Fixed error in nip04 implementation. Now working

This commit is contained in:
2025-08-17 10:42:38 -04:00
parent df23fd618a
commit d8b342ca3f
15 changed files with 723 additions and 1129 deletions

Binary file not shown.

View File

@@ -6,32 +6,87 @@
#include "../nostr_core/utils.h"
int main(void) {
// Test vector 1 from the existing test
printf("=== NIP-04 DEBUG COMPARISON (C) ===\n");
// Initialize NOSTR library - REQUIRED for secp256k1 operations
if (nostr_init() != NOSTR_SUCCESS) {
printf("❌ Failed to initialize NOSTR library\n");
return 1;
}
printf("✓ NOSTR library initialized successfully\n");
// Test vectors matching JavaScript
const char* sk1_hex = "91ba716fa9e7ea2fcbad360cf4f8e0d312f73984da63d90f524ad61a6a1e7dbe";
const char* pk1_hex = "b38ce15d3d9874ee710dfabb7ff9801b1e0e20aace6e9a1a05fa7482a04387d1";
const char* sk2_hex = "96f6fa197aa07477ab88f6981118466ae3a982faab8ad5db9d5426870c73d220";
const char* pk2_hex = "dcb33a629560280a0ee3b6b99b68c044fe8914ad8a984001ebf6099a9b474dc3";
const char* plaintext = "nanana";
const char* expectedCiphertext = "d6Joav5EciPI9hdHw31vmQ==?iv=fWs5rfv2+532arG/k83kcA==";
// Convert hex keys to bytes using the system function
unsigned char sk1[32], pk2[32];
// Convert hex keys to bytes
unsigned char sk1[32], pk1[32], sk2[32], pk2[32];
nostr_hex_to_bytes(sk1_hex, sk1, 32);
nostr_hex_to_bytes(pk1_hex, pk1, 32);
nostr_hex_to_bytes(sk2_hex, sk2, 32);
nostr_hex_to_bytes(pk2_hex, pk2, 32);
// Allocate output buffer
// Print keys for comparison
printf("[C] Private Key sk1: %s\n", sk1_hex);
printf("[C] Public Key pk2: %s\n", pk2_hex);
// Allocate output buffer for encryption
char* encrypted = malloc(NOSTR_NIP04_MAX_ENCRYPTED_SIZE);
if (!encrypted) {
printf("Memory allocation failed\n");
return 1;
}
printf("\n--- ENCRYPTION TEST ---\n");
printf("[C] Encrypting \"%s\" using sk1 -> pk2\n", plaintext);
// Call the encryption function
int result = nostr_nip04_encrypt(sk1, pk2, plaintext, encrypted, NOSTR_NIP04_MAX_ENCRYPTED_SIZE);
if (result == NOSTR_SUCCESS) {
printf("%s\n", encrypted);
printf("[C] Encrypted Result: %s\n", encrypted);
} else {
printf("Error: %s\n", nostr_strerror(result));
printf("Encryption Error: %s\n", nostr_strerror(result));
free(encrypted);
return 1;
}
printf("\n--- DECRYPTION TEST ---\n");
printf("[C] Decrypting \"%s\" using sk2 + pk1\n", expectedCiphertext);
printf("[C] Private Key sk2: %s\n", sk2_hex);
printf("[C] Public Key pk1: %s\n", pk1_hex);
// Allocate output buffer for decryption
char* decrypted = malloc(1000);
if (!decrypted) {
printf("Memory allocation failed\n");
free(encrypted);
return 1;
}
// Call the decryption function
result = nostr_nip04_decrypt(sk2, pk1, expectedCiphertext, decrypted, 1000);
if (result == NOSTR_SUCCESS) {
printf("[C] UTF-8 Decoded: \"%s\"\n", decrypted);
printf("\n--- RESULTS ---\n");
printf("Encryption Success: Generated ciphertext\n");
printf("Decryption Success: %s\n", strcmp(decrypted, plaintext) == 0 ? "true" : "false");
printf("Expected: \"%s\"\n", plaintext);
printf("Got: \"%s\"\n", decrypted);
} else {
printf("Decryption Error: %s\n", nostr_strerror(result));
}
free(encrypted);
free(decrypted);
// Cleanup NOSTR library
nostr_cleanup();
return 0;
}

View File

@@ -1,204 +0,0 @@
/*
* NIP-04 Encryption DEBUG Test
* This test shows intermediate values to compare with JavaScript implementation
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "../nostr_core/nip004.h"
#include "../nostr_core/nostr_common.h"
#include "../nostr_core/crypto/nostr_secp256k1.h"
#include "../nostr_core/utils.h"
void print_hex_debug(const char* label, const unsigned char* data, size_t len) {
printf("%s (%zu bytes): ", label, len);
for (size_t i = 0; i < len; i++) {
printf("%02x", data[i]);
}
printf("\n");
}
void hex_to_bytes(const char* hex_str, unsigned char* bytes) {
size_t len = strlen(hex_str);
for (size_t i = 0; i < len; i += 2) {
sscanf(hex_str + i, "%2hhx", &bytes[i / 2]);
}
}
int test_ecdh_debug(void) {
printf("\n=== ECDH DEBUG TEST ===\n");
// Test vector from JavaScript debug output
const char* sk1_hex = "91ba716fa9e7ea2fcbad360cf4f8e0d312f73984da63d90f524ad61a6a1e7dbe";
const char* pk2_hex = "dcb33a629560280a0ee3b6b99b68c044fe8914ad8a984001ebf6099a9b474dc3";
// Expected values from JavaScript:
// Shared Secret (33 bytes): 037ce22696eb0e303ddaa491bdf2a56b79d249f2d861b8e012a933e01dc4beba81
// Normalized Key (32 bytes): 7ce22696eb0e303ddaa491bdf2a56b79d249f2d861b8e012a933e01dc4beba81
unsigned char sk1[32], pk2[32];
hex_to_bytes(sk1_hex, sk1);
hex_to_bytes(pk2_hex, pk2);
printf("Private Key: %s\n", sk1_hex);
printf("Public Key: %s\n", pk2_hex);
print_hex_debug("SK1", sk1, 32);
print_hex_debug("PK2", pk2, 32);
// Test ECDH shared secret computation
unsigned char shared_secret[32];
printf("\nCalling ecdh_shared_secret...\n");
int result = ecdh_shared_secret(sk1, pk2, shared_secret);
printf("ecdh_shared_secret returned: %d\n", result);
if (result == 0) {
print_hex_debug("C Shared Secret", shared_secret, 32);
printf("Expected: 7ce22696eb0e303ddaa491bdf2a56b79d249f2d861b8e012a933e01dc4beba81\n");
// Check if it matches expected
const char* expected_hex = "7ce22696eb0e303ddaa491bdf2a56b79d249f2d861b8e012a933e01dc4beba81";
unsigned char expected[32];
hex_to_bytes(expected_hex, expected);
if (memcmp(shared_secret, expected, 32) == 0) {
printf("✅ ECDH matches expected value!\n");
return 1;
} else {
printf("❌ ECDH does NOT match expected value\n");
print_hex_debug("Expected", expected, 32);
return 0;
}
} else {
printf("❌ ECDH computation failed with error code: %d\n", result);
return 0;
}
}
int test_encryption_step_by_step(void) {
printf("\n=== STEP-BY-STEP ENCRYPTION DEBUG ===\n");
// Test vector 1 data
const char* sk1_hex = "91ba716fa9e7ea2fcbad360cf4f8e0d312f73984da63d90f524ad61a6a1e7dbe";
const char* pk2_hex = "dcb33a629560280a0ee3b6b99b68c044fe8914ad8a984001ebf6099a9b474dc3";
const char* plaintext = "nanana";
// Known IV from JavaScript test (to get deterministic results)
const char* fixed_iv_hex = "115e5b52371ce0e5f62a6ff33e9e2775";
printf("Private Key: %s\n", sk1_hex);
printf("Public Key: %s\n", pk2_hex);
printf("Plaintext: \"%s\"\n", plaintext);
printf("Fixed IV: %s\n", fixed_iv_hex);
unsigned char sk1[32], pk2[32], fixed_iv[16];
hex_to_bytes(sk1_hex, sk1);
hex_to_bytes(pk2_hex, pk2);
hex_to_bytes(fixed_iv_hex, fixed_iv);
// Step 1: ECDH
printf("\n--- Step 1: ECDH Shared Secret ---\n");
unsigned char shared_secret[32];
if (ecdh_shared_secret(sk1, pk2, shared_secret) != 0) {
printf("❌ ECDH failed\n");
return 0;
}
print_hex_debug("Shared Secret", shared_secret, 32);
printf("Expected: 7ce22696eb0e303ddaa491bdf2a56b79d249f2d861b8e012a933e01dc4beba81\n");
// Step 2: Convert plaintext to bytes
printf("\n--- Step 2: Plaintext to UTF-8 bytes ---\n");
size_t plaintext_len = strlen(plaintext);
printf("UTF-8 Plaintext (%zu bytes): ", plaintext_len);
for (size_t i = 0; i < plaintext_len; i++) {
printf("%02x", (unsigned char)plaintext[i]);
}
printf("\n");
printf("Expected: 6e616e616e61\n");
// Step 3: PKCS#7 padding
printf("\n--- Step 3: PKCS#7 Padding ---\n");
size_t padded_len = ((plaintext_len / 16) + 1) * 16;
unsigned char* padded_data = malloc(padded_len);
if (!padded_data) {
printf("❌ Memory allocation failed\n");
return 0;
}
memcpy(padded_data, plaintext, plaintext_len);
// Manual PKCS#7 padding for debugging
size_t padding_needed = 16 - (plaintext_len % 16);
for (size_t i = 0; i < padding_needed; i++) {
padded_data[plaintext_len + i] = (unsigned char)padding_needed;
}
size_t actual_padded_len = plaintext_len + padding_needed;
print_hex_debug("Padded Data", padded_data, actual_padded_len);
printf("Padding bytes added: %zu (value: 0x%02x)\n", padding_needed, (unsigned char)padding_needed);
// Step 4: Try calling the full encryption function
printf("\n--- Step 4: Full Encryption Function ---\n");
char* encrypted = malloc(NOSTR_NIP04_MAX_ENCRYPTED_SIZE);
if (!encrypted) {
printf("❌ Memory allocation failed\n");
free(padded_data);
return 0;
}
printf("Calling nostr_nip04_encrypt...\n");
int result = nostr_nip04_encrypt(sk1, pk2, plaintext, encrypted, NOSTR_NIP04_MAX_ENCRYPTED_SIZE);
printf("nostr_nip04_encrypt returned: %d (%s)\n", result, nostr_strerror(result));
if (result == NOSTR_SUCCESS) {
printf("✅ Encryption succeeded!\n");
printf("Result: %s\n", encrypted);
printf("Expected: zJxfaJ32rN5Dg1ODjOlEew==?iv=EV5bUjcc4OX2Km/zPp4ndQ==\n");
} else {
printf("❌ Encryption failed with error: %s\n", nostr_strerror(result));
}
free(padded_data);
free(encrypted);
return result == NOSTR_SUCCESS ? 1 : 0;
}
int main(void) {
printf("=== NIP-04 DEBUG TEST ===\n");
printf("This test shows intermediate values for comparison with JavaScript implementation\n\n");
// Initialize secp256k1 context
printf("Initializing secp256k1 context...\n");
if (!nostr_secp256k1_context_create()) {
printf("❌ Failed to initialize secp256k1 context!\n");
return 1;
}
printf("✅ secp256k1 context initialized successfully\n\n");
int all_passed = 1;
// Test 1: ECDH computation
if (!test_ecdh_debug()) {
all_passed = 0;
printf("❌ ECDH test failed - this is likely the root cause!\n");
}
// Test 2: Step by step encryption
if (!test_encryption_step_by_step()) {
all_passed = 0;
}
// Summary
printf("\n=== SUMMARY ===\n");
if (all_passed) {
printf("✅ All debug tests passed!\n");
} else {
printf("❌ Some debug tests failed - compare values with JavaScript output\n");
}
// Clean up secp256k1 context
nostr_secp256k1_context_destroy();
return all_passed ? 0 : 1;
}

Binary file not shown.

BIN
tests/nip44_test Executable file

Binary file not shown.

View File

@@ -20,24 +20,26 @@ typedef struct {
const char* expected_encrypted; // Optional - for known test vectors
} nip44_test_vector_t;
// Known test vectors from nostr-tools nip44.vectors.json
static nip44_test_vector_t known_test_vectors[] = {
// Known decryption-only test vectors from nostr-tools (for cross-compatibility testing)
// Note: NIP-44 encryption is non-deterministic - ciphertext varies each time
// These vectors test our ability to decrypt known good ciphertext from reference implementations
static nip44_test_vector_t decryption_test_vectors[] = {
{
"Known vector: single char 'a'",
"Decryption test: single char 'a'",
"0000000000000000000000000000000000000000000000000000000000000001", // sec1
"0000000000000000000000000000000000000000000000000000000000000002", // sec2
"a",
"AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABee0G5VSK0/9YypIObAtDKfYEAjD35uVkHyB0F4DwrcNaCXlCWZKaArsGrY6M9wnuTMxWfp1RTN9Xga8no+kF5Vsb"
},
{
"Known vector: emoji",
"Decryption test: emoji",
"0000000000000000000000000000000000000000000000000000000000000002", // sec1
"0000000000000000000000000000000000000000000000000000000000000001", // sec2
"🍕🫃",
"AvAAAAAAAAAAAAAAAAAAAPAAAAAAAAAAAAAAAAAAAAAPSKSK6is9ngkX2+cSq85Th16oRTISAOfhStnixqZziKMDvB0QQzgFZdjLTPicCJaV8nDITO+QfaQ61+KbWQIOO2Yj"
},
{
"Known vector: wide unicode",
"Decryption test: wide unicode",
"5c0c523f52a5b6fad39ed2403092df8cebc36318b39383bca6c00808626fab3a", // sec1
"4b22aa260e4acb7021e32f38a6cdf4b673c6a277755bfce287e370c924dc936d", // sec2
"表ポあA鷗Œé逍Üߪąñ丂㐀𠀀",
@@ -89,19 +91,19 @@ static void bytes_to_hex(const unsigned char* bytes, size_t len, char* hex) {
}
static int test_nip44_round_trip(const nip44_test_vector_t* tv) {
printf("Testing: %s\n", tv->name);
printf("Test: %s\n", tv->name);
// Parse keys - both private keys
unsigned char sender_private_key[32];
unsigned char recipient_private_key[32];
if (hex_to_bytes(tv->sender_private_key_hex, sender_private_key, 32) != 0) {
printf(" Failed to parse sender private key\n");
printf(" FAIL: Failed to parse sender private key\n");
return -1;
}
if (hex_to_bytes(tv->recipient_private_key_hex, recipient_private_key, 32) != 0) {
printf(" Failed to parse recipient private key\n");
printf(" FAIL: Failed to parse recipient private key\n");
return -1;
}
@@ -110,17 +112,17 @@ static int test_nip44_round_trip(const nip44_test_vector_t* tv) {
unsigned char recipient_public_key[32];
if (nostr_ec_public_key_from_private_key(sender_private_key, sender_public_key) != 0) {
printf(" Failed to derive sender public key\n");
printf(" FAIL: Failed to derive sender public key\n");
return -1;
}
if (nostr_ec_public_key_from_private_key(recipient_private_key, recipient_public_key) != 0) {
printf(" Failed to derive recipient public key\n");
printf(" FAIL: Failed to derive recipient public key\n");
return -1;
}
// Test encryption
char encrypted[8192]; // Large buffer for encrypted data
char encrypted[8192];
int encrypt_result = nostr_nip44_encrypt(
sender_private_key,
recipient_public_key,
@@ -130,15 +132,12 @@ static int test_nip44_round_trip(const nip44_test_vector_t* tv) {
);
if (encrypt_result != NOSTR_SUCCESS) {
printf(" Encryption failed with error: %d\n", encrypt_result);
printf(" FAIL: Encryption - Expected: %d, Actual: %d\n", NOSTR_SUCCESS, encrypt_result);
return -1;
}
printf(" ✅ Encryption successful\n");
printf(" 📦 Encrypted length: %zu bytes\n", strlen(encrypted));
// Test decryption - use recipient private key + sender public key
char decrypted[8192]; // Large buffer for decrypted data
char decrypted[8192];
int decrypt_result = nostr_nip44_decrypt(
recipient_private_key,
sender_public_key,
@@ -148,27 +147,26 @@ static int test_nip44_round_trip(const nip44_test_vector_t* tv) {
);
if (decrypt_result != NOSTR_SUCCESS) {
printf(" Decryption failed with error: %d\n", decrypt_result);
printf(" FAIL: Decryption - Expected: %d, Actual: %d\n", NOSTR_SUCCESS, decrypt_result);
return -1;
}
// Verify round-trip
if (strcmp(tv->plaintext, decrypted) != 0) {
printf(" Round-trip failed!\n");
printf(" 📝 Original: \"%s\"\n", tv->plaintext);
printf(" 📝 Decrypted: \"%s\"\n", decrypted);
printf(" FAIL: Round-trip mismatch\n");
printf(" Expected: \"%s\"\n", tv->plaintext);
printf(" Actual: \"%s\"\n", decrypted);
return -1;
}
printf(" ✅ Round-trip successful!\n");
printf(" 📝 Message: \"%s\"\n", tv->plaintext);
printf("\n");
printf(" PASS: Expected: \"%s\", Actual: \"%s\"\n", tv->plaintext, decrypted);
printf(" Encrypted output: %s\n", encrypted);
return 0;
}
static int test_nip44_error_conditions() {
printf("Testing NIP-44 error conditions:\n");
printf("Test: NIP-44 error conditions\n");
// Use proper valid secp256k1 private keys
unsigned char valid_sender_key[32];
@@ -180,7 +178,7 @@ static int test_nip44_error_conditions() {
// Generate the recipient's public key
if (nostr_ec_public_key_from_private_key(valid_recipient_key, valid_recipient_pubkey) != 0) {
printf(" Failed to generate recipient public key\n");
printf(" FAIL: Failed to generate recipient public key\n");
return -1;
}
@@ -189,25 +187,25 @@ static int test_nip44_error_conditions() {
// Test NULL parameters
int result = nostr_nip44_encrypt(NULL, valid_recipient_pubkey, "test", output, sizeof(output));
if (result != NOSTR_ERROR_INVALID_INPUT) {
printf(" ❌ Should reject NULL sender key\n");
printf(" FAIL: NULL sender key - Expected: %d, Actual: %d\n", NOSTR_ERROR_INVALID_INPUT, result);
return -1;
}
result = nostr_nip44_encrypt(valid_sender_key, NULL, "test", output, sizeof(output));
if (result != NOSTR_ERROR_INVALID_INPUT) {
printf(" ❌ Should reject NULL recipient key\n");
printf(" FAIL: NULL recipient key - Expected: %d, Actual: %d\n", NOSTR_ERROR_INVALID_INPUT, result);
return -1;
}
result = nostr_nip44_encrypt(valid_sender_key, valid_recipient_pubkey, NULL, output, sizeof(output));
if (result != NOSTR_ERROR_INVALID_INPUT) {
printf(" ❌ Should reject NULL plaintext\n");
printf(" FAIL: NULL plaintext - Expected: %d, Actual: %d\n", NOSTR_ERROR_INVALID_INPUT, result);
return -1;
}
result = nostr_nip44_encrypt(valid_sender_key, valid_recipient_pubkey, "test", NULL, sizeof(output));
if (result != NOSTR_ERROR_INVALID_INPUT) {
printf(" ❌ Should reject NULL output buffer\n");
printf(" FAIL: NULL output buffer - Expected: %d, Actual: %d\n", NOSTR_ERROR_INVALID_INPUT, result);
return -1;
}
@@ -215,28 +213,28 @@ static int test_nip44_error_conditions() {
char small_buffer[10];
result = nostr_nip44_encrypt(valid_sender_key, valid_recipient_pubkey, "test message", small_buffer, sizeof(small_buffer));
if (result != NOSTR_ERROR_NIP44_BUFFER_TOO_SMALL) {
printf(" ❌ Should detect buffer too small, got error: %d\n", result);
printf(" FAIL: Buffer too small - Expected: %d, Actual: %d\n", NOSTR_ERROR_NIP44_BUFFER_TOO_SMALL, result);
return -1;
}
printf(" All error conditions handled correctly\n\n");
printf(" PASS: All error conditions handled correctly\n");
return 0;
}
static int test_nip44_known_vector(const nip44_test_vector_t* tv) {
printf("Testing known vector: %s\n", tv->name);
static int test_nip44_decryption_vector(const nip44_test_vector_t* tv) {
printf("Test: %s\n", tv->name);
// Parse keys
unsigned char sender_private_key[32];
unsigned char recipient_private_key[32];
if (hex_to_bytes(tv->sender_private_key_hex, sender_private_key, 32) != 0) {
printf(" Failed to parse sender private key\n");
printf(" FAIL: Failed to parse sender private key\n");
return -1;
}
if (hex_to_bytes(tv->recipient_private_key_hex, recipient_private_key, 32) != 0) {
printf(" Failed to parse recipient private key\n");
printf(" FAIL: Failed to parse recipient private key\n");
return -1;
}
@@ -244,7 +242,7 @@ static int test_nip44_known_vector(const nip44_test_vector_t* tv) {
unsigned char sender_public_key[32];
if (nostr_ec_public_key_from_private_key(sender_private_key, sender_public_key) != 0) {
printf(" Failed to derive sender public key\n");
printf(" FAIL: Failed to derive sender public key\n");
return -1;
}
@@ -259,87 +257,103 @@ static int test_nip44_known_vector(const nip44_test_vector_t* tv) {
);
if (decrypt_result != NOSTR_SUCCESS) {
printf(" Decryption of known vector failed with error: %d\n", decrypt_result);
printf(" 📦 Expected payload: %.80s...\n", tv->expected_encrypted);
printf(" FAIL: Decryption - Expected: %d, Actual: %d\n", NOSTR_SUCCESS, decrypt_result);
printf(" Input payload: %s\n", tv->expected_encrypted);
return -1;
}
// Verify decrypted plaintext matches expected
if (strcmp(tv->plaintext, decrypted) != 0) {
printf(" ❌ Decrypted plaintext doesn't match!\n");
printf(" 📝 Expected: \"%s\"\n", tv->plaintext);
printf(" 📝 Got: \"%s\"\n", decrypted);
printf(" FAIL: Plaintext mismatch\n");
printf(" Expected: \"%s\"\n", tv->plaintext);
printf(" Actual: \"%s\"\n", decrypted);
return -1;
}
printf(" ✅ Known vector decryption successful!\n");
printf(" 📝 Message: \"%s\"\n", tv->plaintext);
printf("\n");
printf(" PASS: Expected: \"%s\", Actual: \"%s\"\n", tv->plaintext, decrypted);
return 0;
}
static int test_nip44_vs_nip04_comparison() {
printf("Testing NIP-44 vs NIP-04 comparison:\n");
const char* test_message = "This is a test message for comparing NIP-04 and NIP-44 encryption methods.";
static int test_nip44_encryption_variability() {
printf("Test: NIP-44 encryption variability (non-deterministic)\n");
const char* test_message = "Test message for variability";
unsigned char sender_key[32], recipient_key[32];
memset(sender_key, 0x11, 32);
memset(recipient_key, 0x22, 32);
// Generate proper public keys
unsigned char sender_pubkey[32], recipient_pubkey[32];
if (nostr_ec_public_key_from_private_key(sender_key, sender_pubkey) != 0 ||
nostr_ec_public_key_from_private_key(recipient_key, recipient_pubkey) != 0) {
printf(" ❌ Failed to generate public keys\n");
// Use fixed test keys
hex_to_bytes("1111111111111111111111111111111111111111111111111111111111111111", sender_key, 32);
hex_to_bytes("2222222222222222222222222222222222222222222222222222222222222222", recipient_key, 32);
// Generate recipient public key
unsigned char recipient_pubkey[32];
if (nostr_ec_public_key_from_private_key(recipient_key, recipient_pubkey) != 0) {
printf(" FAIL: Failed to generate recipient public key\n");
return -1;
}
// Test NIP-04 encryption
char nip04_encrypted[8192];
int nip04_result = nostr_nip04_encrypt(sender_key, recipient_pubkey,
test_message, nip04_encrypted, sizeof(nip04_encrypted));
// Encrypt the same message multiple times
char encrypted1[8192], encrypted2[8192], encrypted3[8192];
// Test NIP-44 encryption
char nip44_encrypted[8192];
int nip44_result = nostr_nip44_encrypt(sender_key, recipient_pubkey,
test_message, nip44_encrypted, sizeof(nip44_encrypted));
int result1 = nostr_nip44_encrypt(sender_key, recipient_pubkey, test_message, encrypted1, sizeof(encrypted1));
int result2 = nostr_nip44_encrypt(sender_key, recipient_pubkey, test_message, encrypted2, sizeof(encrypted2));
int result3 = nostr_nip44_encrypt(sender_key, recipient_pubkey, test_message, encrypted3, sizeof(encrypted3));
if (nip04_result == NOSTR_SUCCESS && nip44_result == NOSTR_SUCCESS) {
printf(" ✅ Both NIP-04 and NIP-44 encryption successful\n");
printf(" 📊 NIP-04 output length: %zu bytes\n", strlen(nip04_encrypted));
printf(" 📊 NIP-44 output length: %zu bytes\n", strlen(nip44_encrypted));
printf(" 📊 Size difference: %+ld bytes\n",
(long)strlen(nip44_encrypted) - (long)strlen(nip04_encrypted));
// Verify they produce different outputs (they use different algorithms)
if (strcmp(nip04_encrypted, nip44_encrypted) == 0) {
printf(" ⚠️ Warning: NIP-04 and NIP-44 produced identical output (unexpected)\n");
} else {
printf(" ✅ NIP-04 and NIP-44 produce different outputs (expected)\n");
}
} else {
if (nip04_result != NOSTR_SUCCESS) {
printf(" ❌ NIP-04 encryption failed: %d\n", nip04_result);
}
if (nip44_result != NOSTR_SUCCESS) {
printf(" ❌ NIP-44 encryption failed: %d\n", nip44_result);
}
if (result1 != NOSTR_SUCCESS || result2 != NOSTR_SUCCESS || result3 != NOSTR_SUCCESS) {
printf(" FAIL: Encryption failed - Results: %d, %d, %d\n", result1, result2, result3);
return -1;
}
printf("\n");
// Verify all ciphertexts are different (non-deterministic)
if (strcmp(encrypted1, encrypted2) == 0 || strcmp(encrypted1, encrypted3) == 0 || strcmp(encrypted2, encrypted3) == 0) {
printf(" FAIL: NIP-44 encryption should produce different ciphertext each time\n");
printf(" Encryption 1: %.50s...\n", encrypted1);
printf(" Encryption 2: %.50s...\n", encrypted2);
printf(" Encryption 3: %.50s...\n", encrypted3);
return -1;
}
// Verify all decrypt to the same plaintext
unsigned char sender_pubkey[32];
if (nostr_ec_public_key_from_private_key(sender_key, sender_pubkey) != 0) {
printf(" FAIL: Failed to generate sender public key\n");
return -1;
}
char decrypted1[8192], decrypted2[8192], decrypted3[8192];
int decrypt1 = nostr_nip44_decrypt(recipient_key, sender_pubkey, encrypted1, decrypted1, sizeof(decrypted1));
int decrypt2 = nostr_nip44_decrypt(recipient_key, sender_pubkey, encrypted2, decrypted2, sizeof(decrypted2));
int decrypt3 = nostr_nip44_decrypt(recipient_key, sender_pubkey, encrypted3, decrypted3, sizeof(decrypted3));
if (decrypt1 != NOSTR_SUCCESS || decrypt2 != NOSTR_SUCCESS || decrypt3 != NOSTR_SUCCESS) {
printf(" FAIL: Decryption failed - Results: %d, %d, %d\n", decrypt1, decrypt2, decrypt3);
return -1;
}
if (strcmp(decrypted1, test_message) != 0 || strcmp(decrypted2, test_message) != 0 || strcmp(decrypted3, test_message) != 0) {
printf(" FAIL: Decryption mismatch\n");
printf(" Expected: \"%s\"\n", test_message);
printf(" Decrypted1: \"%s\"\n", decrypted1);
printf(" Decrypted2: \"%s\"\n", decrypted2);
printf(" Decrypted3: \"%s\"\n", decrypted3);
return -1;
}
printf(" PASS: All encryptions different, all decrypt to: \"%s\"\n", test_message);
printf(" Sample ciphertext lengths: %zu, %zu, %zu bytes\n", strlen(encrypted1), strlen(encrypted2), strlen(encrypted3));
return 0;
}
int main() {
printf("🧪 NIP-44 Encryption Test Suite\n");
printf("================================\n\n");
printf("NIP-44 Encryption Test Suite\n");
printf("=============================\n");
// Initialize the library
if (nostr_init() != NOSTR_SUCCESS) {
printf(" Failed to initialize NOSTR library\n");
printf("FAIL: Failed to initialize NOSTR library\n");
return 1;
}
@@ -355,38 +369,36 @@ int main() {
}
}
// Test known vectors
size_t num_known_vectors = sizeof(known_test_vectors) / sizeof(known_test_vectors[0]);
for (size_t i = 0; i < num_known_vectors; i++) {
// Test decryption vectors (cross-compatibility)
size_t num_decryption_vectors = sizeof(decryption_test_vectors) / sizeof(decryption_test_vectors[0]);
for (size_t i = 0; i < num_decryption_vectors; i++) {
total_tests++;
if (test_nip44_known_vector(&known_test_vectors[i]) == 0) {
if (test_nip44_decryption_vector(&decryption_test_vectors[i]) == 0) {
passed_tests++;
}
}
// Test encryption variability (NIP-44 non-deterministic behavior)
total_tests++;
if (test_nip44_encryption_variability() == 0) {
passed_tests++;
}
// Test error conditions
total_tests++;
if (test_nip44_error_conditions() == 0) {
passed_tests++;
}
// Test comparison with NIP-04
total_tests++;
if (test_nip44_vs_nip04_comparison() == 0) {
passed_tests++;
}
// Final results
printf("🏁 Test Results:\n");
printf("================\n");
printf("Tests passed: %d/%d\n", passed_tests, total_tests);
printf("\nTest Results: %d/%d passed\n", passed_tests, total_tests);
if (passed_tests == total_tests) {
printf("All NIP-44 tests PASSED! 🎉\n");
printf("All NIP-44 tests PASSED\n");
nostr_cleanup();
return 0;
} else {
printf("Some tests FAILED! 😞\n");
printf("Some tests FAILED\n");
nostr_cleanup();
return 1;
}