0x19a4c116, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, c, d, e, f, g, 0x1e376c08, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, b, c, d, e, f, 0x2748774c, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, a, b, c, d, e, 0x34b0bcb5, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, h, a, b, c, d, 0x391c0cb3, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, g, h, a, b, c, 0x4ed8aa4a, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, f, g, h, a, b, 0x5b9cca4f, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, e, f, g, h, a, 0x682e6ff3, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, d, e, f, g, h, 0x748f82ee, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, c, d, e, f, g, 0x78a5636f, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0x84c87814, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0x8cc70208, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0x90befffa, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xa4506ceb, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0xbef9a3f7, w14 + sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0xc67178f2, w15 + sigma1(w13) + w8 + sigma0(w0));
s[0] += a;
s[1] += b;
s[2] += c;
s[3] += d;
s[4] += e;
s[5] += f;
s[6] += g;
s[7] += h;
}
static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t len) {
size_t bufsize = hash->bytes & 0x3F;
hash->bytes += len;
VERIFY_CHECK(hash->bytes >= len);
while (len >= 64 - bufsize) {
/* Fill the buffer, and process it. */
size_t chunk_len = 64 - bufsize;
memcpy(hash->buf + bufsize, data, chunk_len);
data += chunk_len;
len -= chunk_len;
secp256k1_sha256_transform(hash->s, hash->buf);
bufsize = 0;
}
if (len) {
/* Fill the buffer with what remains. */
memcpy(hash->buf + bufsize, data, len);
}
}
static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32) {
static const unsigned char pad[64] = {0x80};
unsigned char sizedesc[8];
int i;
/* The maximum message size of SHA256 is 2^64-1 bits. */
VERIFY_CHECK(hash->bytes < ((uint64_t)1 << 61));
secp256k1_write_be32(&sizedesc[0], hash->bytes >> 29);
secp256k1_write_be32(&sizedesc[4], hash->bytes << 3);
secp256k1_sha256_write(hash, pad, 1 + ((119 - (hash->bytes % 64)) % 64));
secp256k1_sha256_write(hash, sizedesc, 8);
for (i = 0; i < 8; i++) {
secp256k1_write_be32(&out32[4*i], hash->s[i]);
hash->s[i] = 0;
}
}
/* Initializes a sha256 struct and writes the 64 byte string
* SHA256(tag)||SHA256(tag) into it. */
static void secp256k1_sha256_initialize_tagged(secp256k1_sha256 *hash, const unsigned char *tag, size_t taglen) {
unsigned char buf[32];
secp256k1_sha256_initialize(hash);
secp256k1_sha256_write(hash, tag, taglen);
secp256k1_sha256_finalize(hash, buf);
secp256k1_sha256_initialize(hash);
secp256k1_sha256_write(hash, buf, 32);
secp256k1_sha256_write(hash, buf, 32);
}
static void secp256k1_sha256_clear(secp256k1_sha256 *hash) {
secp256k1_memclear(hash, sizeof(*hash));
}
static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256 *hash, const unsigned char *key, size_t keylen) {
size_t n;
unsigned char rkey[64];
if (keylen <= sizeof(rkey)) {
memcpy(rkey, key, keylen);
memset(rkey + keylen, 0, sizeof(rkey) - keylen);
} else {
secp256k1_sha256 sha256;
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, key, keylen);
secp256k1_sha256_finalize(&sha256, rkey);
memset(rkey + 32, 0, 32);
}
secp256k1_sha256_initialize(&hash->outer);
for (n = 0; n < sizeof(rkey); n++) {
rkey[n] ^= 0x5c;
}
secp256k1_sha256_write(&hash->outer, rkey, sizeof(rkey));
secp256k1_sha256_initialize(&hash->inner);
for (n = 0; n < sizeof(rkey); n++) {
rkey[n] ^= 0x5c ^ 0x36;
}
secp256k1_sha256_write(&hash->inner, rkey, sizeof(rkey));
secp256k1_memclear(rkey, sizeof(rkey));
}
static void secp256k1_hmac_sha256_write(secp256k1_hmac_sha256 *hash, const unsigned char *data, size_t size) {
secp256k1_sha256_write(&hash->inner, data, size);
}
static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256 *hash, unsigned char *out32) {
unsigned char temp[32];
secp256k1_sha256_finalize(&hash->inner, temp);
secp256k1_sha256_write(&hash->outer, temp, 32);
secp256k1_memclear(temp, sizeof(temp));
secp256k1_sha256_finalize(&hash->outer, out32);
}
static void secp256k1_hmac_sha256_clear(secp256k1_hmac_sha256 *hash) {
secp256k1_memclear(hash, sizeof(*hash));
}
static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256 *rng, const unsigned char *key, size_t keylen) {
secp256k1_hmac_sha256 hmac;
static const unsigned char zero[1] = {0x00};
static const unsigned char one[1] = {0x01};
memset(rng->v, 0x01, 32); /* RFC6979 3.2.b. */
memset(rng->k, 0x00, 32); /* RFC6979 3.2.c. */
/* RFC6979 3.2.d. */
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_write(&hmac, zero, 1);
secp256k1_hmac_sha256_write(&hmac, key, keylen);
secp256k1_hmac_sha256_finalize(&hmac, rng->k);
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_finalize(&hmac, rng->v);
/* RFC6979 3.2.f. */
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_write(&hmac, one, 1);
secp256k1_hmac_sha256_write(&hmac, key, keylen);
secp256k1_hmac_sha256_finalize(&hmac, rng->k);
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_finalize(&hmac, rng->v);
rng->retry = 0;
}
static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256 *rng, unsigned char *out, size_t outlen) {
/* RFC6979 3.2.h. */
static const unsigned char zero[1] = {0x00};
if (rng->retry) {
secp256k1_hmac_sha256 hmac;
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_write(&hmac, zero, 1);
secp256k1_hmac_sha256_finalize(&hmac, rng->k);
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_finalize(&hmac, rng->v);
}
while (outlen > 0) {
secp256k1_hmac_sha256 hmac;
int now = outlen;
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_finalize(&hmac, rng->v);
if (now > 32) {
now = 32;
}
memcpy(out, rng->v, now);
out += now;
outlen -= now;
}
rng->retry = 1;
}
static void secp256k1_rfc6979_hmac_sha256_finalize(secp256k1_rfc6979_hmac_sha256 *rng) {
(void) rng;
}
static void secp256k1_rfc6979_hmac_sha256_clear(secp256k1_rfc6979_hmac_sha256 *rng) {
secp256k1_memclear(rng, sizeof(*rng));
}
#undef Round
#undef sigma1
#undef sigma0
#undef Sigma1
#undef Sigma0
#undef Maj
#undef Ch
#endif /* SECP256K1_HASH_IMPL_H */

33
secp256k1/src/hsort.h Normal file
View File

@ -0,0 +1,33 @@
/***********************************************************************
* Copyright (c) 2021 Russell O'Connor, Jonas Nick *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_HSORT_H
#define SECP256K1_HSORT_H
#include <stddef.h>
#include <string.h>
/* In-place, iterative heapsort with an interface matching glibc's qsort_r. This
* is preferred over standard library implementations because they generally
* make no guarantee about being fast for malicious inputs.
* Remember that heapsort is unstable.
*
* In/Out: ptr: pointer to the array to sort. The contents of the array are
* sorted in ascending order according to the comparison function.
* In: count: number of elements in the array.
* size: size in bytes of each element.
* cmp: pointer to a comparison function that is called with two
* arguments that point to the objects being compared. The cmp_data
* argument of secp256k1_hsort is passed as third argument. The
* function must return an integer less than, equal to, or greater
* than zero if the first argument is considered to be respectively
* less than, equal to, or greater than the second.
* cmp_data: pointer passed as third argument to cmp.
*/
static void secp256k1_hsort(void *ptr, size_t count, size_t size,
int (*cmp)(const void *, const void *, void *),
void *cmp_data);
#endif

125
secp256k1/src/hsort_impl.h Normal file
View File

@ -0,0 +1,125 @@
/***********************************************************************
* Copyright (c) 2021 Russell O'Connor, Jonas Nick *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_HSORT_IMPL_H
#define SECP256K1_HSORT_IMPL_H
#include "hsort.h"
/* An array is a heap when, for all non-zero indexes i, the element at index i
* compares as less than or equal to the element at index parent(i) = (i-1)/2.
*/
static SECP256K1_INLINE size_t secp256k1_heap_child1(size_t i) {
VERIFY_CHECK(i <= (SIZE_MAX - 1)/2);
return 2*i + 1;
}
static SECP256K1_INLINE size_t secp256k1_heap_child2(size_t i) {
VERIFY_CHECK(i <= SIZE_MAX/2 - 1);
return secp256k1_heap_child1(i)+1;
}
static SECP256K1_INLINE void secp256k1_heap_swap64(unsigned char *a, unsigned char *b, size_t len) {
unsigned char tmp[64];
VERIFY_CHECK(len <= 64);
memcpy(tmp, a, len);
memmove(a, b, len);
memcpy(b, tmp, len);
}
static SECP256K1_INLINE void secp256k1_heap_swap(unsigned char *arr, size_t i, size_t j, size_t stride) {
unsigned char *a = arr + i*stride;
unsigned char *b = arr + j*stride;
size_t len = stride;
while (64 < len) {
secp256k1_heap_swap64(a + (len - 64), b + (len - 64), 64);
len -= 64;
}
secp256k1_heap_swap64(a, b, len);
}
/* This function accepts an array arr containing heap_size elements, each of
* size stride. The elements in the array at indices >i satisfy the max-heap
* property, i.e., for any element at index j (where j > i), all of its children
* are smaller than the element itself. The purpose of the function is to update
* the array so that all elements at indices >=i satisfy the max-heap
* property. */
static SECP256K1_INLINE void secp256k1_heap_down(unsigned char *arr, size_t i, size_t heap_size, size_t stride,
int (*cmp)(const void *, const void *, void *), void *cmp_data) {
while (i < heap_size/2) {
VERIFY_CHECK(i <= SIZE_MAX/2 - 1);
/* Proof:
* i < heap_size/2
* i + 1 <= heap_size/2
* 2*i + 2 <= heap_size <= SIZE_MAX
* 2*i <= SIZE_MAX - 2
*/
VERIFY_CHECK(secp256k1_heap_child1(i) < heap_size);
/* Proof:
* i < heap_size/2
* i + 1 <= heap_size/2
* 2*i + 2 <= heap_size
* 2*i + 1 < heap_size
* child1(i) < heap_size
*/
/* Let [x] be notation for the contents at arr[x*stride].
*
* If [child1(i)] > [i] and [child2(i)] > [i],
* swap [i] with the larger child to ensure the new parent is larger
* than both children. When [child1(i)] == [child2(i)], swap [i] with
* [child2(i)].
* Else if [child1(i)] > [i], swap [i] with [child1(i)].
* Else if [child2(i)] > [i], swap [i] with [child2(i)].
*/
if (secp256k1_heap_child2(i) < heap_size
&& 0 <= cmp(arr + secp256k1_heap_child2(i)*stride, arr + secp256k1_heap_child1(i)*stride, cmp_data)) {
if (0 < cmp(arr + secp256k1_heap_child2(i)*stride, arr + i*stride, cmp_data)) {
secp256k1_heap_swap(arr, i, secp256k1_heap_child2(i), stride);
i = secp256k1_heap_child2(i);
} else {
/* At this point we have [child2(i)] >= [child1(i)] and we have
* [child2(i)] <= [i], and thus [child1(i)] <= [i] which means
* that the next comparison can be skipped. */
return;
}
} else if (0 < cmp(arr + secp256k1_heap_child1(i)*stride, arr + i*stride, cmp_data)) {
secp256k1_heap_swap(arr, i, secp256k1_heap_child1(i), stride);
i = secp256k1_heap_child1(i);
} else {
return;
}
}
/* heap_size/2 <= i
* heap_size/2 < i + 1
* heap_size < 2*i + 2
* heap_size <= 2*i + 1
* heap_size <= child1(i)
* Thus child1(i) and child2(i) are now out of bounds and we are at a leaf.
*/
}
/* In-place heap sort. */
static void secp256k1_hsort(void *ptr, size_t count, size_t size,
int (*cmp)(const void *, const void *, void *),
void *cmp_data) {
size_t i;
for (i = count/2; 0 < i; --i) {
secp256k1_heap_down(ptr, i-1, count, size, cmp, cmp_data);
}
for (i = count; 1 < i; --i) {
/* Extract the largest value from the heap */
secp256k1_heap_swap(ptr, 0, i-1, size);
/* Repair the heap condition */
secp256k1_heap_down(ptr, 0, i-1, size, cmp, cmp_data);
}
}
#endif

90
secp256k1/src/int128.h Normal file
View File

@ -0,0 +1,90 @@
#ifndef SECP256K1_INT128_H
#define SECP256K1_INT128_H
#include "util.h"
#if defined(SECP256K1_WIDEMUL_INT128)
# if defined(SECP256K1_INT128_NATIVE)
# include "int128_native.h"
# elif defined(SECP256K1_INT128_STRUCT)
# include "int128_struct.h"
# else
# error "Please select int128 implementation"
# endif
/* Construct an unsigned 128-bit value from a high and a low 64-bit value. */
static SECP256K1_INLINE void secp256k1_u128_load(secp256k1_uint128 *r, uint64_t hi, uint64_t lo);
/* Multiply two unsigned 64-bit values a and b and write the result to r. */
static SECP256K1_INLINE void secp256k1_u128_mul(secp256k1_uint128 *r, uint64_t a, uint64_t b);
/* Multiply two unsigned 64-bit values a and b and add the result to r.
* The final result is taken modulo 2^128.
*/
static SECP256K1_INLINE void secp256k1_u128_accum_mul(secp256k1_uint128 *r, uint64_t a, uint64_t b);
/* Add an unsigned 64-bit value a to r.
* The final result is taken modulo 2^128.
*/
static SECP256K1_INLINE void secp256k1_u128_accum_u64(secp256k1_uint128 *r, uint64_t a);
/* Unsigned (logical) right shift.
* Non-constant time in n.
*/
static SECP256K1_INLINE void secp256k1_u128_rshift(secp256k1_uint128 *r, unsigned int n);
/* Return the low 64-bits of a 128-bit value as an unsigned 64-bit value. */
static SECP256K1_INLINE uint64_t secp256k1_u128_to_u64(const secp256k1_uint128 *a);
/* Return the high 64-bits of a 128-bit value as an unsigned 64-bit value. */
static SECP256K1_INLINE uint64_t secp256k1_u128_hi_u64(const secp256k1_uint128 *a);
/* Write an unsigned 64-bit value to r. */
static SECP256K1_INLINE void secp256k1_u128_from_u64(secp256k1_uint128 *r, uint64_t a);
/* Tests if r is strictly less than to 2^n.
* n must be strictly less than 128.
*/
static SECP256K1_INLINE int secp256k1_u128_check_bits(const secp256k1_uint128 *r, unsigned int n);
/* Construct an signed 128-bit value from a high and a low 64-bit value. */
static SECP256K1_INLINE void secp256k1_i128_load(secp256k1_int128 *r, int64_t hi, uint64_t lo);
/* Multiply two signed 64-bit values a and b and write the result to r. */
static SECP256K1_INLINE void secp256k1_i128_mul(secp256k1_int128 *r, int64_t a, int64_t b);
/* Multiply two signed 64-bit values a and b and add the result to r.
* Overflow or underflow from the addition is undefined behaviour.
*/
static SECP256K1_INLINE void secp256k1_i128_accum_mul(secp256k1_int128 *r, int64_t a, int64_t b);
/* Compute a*d - b*c from signed 64-bit values and write the result to r. */
static SECP256K1_INLINE void secp256k1_i128_det(secp256k1_int128 *r, int64_t a, int64_t b, int64_t c, int64_t d);
/* Signed (arithmetic) right shift.
* Non-constant time in b.
*/
static SECP256K1_INLINE void secp256k1_i128_rshift(secp256k1_int128 *r, unsigned int b);
/* Return the input value modulo 2^64. */
static SECP256K1_INLINE uint64_t secp256k1_i128_to_u64(const secp256k1_int128 *a);
/* Return the value as a signed 64-bit value.
* Requires the input to be between INT64_MIN and INT64_MAX.
*/
static SECP256K1_INLINE int64_t secp256k1_i128_to_i64(const secp256k1_int128 *a);
/* Write a signed 64-bit value to r. */
static SECP256K1_INLINE void secp256k1_i128_from_i64(secp256k1_int128 *r, int64_t a);
/* Compare two 128-bit values for equality. */
static SECP256K1_INLINE int secp256k1_i128_eq_var(const secp256k1_int128 *a, const secp256k1_int128 *b);
/* Tests if r is equal to sign*2^n (sign must be 1 or -1).
* n must be strictly less than 127.
*/
static SECP256K1_INLINE int secp256k1_i128_check_pow2(const secp256k1_int128 *r, unsigned int n, int sign);
#endif
#endif

View File

@ -0,0 +1,18 @@
#ifndef SECP256K1_INT128_IMPL_H
#define SECP256K1_INT128_IMPL_H
#include "util.h"
#include "int128.h"
#if defined(SECP256K1_WIDEMUL_INT128)
# if defined(SECP256K1_INT128_NATIVE)
# include "int128_native_impl.h"
# elif defined(SECP256K1_INT128_STRUCT)
# include "int128_struct_impl.h"
# else
# error "Please select int128 implementation"
# endif
#endif
#endif

Some files were not shown because too many files have changed in this diff Show More