nostr_core_lib/debug_nip44_comparison.js

281 lines
10 KiB
JavaScript

import { bytesToHex, hexToBytes, randomBytes } from '@noble/hashes/utils'
import { secp256k1 } from '@noble/curves/secp256k1'
import { extract as hkdf_extract, expand as hkdf_expand } from '@noble/hashes/hkdf'
import { hmac } from '@noble/hashes/hmac'
import { sha256 } from '@noble/hashes/sha256'
import { concatBytes } from '@noble/hashes/utils'
import { base64 } from '@scure/base'
import { chacha20 } from '@noble/ciphers/chacha'
import { equalBytes } from '@noble/ciphers/utils'
// UTF-8 encoder/decoder
const utf8Encoder = new TextEncoder()
const utf8Decoder = new TextDecoder()
const minPlaintextSize = 0x0001 // 1b msg => padded to 32b
const maxPlaintextSize = 0xffff // 65535 (64kb-1) => padded to 64kb
function getConversationKey(privkeyA, pubkeyB) {
console.log(`[JS] Computing conversation key`)
console.log(`[JS] Private Key A: ${privkeyA}`)
console.log(`[JS] Public Key B: ${pubkeyB}`)
const sharedX = secp256k1.getSharedSecret(privkeyA, '02' + pubkeyB).subarray(1, 33)
console.log(`[JS] Shared Secret: ${bytesToHex(sharedX)}`)
const conversationKey = hkdf_extract(sha256, sharedX, 'nip44-v2')
console.log(`[JS] Conversation Key: ${bytesToHex(conversationKey)}`)
return conversationKey
}
function getMessageKeys(conversationKey, nonce) {
console.log(`[JS] Deriving message keys`)
console.log(`[JS] Conversation Key: ${bytesToHex(conversationKey)}`)
console.log(`[JS] Nonce: ${bytesToHex(nonce)}`)
const keys = hkdf_expand(sha256, conversationKey, nonce, 76)
const result = {
chacha_key: keys.subarray(0, 32),
chacha_nonce: keys.subarray(32, 44),
hmac_key: keys.subarray(44, 76),
}
console.log(`[JS] ChaCha20 Key: ${bytesToHex(result.chacha_key)}`)
console.log(`[JS] ChaCha20 Nonce: ${bytesToHex(result.chacha_nonce)}`)
console.log(`[JS] HMAC Key: ${bytesToHex(result.hmac_key)}`)
return result
}
function calcPaddedLen(len) {
if (!Number.isSafeInteger(len) || len < 1) throw new Error('expected positive integer')
if (len <= 32) return 32
const nextPower = 1 << (Math.floor(Math.log2(len - 1)) + 1)
const chunk = nextPower <= 256 ? 32 : nextPower / 8
return chunk * (Math.floor((len - 1) / chunk) + 1)
}
function writeU16BE(num) {
if (!Number.isSafeInteger(num) || num < minPlaintextSize || num > maxPlaintextSize)
throw new Error('invalid plaintext size: must be between 1 and 65535 bytes')
const arr = new Uint8Array(2)
new DataView(arr.buffer).setUint16(0, num, false)
return arr
}
function pad(plaintext) {
console.log(`[JS] Padding plaintext: "${plaintext}"`)
const unpadded = utf8Encoder.encode(plaintext)
const unpaddedLen = unpadded.length
console.log(`[JS] Unpadded length: ${unpaddedLen}`)
console.log(`[JS] Unpadded bytes: ${bytesToHex(unpadded)}`)
const prefix = writeU16BE(unpaddedLen)
console.log(`[JS] Length prefix: ${bytesToHex(prefix)}`)
const paddedLen = calcPaddedLen(unpaddedLen)
console.log(`[JS] Calculated padded length: ${paddedLen}`)
const suffix = new Uint8Array(paddedLen - unpaddedLen)
console.log(`[JS] Padding suffix length: ${suffix.length}`)
const result = concatBytes(prefix, unpadded, suffix)
console.log(`[JS] Final padded: ${bytesToHex(result)}`)
return result
}
function unpad(padded) {
console.log(`[JS] Unpadding data: ${bytesToHex(padded)}`)
const unpaddedLen = new DataView(padded.buffer).getUint16(0)
console.log(`[JS] Read length from prefix: ${unpaddedLen}`)
const unpadded = padded.subarray(2, 2 + unpaddedLen)
console.log(`[JS] Extracted unpadded: ${bytesToHex(unpadded)}`)
if (
unpaddedLen < minPlaintextSize ||
unpaddedLen > maxPlaintextSize ||
unpadded.length !== unpaddedLen ||
padded.length !== 2 + calcPaddedLen(unpaddedLen)
) {
console.log(`[JS] Padding validation failed:`)
console.log(`[JS] unpaddedLen: ${unpaddedLen} (should be ${minPlaintextSize}-${maxPlaintextSize})`)
console.log(`[JS] unpadded.length: ${unpadded.length}`)
console.log(`[JS] padded.length: ${padded.length}`)
console.log(`[JS] expected padded length: ${2 + calcPaddedLen(unpaddedLen)}`)
throw new Error('invalid padding')
}
const result = utf8Decoder.decode(unpadded)
console.log(`[JS] Decoded plaintext: "${result}"`)
return result
}
function hmacAad(key, message, aad) {
if (aad.length !== 32) throw new Error('AAD associated data must be 32 bytes')
console.log(`[JS] Computing HMAC`)
console.log(`[JS] HMAC Key: ${bytesToHex(key)}`)
console.log(`[JS] AAD: ${bytesToHex(aad)}`)
console.log(`[JS] Message: ${bytesToHex(message)}`)
const combined = concatBytes(aad, message)
console.log(`[JS] Combined AAD+Message: ${bytesToHex(combined)}`)
const result = hmac(sha256, key, combined)
console.log(`[JS] HMAC Result: ${bytesToHex(result)}`)
return result
}
function decodePayload(payload) {
console.log(`[JS] Decoding payload: ${payload}`)
if (typeof payload !== 'string') throw new Error('payload must be a valid string')
const plen = payload.length
if (plen < 132 || plen > 87472) throw new Error('invalid payload length: ' + plen)
if (payload[0] === '#') throw new Error('unknown encryption version')
let data
try {
data = base64.decode(payload)
} catch (error) {
throw new Error('invalid base64: ' + error.message)
}
console.log(`[JS] Base64 decoded data: ${bytesToHex(data)}`)
const dlen = data.length
if (dlen < 99 || dlen > 65603) throw new Error('invalid data length: ' + dlen)
const vers = data[0]
if (vers !== 2) throw new Error('unknown encryption version ' + vers)
const result = {
nonce: data.subarray(1, 33),
ciphertext: data.subarray(33, -32),
mac: data.subarray(-32),
}
console.log(`[JS] Version: ${vers}`)
console.log(`[JS] Nonce: ${bytesToHex(result.nonce)}`)
console.log(`[JS] Ciphertext: ${bytesToHex(result.ciphertext)}`)
console.log(`[JS] MAC: ${bytesToHex(result.mac)}`)
return result
}
function encrypt(plaintext, conversationKey, nonce = randomBytes(32)) {
console.log(`[JS] ===== ENCRYPTING "${plaintext}" =====`)
const { chacha_key, chacha_nonce, hmac_key } = getMessageKeys(conversationKey, nonce)
const padded = pad(plaintext)
console.log(`[JS] Encrypting with ChaCha20`)
const ciphertext = chacha20(chacha_key, chacha_nonce, padded)
console.log(`[JS] ChaCha20 ciphertext: ${bytesToHex(ciphertext)}`)
const mac = hmacAad(hmac_key, ciphertext, nonce)
console.log(`[JS] Building final payload`)
const payload = concatBytes(new Uint8Array([2]), nonce, ciphertext, mac)
console.log(`[JS] Raw payload: ${bytesToHex(payload)}`)
const result = base64.encode(payload)
console.log(`[JS] Base64 encoded result: ${result}`)
return result
}
function decrypt(payload, conversationKey) {
console.log(`[JS] ===== DECRYPTING "${payload}" =====`)
const { nonce, ciphertext, mac } = decodePayload(payload)
const { chacha_key, chacha_nonce, hmac_key } = getMessageKeys(conversationKey, nonce)
const calculatedMac = hmacAad(hmac_key, ciphertext, nonce)
console.log(`[JS] MAC verification`)
console.log(`[JS] Received MAC: ${bytesToHex(mac)}`)
console.log(`[JS] Calculated MAC: ${bytesToHex(calculatedMac)}`)
if (!equalBytes(calculatedMac, mac)) {
console.log(`[JS] MAC MISMATCH!`)
throw new Error('invalid MAC')
}
console.log(`[JS] MAC verification PASSED`)
console.log(`[JS] Decrypting with ChaCha20`)
const padded = chacha20(chacha_key, chacha_nonce, ciphertext)
console.log(`[JS] ChaCha20 decrypted: ${bytesToHex(padded)}`)
const result = unpad(padded)
console.log(`[JS] Final decrypted plaintext: "${result}"`)
return result
}
// Test with exact vectors that are failing in C
async function main() {
console.log("=== NIP-44 DEBUG COMPARISON (JavaScript) ===")
// Test vector 1: single char 'a' - MATCHES nostr-tools official vector
const test1 = {
sec1: "0000000000000000000000000000000000000000000000000000000000000001",
sec2: "0000000000000000000000000000000000000000000000000000000000000002",
plaintext: "a",
expectedPayload: "AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABee0G5VSK0/9YypIObAtDKfYEAjD35uVkHyB0F4DwrcNaCXlCWZKaArsGrY6M9wnuTMxWfp1RTN9Xga8no+kF5Vsb"
}
console.log("\n=== TEST 1: Single char 'a' ===")
// Step 1: Get conversation key using sender's private key + recipient's public key
const sec1Bytes = hexToBytes(test1.sec1)
const sec2Bytes = hexToBytes(test1.sec2)
const pub2 = bytesToHex(secp256k1.getPublicKey(sec2Bytes, false).subarray(1, 33)) // x-only
console.log(`[JS] Derived pub2 from sec2: ${pub2}`)
const conversationKey1 = getConversationKey(test1.sec1, pub2)
// Step 2: Try to decrypt the expected payload (this should work if our C code matches)
console.log("\n--- DECRYPTION TEST ---")
try {
const decrypted1 = decrypt(test1.expectedPayload, conversationKey1)
console.log(`✅ Decryption SUCCESS: "${decrypted1}"`)
console.log(`✅ Match: ${decrypted1 === test1.plaintext}`)
} catch (error) {
console.log(`❌ Decryption FAILED: ${error.message}`)
}
// Step 3: Generate fresh encryption to compare format
console.log("\n--- ENCRYPTION TEST (with random nonce) ---")
const encrypted1 = encrypt(test1.plaintext, conversationKey1)
console.log(`Generated payload: ${encrypted1}`)
// Step 4: Decrypt our own encryption (round-trip test)
console.log("\n--- ROUND-TRIP TEST ---")
try {
const roundTrip1 = decrypt(encrypted1, conversationKey1)
console.log(`✅ Round-trip SUCCESS: "${roundTrip1}"`)
console.log(`✅ Match: ${roundTrip1 === test1.plaintext}`)
} catch (error) {
console.log(`❌ Round-trip FAILED: ${error.message}`)
}
// Test the other failing vectors too
console.log("\n=== TEST 2: Emoji ===")
const test2 = {
sec1: "0000000000000000000000000000000000000000000000000000000000000002",
sec2: "0000000000000000000000000000000000000000000000000000000000000001",
plaintext: "🍕🫃",
expectedPayload: "AvAAAAAAAAAAAAAAAAAAAPAAAAAAAAAAAAAAAAAAAAAPSKSK6is9ngkX2+cSq85Th16oRTISAOfhStnixqZziKMDvB0QQzgFZdjLTPicCJaV8nDITO+QfaQ61+KbWQIOO2Yj"
}
const pub1 = bytesToHex(secp256k1.getPublicKey(hexToBytes(test2.sec2), false).subarray(1, 33))
const conversationKey2 = getConversationKey(test2.sec1, pub1)
try {
const decrypted2 = decrypt(test2.expectedPayload, conversationKey2)
console.log(`✅ Test 2 SUCCESS: "${decrypted2}"`)
} catch (error) {
console.log(`❌ Test 2 FAILED: ${error.message}`)
}
}
main().catch(console.error)