#define _POSIX_C_SOURCE 200809L #define _DEFAULT_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "src/version.h" #define MAX_INPUT_SIZE 4096 #define MAX_LINE_LENGTH 1024 #define MAX_HASH_LENGTH 65 #define PROGRESS_UPDATE_INTERVAL (64 * 1024 * 1024) // 64MB intervals #define PADS_DIR "pads" #define MAX_ENTROPY_BUFFER 32768 // 32KB entropy buffer // Function prototypes int main(int argc, char* argv[]); int interactive_mode(void); int command_line_mode(int argc, char* argv[]); // Core functions int generate_pad(uint64_t size_bytes, int show_progress); int generate_pad_with_entropy(uint64_t size_bytes, int show_progress, int use_keyboard_entropy); int encrypt_text(const char* pad_identifier); int decrypt_text(const char* pad_identifier); // Keyboard entropy functions int setup_raw_terminal(struct termios* original_termios); void restore_terminal(struct termios* original_termios); int collect_keyboard_entropy(unsigned char* entropy_buffer, size_t max_size, size_t* collected); int hkdf_expand(const unsigned char* prk, size_t prk_len, const unsigned char* info, size_t info_len, unsigned char* okm, size_t okm_len); // Directory management int ensure_pads_directory(void); void get_pad_path(const char* hash, char* pad_path, char* state_path); // Utility functions uint64_t parse_size_string(const char* size_str); char* find_pad_by_prefix(const char* prefix); int list_available_pads(void); int show_pad_info(const char* hash); int get_user_choice(int min, int max); void show_progress(uint64_t current, uint64_t total, time_t start_time); // File operations int read_state_offset(const char* pad_hash, uint64_t* offset); int write_state_offset(const char* pad_hash, uint64_t offset); int calculate_sha256(const char* filename, char* hash_hex); char* base64_encode(const unsigned char* input, int length); unsigned char* base64_decode(const char* input, int* output_length); // Menu functions void show_main_menu(void); int handle_generate_menu(void); int handle_encrypt_menu(void); int handle_decrypt_menu(void); void print_usage(const char* program_name); int main(int argc, char* argv[]) { if (argc == 1) { return interactive_mode(); } else { return command_line_mode(argc, argv); } } int interactive_mode(void) { printf("=== OTP Cipher %s ===\n\n", get_version()); while (1) { show_main_menu(); int choice = get_user_choice(1, 6); switch (choice) { case 1: handle_generate_menu(); break; case 2: handle_encrypt_menu(); break; case 3: handle_decrypt_menu(); break; case 4: list_available_pads(); break; case 5: { printf("Enter pad hash (or prefix): "); char input[MAX_HASH_LENGTH]; if (fgets(input, sizeof(input), stdin)) { input[strcspn(input, "\n")] = 0; char* hash = find_pad_by_prefix(input); if (hash) { show_pad_info(hash); free(hash); } } break; } case 6: printf("Goodbye!\n"); return 0; } printf("\n"); } } int command_line_mode(int argc, char* argv[]) { if (strcmp(argv[1], "generate") == 0) { if (argc != 3) { printf("Usage: %s generate \n", argv[0]); printf("Size examples: 1024, 1GB, 5TB, 512MB\n"); return 1; } uint64_t size = parse_size_string(argv[2]); if (size == 0) { printf("Error: Invalid size format\n"); return 1; } return generate_pad_with_entropy(size, 1, 0); // No keyboard entropy for command line } else if (strcmp(argv[1], "encrypt") == 0) { if (argc != 3) { printf("Usage: %s encrypt \n", argv[0]); return 1; } return encrypt_text(argv[2]); } else if (strcmp(argv[1], "decrypt") == 0) { if (argc != 3) { printf("Usage: %s decrypt \n", argv[0]); return 1; } return decrypt_text(argv[2]); } else if (strcmp(argv[1], "list") == 0) { return list_available_pads(); } else { print_usage(argv[0]); return 1; } } void show_main_menu(void) { printf("=== Main Menu ===\n"); printf("1. Generate new pad\n"); printf("2. Encrypt message\n"); printf("3. Decrypt message\n"); printf("4. List available pads\n"); printf("5. Show pad information\n"); printf("6. Exit\n"); printf("\nSelect option (1-6): "); } int handle_generate_menu(void) { printf("\n=== Generate New Pad ===\n"); printf("Enter pad size (examples: 1GB, 5TB, 512MB, 2048): "); char size_input[64]; if (!fgets(size_input, sizeof(size_input), stdin)) { printf("Error: Failed to read input\n"); return 1; } size_input[strcspn(size_input, "\n")] = 0; uint64_t size = parse_size_string(size_input); if (size == 0) { printf("Error: Invalid size format\n"); return 1; } // Ask about keyboard entropy printf("\nAdd keyboard entropy for enhanced security? (y/N): "); char entropy_choice[10]; int use_keyboard_entropy = 0; if (fgets(entropy_choice, sizeof(entropy_choice), stdin)) { if (entropy_choice[0] == 'y' || entropy_choice[0] == 'Y') { use_keyboard_entropy = 1; } } double size_gb = (double)size / (1024.0 * 1024.0 * 1024.0); if (use_keyboard_entropy) { printf("Generating %.2f GB pad with keyboard entropy...\n", size_gb); } else { printf("Generating %.2f GB pad...\n", size_gb); } return generate_pad_with_entropy(size, 1, use_keyboard_entropy); } int handle_encrypt_menu(void) { printf("\n=== Encrypt Message ===\n"); int pad_count = list_available_pads(); if (pad_count == 0) { printf("No pads available. Generate a pad first.\n"); return 1; } printf("\nEnter pad selection (number, hash, or prefix): "); char input[MAX_HASH_LENGTH]; if (!fgets(input, sizeof(input), stdin)) { printf("Error: Failed to read input\n"); return 1; } input[strcspn(input, "\n")] = 0; return encrypt_text(input); } int handle_decrypt_menu(void) { printf("\n=== Decrypt Message ===\n"); return decrypt_text(NULL); // No pad selection needed - hash comes from message } uint64_t parse_size_string(const char* size_str) { if (!size_str) return 0; char* endptr; double value = strtod(size_str, &endptr); if (value <= 0) return 0; // Skip whitespace while (*endptr && isspace(*endptr)) endptr++; uint64_t multiplier = 1; if (*endptr) { char unit[4]; strncpy(unit, endptr, 3); unit[3] = '\0'; // Convert to uppercase for (int i = 0; unit[i]; i++) { unit[i] = toupper(unit[i]); } if (strcmp(unit, "K") == 0 || strcmp(unit, "KB") == 0) { multiplier = 1024ULL; } else if (strcmp(unit, "M") == 0 || strcmp(unit, "MB") == 0) { multiplier = 1024ULL * 1024ULL; } else if (strcmp(unit, "G") == 0 || strcmp(unit, "GB") == 0) { multiplier = 1024ULL * 1024ULL * 1024ULL; } else if (strcmp(unit, "T") == 0 || strcmp(unit, "TB") == 0) { multiplier = 1024ULL * 1024ULL * 1024ULL * 1024ULL; } else { return 0; // Invalid unit } } else { // No unit specified, treat as bytes multiplier = 1; } return (uint64_t)(value * multiplier); } char* find_pad_by_prefix(const char* prefix) { DIR* dir = opendir(PADS_DIR); if (!dir) return NULL; struct dirent* entry; char* matches[100]; // Store up to 100 matches int match_count = 0; // Check if it's a number (for interactive menu selection) char* endptr; int selection = strtol(prefix, &endptr, 10); if (*endptr == '\0' && selection > 0) { // It's a number, find the nth pad int current = 0; rewinddir(dir); while ((entry = readdir(dir)) != NULL && match_count == 0) { if (strstr(entry->d_name, ".pad") && strlen(entry->d_name) == 68) { // 64 char hash + ".pad" current++; if (current == selection) { matches[match_count] = malloc(65); strncpy(matches[match_count], entry->d_name, 64); matches[match_count][64] = '\0'; match_count = 1; } } } } else { // Find pads that start with the prefix size_t prefix_len = strlen(prefix); while ((entry = readdir(dir)) != NULL && match_count < 100) { if (strstr(entry->d_name, ".pad") && strlen(entry->d_name) == 68) { if (strncmp(entry->d_name, prefix, prefix_len) == 0) { matches[match_count] = malloc(65); strncpy(matches[match_count], entry->d_name, 64); matches[match_count][64] = '\0'; match_count++; } } } } closedir(dir); if (match_count == 0) { printf("No pads found matching '%s'\n", prefix); printf("Available pads:\n"); list_available_pads(); return NULL; } else if (match_count == 1) { char* result = matches[0]; return result; } else { printf("Multiple matches found for '%s':\n", prefix); for (int i = 0; i < match_count; i++) { printf("%d. %.16s...\n", i + 1, matches[i]); if (i > 0) free(matches[i]); } printf("Please be more specific.\n"); char* result = matches[0]; for (int i = 1; i < match_count; i++) { free(matches[i]); } return result; } } int list_available_pads(void) { DIR* dir = opendir(PADS_DIR); if (!dir) { printf("Error: Cannot open pads directory\n"); return 0; } struct dirent* entry; int count = 0; printf("Available pads:\n"); printf("%-4s %-20s %-12s %-12s %-8s\n", "No.", "Hash (first 16 chars)", "Size", "Used", "% Used"); printf("%-4s %-20s %-12s %-12s %-8s\n", "---", "-------------------", "----------", "----------", "------"); while ((entry = readdir(dir)) != NULL) { if (strstr(entry->d_name, ".pad") && strlen(entry->d_name) == 68) { count++; char hash[65]; strncpy(hash, entry->d_name, 64); hash[64] = '\0'; // Get pad file size char full_path[300]; // Increased buffer size to accommodate longer paths snprintf(full_path, sizeof(full_path), "%s/%s", PADS_DIR, entry->d_name); struct stat st; if (stat(full_path, &st) == 0) { // Get used bytes from state uint64_t used_bytes; read_state_offset(hash, &used_bytes); // Format sizes char size_str[32], used_str[32]; // Format total size if (st.st_size < 1024) { snprintf(size_str, sizeof(size_str), "%luB", st.st_size); } else if (st.st_size < 1024 * 1024) { snprintf(size_str, sizeof(size_str), "%.1fKB", (double)st.st_size / 1024.0); } else if (st.st_size < 1024 * 1024 * 1024) { snprintf(size_str, sizeof(size_str), "%.1fMB", (double)st.st_size / (1024.0 * 1024.0)); } else { snprintf(size_str, sizeof(size_str), "%.2fGB", (double)st.st_size / (1024.0 * 1024.0 * 1024.0)); } // Format used size if (used_bytes < 1024) { snprintf(used_str, sizeof(used_str), "%luB", used_bytes); } else if (used_bytes < 1024 * 1024) { snprintf(used_str, sizeof(used_str), "%.1fKB", (double)used_bytes / 1024.0); } else if (used_bytes < 1024 * 1024 * 1024) { snprintf(used_str, sizeof(used_str), "%.1fMB", (double)used_bytes / (1024.0 * 1024.0)); } else { snprintf(used_str, sizeof(used_str), "%.2fGB", (double)used_bytes / (1024.0 * 1024.0 * 1024.0)); } // Calculate percentage double percentage = (double)used_bytes / st.st_size * 100.0; printf("%-4d %-20.16s %-12s %-12s %.1f%%\n", count, hash, size_str, used_str, percentage); } } } closedir(dir); if (count == 0) { printf("No pads found.\n"); } return count; } int show_pad_info(const char* hash) { char pad_filename[MAX_HASH_LENGTH + 10]; char state_filename[MAX_HASH_LENGTH + 10]; snprintf(pad_filename, sizeof(pad_filename), "%s.pad", hash); snprintf(state_filename, sizeof(state_filename), "%s.state", hash); struct stat st; if (stat(pad_filename, &st) != 0) { printf("Pad not found: %s\n", hash); return 1; } uint64_t used_bytes; read_state_offset(hash, &used_bytes); printf("=== Pad Information ===\n"); printf("Hash: %s\n", hash); printf("File: %s\n", pad_filename); double size_gb = (double)st.st_size / (1024.0 * 1024.0 * 1024.0); double used_gb = (double)used_bytes / (1024.0 * 1024.0 * 1024.0); double remaining_gb = (double)(st.st_size - used_bytes) / (1024.0 * 1024.0 * 1024.0); printf("Total size: %.2f GB (%lu bytes)\n", size_gb, st.st_size); printf("Used: %.2f GB (%lu bytes)\n", used_gb, used_bytes); printf("Remaining: %.2f GB (%lu bytes)\n", remaining_gb, st.st_size - used_bytes); printf("Usage: %.1f%%\n", (double)used_bytes / st.st_size * 100.0); return 0; } int get_user_choice(int min, int max) { char input[64]; int choice; while (1) { if (fgets(input, sizeof(input), stdin)) { choice = atoi(input); if (choice >= min && choice <= max) { return choice; } } printf("Please enter a number between %d and %d: ", min, max); } } void show_progress(uint64_t current, uint64_t total, time_t start_time) { time_t now = time(NULL); double elapsed = difftime(now, start_time); if (elapsed < 1.0) elapsed = 1.0; // Avoid division by zero double percentage = (double)current / total * 100.0; double speed = (double)current / elapsed / (1024.0 * 1024.0); // MB/s uint64_t remaining_bytes = total - current; double eta = remaining_bytes / (current / elapsed); printf("\rProgress: %.1f%% (%.1f MB/s, ETA: %.0fs) ", percentage, speed, eta); fflush(stdout); } int generate_pad(uint64_t size_bytes, int display_progress) { char temp_filename[32]; char pad_filename[MAX_HASH_LENGTH + 10]; char state_filename[MAX_HASH_LENGTH + 10]; char hash_hex[MAX_HASH_LENGTH]; // Create temporary filename snprintf(temp_filename, sizeof(temp_filename), "temp_%ld.pad", time(NULL)); FILE* urandom = fopen("/dev/urandom", "rb"); if (!urandom) { printf("Error: Cannot open /dev/urandom\n"); return 1; } FILE* pad_file = fopen(temp_filename, "wb"); if (!pad_file) { printf("Error: Cannot create temporary pad file %s\n", temp_filename); fclose(urandom); return 1; } unsigned char buffer[64 * 1024]; // 64KB buffer uint64_t bytes_written = 0; time_t start_time = time(NULL); if (display_progress) { printf("Generating pad...\n"); } while (bytes_written < size_bytes) { uint64_t chunk_size = sizeof(buffer); if (size_bytes - bytes_written < chunk_size) { chunk_size = size_bytes - bytes_written; } if (fread(buffer, 1, (size_t)chunk_size, urandom) != (size_t)chunk_size) { printf("Error: Failed to read from /dev/urandom\n"); fclose(urandom); fclose(pad_file); unlink(temp_filename); return 1; } if (fwrite(buffer, 1, (size_t)chunk_size, pad_file) != (size_t)chunk_size) { printf("Error: Failed to write to pad file\n"); fclose(urandom); fclose(pad_file); unlink(temp_filename); return 1; } bytes_written += chunk_size; if (display_progress && bytes_written % PROGRESS_UPDATE_INTERVAL == 0) { show_progress(bytes_written, size_bytes, start_time); } } if (display_progress) { show_progress(size_bytes, size_bytes, start_time); printf("\n"); } fclose(urandom); fclose(pad_file); // Calculate SHA-256 of the pad file if (calculate_sha256(temp_filename, hash_hex) != 0) { printf("Error: Cannot calculate pad hash\n"); unlink(temp_filename); return 1; } // Rename file to its hash snprintf(pad_filename, sizeof(pad_filename), "%s.pad", hash_hex); snprintf(state_filename, sizeof(state_filename), "%s.state", hash_hex); if (rename(temp_filename, pad_filename) != 0) { printf("Error: Cannot rename pad file to hash-based name\n"); unlink(temp_filename); return 1; } // Set pad file to read-only if (chmod(pad_filename, S_IRUSR) != 0) { printf("Warning: Cannot set pad file to read-only\n"); } // Initialize state file with offset 0 if (write_state_offset(hash_hex, 0) != 0) { printf("Error: Failed to create state file\n"); unlink(pad_filename); return 1; } double size_gb = (double)size_bytes / (1024.0 * 1024.0 * 1024.0); printf("Generated pad: %s (%.2f GB)\n", pad_filename, size_gb); printf("Pad hash: %s\n", hash_hex); printf("State file: %s\n", state_filename); printf("Pad file set to read-only\n"); return 0; } int generate_pad_with_entropy(uint64_t size_bytes, int display_progress, int use_keyboard_entropy) { if (ensure_pads_directory() != 0) { printf("Error: Cannot create pads directory\n"); return 1; } char temp_filename[64]; char pad_path[MAX_HASH_LENGTH + 20]; char state_path[MAX_HASH_LENGTH + 20]; char hash_hex[MAX_HASH_LENGTH]; // Create temporary filename snprintf(temp_filename, sizeof(temp_filename), "temp_%ld.pad", time(NULL)); FILE* urandom = fopen("/dev/urandom", "rb"); if (!urandom) { printf("Error: Cannot open /dev/urandom\n"); return 1; } FILE* pad_file = fopen(temp_filename, "wb"); if (!pad_file) { printf("Error: Cannot create temporary pad file %s\n", temp_filename); fclose(urandom); return 1; } // Setup keyboard entropy collection if requested struct termios original_termios; unsigned char* entropy_buffer = NULL; size_t entropy_collected = 0; int terminal_setup = 0; if (use_keyboard_entropy) { entropy_buffer = malloc(MAX_ENTROPY_BUFFER); if (!entropy_buffer) { printf("Error: Cannot allocate entropy buffer\n"); fclose(urandom); fclose(pad_file); unlink(temp_filename); return 1; } if (setup_raw_terminal(&original_termios) == 0) { terminal_setup = 1; printf("Type random keys to add entropy (optional):\n"); } else { printf("Warning: Cannot setup terminal for keyboard entropy collection\n"); use_keyboard_entropy = 0; free(entropy_buffer); entropy_buffer = NULL; } } unsigned char urandom_buffer[64 * 1024]; // 64KB buffer unsigned char output_buffer[64 * 1024]; uint64_t bytes_written = 0; if (display_progress) { printf("Generating pad...\n"); if (use_keyboard_entropy) { printf("(Keyboard entropy: collecting...)\n"); } } while (bytes_written < size_bytes) { uint64_t chunk_size = sizeof(urandom_buffer); if (size_bytes - bytes_written < chunk_size) { chunk_size = size_bytes - bytes_written; } // Read from /dev/urandom if (fread(urandom_buffer, 1, (size_t)chunk_size, urandom) != (size_t)chunk_size) { printf("Error: Failed to read from /dev/urandom\n"); if (terminal_setup) restore_terminal(&original_termios); if (entropy_buffer) free(entropy_buffer); fclose(urandom); fclose(pad_file); unlink(temp_filename); return 1; } if (use_keyboard_entropy && terminal_setup) { // Collect available keyboard entropy size_t chunk_entropy = 0; collect_keyboard_entropy(entropy_buffer + entropy_collected, MAX_ENTROPY_BUFFER - entropy_collected, &chunk_entropy); entropy_collected += chunk_entropy; if (entropy_collected > 1024) { // Have enough entropy to mix // Create HKDF PRK (extract phase) unsigned char prk[32]; EVP_MD_CTX* hmac_ctx = EVP_MD_CTX_new(); EVP_PKEY* hmac_key = EVP_PKEY_new_raw_private_key(EVP_PKEY_HMAC, NULL, entropy_buffer, entropy_collected); if (hmac_ctx && hmac_key) { EVP_DigestSignInit(hmac_ctx, NULL, EVP_sha256(), NULL, hmac_key); EVP_DigestSignUpdate(hmac_ctx, urandom_buffer, chunk_size); size_t prk_len = sizeof(prk); EVP_DigestSignFinal(hmac_ctx, prk, &prk_len); // HKDF Expand phase const char* info = "OTP-PAD-CHUNK"; if (hkdf_expand(prk, prk_len, (const unsigned char*)info, strlen(info), output_buffer, chunk_size) == 0) { // Successfully mixed entropy } else { // Fallback to urandom only memcpy(output_buffer, urandom_buffer, chunk_size); } EVP_PKEY_free(hmac_key); EVP_MD_CTX_free(hmac_ctx); } else { // Fallback to urandom only memcpy(output_buffer, urandom_buffer, chunk_size); } // Reset entropy buffer for next chunk entropy_collected = 0; } else { // Not enough entropy yet, use urandom only memcpy(output_buffer, urandom_buffer, chunk_size); } } else { // No keyboard entropy, use urandom directly memcpy(output_buffer, urandom_buffer, chunk_size); } if (fwrite(output_buffer, 1, (size_t)chunk_size, pad_file) != (size_t)chunk_size) { printf("Error: Failed to write to pad file\n"); if (terminal_setup) restore_terminal(&original_termios); if (entropy_buffer) free(entropy_buffer); fclose(urandom); fclose(pad_file); unlink(temp_filename); return 1; } bytes_written += chunk_size; if (display_progress && bytes_written % PROGRESS_UPDATE_INTERVAL == 0) { printf("\rProgress: %.1f%% ", (double)bytes_written / size_bytes * 100.0); if (use_keyboard_entropy && terminal_setup) { printf("(keyboard entropy: %.1fKB) ", (double)entropy_collected / 1024.0); } fflush(stdout); } } if (terminal_setup) { restore_terminal(&original_termios); } if (entropy_buffer) { free(entropy_buffer); } if (display_progress) { printf("\rProgress: 100.0%%"); if (use_keyboard_entropy) { printf(" (keyboard entropy: MIXED)"); } printf("\n"); } fclose(urandom); fclose(pad_file); // Calculate SHA-256 of the pad file if (calculate_sha256(temp_filename, hash_hex) != 0) { printf("Error: Cannot calculate pad hash\n"); unlink(temp_filename); return 1; } // Get final paths in pads directory get_pad_path(hash_hex, pad_path, state_path); if (rename(temp_filename, pad_path) != 0) { printf("Error: Cannot move pad file to pads directory\n"); unlink(temp_filename); return 1; } // Set pad file to read-only if (chmod(pad_path, S_IRUSR) != 0) { printf("Warning: Cannot set pad file to read-only\n"); } // Initialize state file with offset 0 FILE* state_file = fopen(state_path, "wb"); if (state_file) { uint64_t zero = 0; fwrite(&zero, sizeof(uint64_t), 1, state_file); fclose(state_file); } else { printf("Error: Failed to create state file\n"); unlink(pad_path); return 1; } double size_gb = (double)size_bytes / (1024.0 * 1024.0 * 1024.0); printf("Generated pad: %s (%.2f GB)\n", pad_path, size_gb); printf("Pad hash: %s\n", hash_hex); printf("State file: %s\n", state_path); if (use_keyboard_entropy) { printf("Enhanced with keyboard entropy!\n"); } printf("Pad file set to read-only\n"); return 0; } int encrypt_text(const char* pad_identifier) { char* pad_hash = find_pad_by_prefix(pad_identifier); if (!pad_hash) { return 1; } char input_text[MAX_INPUT_SIZE]; char hash_hex[MAX_HASH_LENGTH]; uint64_t current_offset; char pad_path[MAX_HASH_LENGTH + 20]; char state_path[MAX_HASH_LENGTH + 20]; get_pad_path(pad_hash, pad_path, state_path); // Check if pad file exists if (access(pad_path, R_OK) != 0) { printf("Error: Pad file %s not found\n", pad_path); free(pad_hash); return 1; } // Read current offset if (read_state_offset(pad_hash, ¤t_offset) != 0) { printf("Error: Cannot read state file\n"); free(pad_hash); return 1; } // Calculate SHA-256 of pad file if (calculate_sha256(pad_path, hash_hex) != 0) { printf("Error: Cannot calculate pad hash\n"); free(pad_hash); return 1; } // Get input text from user printf("Enter text to encrypt: "); fflush(stdout); if (fgets(input_text, sizeof(input_text), stdin) == NULL) { printf("Error: Failed to read input\n"); free(pad_hash); return 1; } // Remove newline if present size_t input_len = strlen(input_text); if (input_len > 0 && input_text[input_len - 1] == '\n') { input_text[input_len - 1] = '\0'; input_len--; } if (input_len == 0) { printf("Error: No input provided\n"); free(pad_hash); return 1; } // Check if we have enough pad space struct stat pad_stat; if (stat(pad_path, &pad_stat) != 0) { printf("Error: Cannot get pad file size\n"); free(pad_hash); return 1; } if (current_offset + input_len > (uint64_t)pad_stat.st_size) { printf("Error: Not enough pad space remaining\n"); printf("Need: %lu bytes, Available: %lu bytes\n", input_len, (uint64_t)pad_stat.st_size - current_offset); free(pad_hash); return 1; } // Read pad data at current offset FILE* pad_file = fopen(pad_path, "rb"); if (!pad_file) { printf("Error: Cannot open pad file\n"); free(pad_hash); return 1; } if (fseek(pad_file, current_offset, SEEK_SET) != 0) { printf("Error: Cannot seek to offset in pad file\n"); fclose(pad_file); free(pad_hash); return 1; } unsigned char* pad_data = malloc(input_len); if (fread(pad_data, 1, input_len, pad_file) != input_len) { printf("Error: Cannot read pad data\n"); free(pad_data); fclose(pad_file); free(pad_hash); return 1; } fclose(pad_file); // XOR encrypt the input unsigned char* ciphertext = malloc(input_len); for (size_t i = 0; i < input_len; i++) { ciphertext[i] = input_text[i] ^ pad_data[i]; } // Encode as base64 char* base64_cipher = base64_encode(ciphertext, input_len); // Update state offset if (write_state_offset(pad_hash, current_offset + input_len) != 0) { printf("Warning: Failed to update state file\n"); } // Output in ASCII armor format printf("\n-----BEGIN OTP MESSAGE-----\n"); printf("Version: %s\n", get_version()); printf("Pad-Hash: %s\n", hash_hex); printf("Pad-Offset: %lu\n", current_offset); printf("\n"); // Print base64 data in 64-character lines int b64_len = strlen(base64_cipher); for (int i = 0; i < b64_len; i += 64) { printf("%.64s\n", base64_cipher + i); } printf("-----END OTP MESSAGE-----\n\n"); // Cleanup free(pad_data); free(ciphertext); free(base64_cipher); free(pad_hash); return 0; } int decrypt_text(const char* pad_identifier) { // For command line mode, pad_identifier is ignored - we'll get the hash from the message (void)pad_identifier; // Suppress unused parameter warning char line[MAX_LINE_LENGTH]; char stored_hash[MAX_HASH_LENGTH]; char current_hash[MAX_HASH_LENGTH]; uint64_t pad_offset; char base64_data[MAX_INPUT_SIZE * 2] = {0}; int in_data_section = 0; printf("Enter encrypted message (paste the full ASCII armor block):\n"); // Read the ASCII armor format int found_begin = 0; while (fgets(line, sizeof(line), stdin)) { line[strcspn(line, "\n")] = 0; if (strcmp(line, "-----BEGIN OTP MESSAGE-----") == 0) { found_begin = 1; continue; } if (strcmp(line, "-----END OTP MESSAGE-----") == 0) { break; } if (!found_begin) continue; if (strncmp(line, "Pad-Hash: ", 10) == 0) { strncpy(stored_hash, line + 10, 64); stored_hash[64] = '\0'; } else if (strncmp(line, "Pad-Offset: ", 12) == 0) { pad_offset = strtoull(line + 12, NULL, 10); } else if (strlen(line) == 0) { in_data_section = 1; } else if (in_data_section) { strncat(base64_data, line, sizeof(base64_data) - strlen(base64_data) - 1); } } if (!found_begin) { printf("Error: Invalid message format - missing BEGIN header\n"); return 1; } // Now we have the pad hash from the message, construct filename char pad_path[MAX_HASH_LENGTH + 20]; char state_path[MAX_HASH_LENGTH + 20]; get_pad_path(stored_hash, pad_path, state_path); // Check if we have this pad if (access(pad_path, R_OK) != 0) { printf("Error: Required pad not found: %s\n", stored_hash); printf("Available pads:\n"); list_available_pads(); return 1; } // Verify pad integrity if (calculate_sha256(pad_path, current_hash) != 0) { printf("Error: Cannot calculate current pad hash\n"); return 1; } if (strcmp(stored_hash, current_hash) != 0) { printf("Warning: Pad integrity check failed!\n"); printf("Expected: %s\n", stored_hash); printf("Current: %s\n", current_hash); printf("Continue anyway? (y/N): "); fflush(stdout); char response[10]; if (fgets(response, sizeof(response), stdin) == NULL || (response[0] != 'y' && response[0] != 'Y')) { printf("Decryption aborted.\n"); return 1; } } else { printf("Pad integrity: VERIFIED\n"); } // Decode base64 int ciphertext_len; unsigned char* ciphertext = base64_decode(base64_data, &ciphertext_len); if (!ciphertext) { printf("Error: Invalid base64 data\n"); return 1; } // Read pad data at specified offset FILE* pad_file = fopen(pad_path, "rb"); if (!pad_file) { printf("Error: Cannot open pad file %s\n", pad_path); free(ciphertext); return 1; } if (fseek(pad_file, pad_offset, SEEK_SET) != 0) { printf("Error: Cannot seek to offset %lu in pad file\n", pad_offset); free(ciphertext); fclose(pad_file); return 1; } unsigned char* pad_data = malloc(ciphertext_len); if (fread(pad_data, 1, ciphertext_len, pad_file) != (size_t)ciphertext_len) { printf("Error: Cannot read pad data\n"); free(ciphertext); free(pad_data); fclose(pad_file); return 1; } fclose(pad_file); // XOR decrypt char* plaintext = malloc(ciphertext_len + 1); for (int i = 0; i < ciphertext_len; i++) { plaintext[i] = ciphertext[i] ^ pad_data[i]; } plaintext[ciphertext_len] = '\0'; printf("Decrypted: %s\n", plaintext); // Cleanup free(ciphertext); free(pad_data); free(plaintext); return 0; } int read_state_offset(const char* pad_hash, uint64_t* offset) { char state_filename[MAX_HASH_LENGTH + 20]; snprintf(state_filename, sizeof(state_filename), "%s/%s.state", PADS_DIR, pad_hash); FILE* state_file = fopen(state_filename, "rb"); if (!state_file) { *offset = 0; return 0; } if (fread(offset, sizeof(uint64_t), 1, state_file) != 1) { fclose(state_file); *offset = 0; return 0; } fclose(state_file); return 0; } int write_state_offset(const char* pad_hash, uint64_t offset) { char state_filename[MAX_HASH_LENGTH + 20]; snprintf(state_filename, sizeof(state_filename), "%s/%s.state", PADS_DIR, pad_hash); FILE* state_file = fopen(state_filename, "wb"); if (!state_file) { return 1; } if (fwrite(&offset, sizeof(uint64_t), 1, state_file) != 1) { fclose(state_file); return 1; } fclose(state_file); return 0; } int calculate_sha256(const char* filename, char* hash_hex) { FILE* file = fopen(filename, "rb"); if (!file) { return 1; } EVP_MD_CTX* mdctx = EVP_MD_CTX_new(); if (!mdctx) { fclose(file); return 1; } if (EVP_DigestInit_ex(mdctx, EVP_sha256(), NULL) != 1) { EVP_MD_CTX_free(mdctx); fclose(file); return 1; } unsigned char buffer[64 * 1024]; // 64KB buffer for large files size_t bytes_read; while ((bytes_read = fread(buffer, 1, sizeof(buffer), file)) > 0) { if (EVP_DigestUpdate(mdctx, buffer, bytes_read) != 1) { EVP_MD_CTX_free(mdctx); fclose(file); return 1; } } unsigned char hash[EVP_MAX_MD_SIZE]; unsigned int hash_len; if (EVP_DigestFinal_ex(mdctx, hash, &hash_len) != 1) { EVP_MD_CTX_free(mdctx); fclose(file); return 1; } EVP_MD_CTX_free(mdctx); fclose(file); // Convert to hex string for (unsigned int i = 0; i < hash_len; i++) { sprintf(hash_hex + (i * 2), "%02x", hash[i]); } hash_hex[hash_len * 2] = '\0'; return 0; } // Keyboard entropy functions int setup_raw_terminal(struct termios* original_termios) { struct termios new_termios; if (tcgetattr(STDIN_FILENO, original_termios) != 0) { return 1; } new_termios = *original_termios; new_termios.c_lflag &= ~(ICANON | ECHO); new_termios.c_cc[VMIN] = 0; new_termios.c_cc[VTIME] = 0; if (tcsetattr(STDIN_FILENO, TCSANOW, &new_termios) != 0) { return 1; } // Set stdin to non-blocking int flags = fcntl(STDIN_FILENO, F_GETFL); if (fcntl(STDIN_FILENO, F_SETFL, flags | O_NONBLOCK) == -1) { tcsetattr(STDIN_FILENO, TCSANOW, original_termios); return 1; } return 0; } void restore_terminal(struct termios* original_termios) { tcsetattr(STDIN_FILENO, TCSANOW, original_termios); // Reset stdin to blocking int flags = fcntl(STDIN_FILENO, F_GETFL); fcntl(STDIN_FILENO, F_SETFL, flags & ~O_NONBLOCK); } int collect_keyboard_entropy(unsigned char* entropy_buffer, size_t max_size, size_t* collected) { struct timespec timestamp; unsigned char entropy_block[16]; uint32_t sequence_counter = 0; char key; *collected = 0; while (*collected < max_size - 16) { if (read(STDIN_FILENO, &key, 1) == 1) { clock_gettime(CLOCK_MONOTONIC, ×tamp); // Create entropy block: [key][timestamp][sequence_counter] entropy_block[0] = key; memcpy(&entropy_block[1], ×tamp.tv_sec, 8); memcpy(&entropy_block[9], ×tamp.tv_nsec, 4); memcpy(&entropy_block[13], &sequence_counter, 3); // Add to entropy buffer memcpy(entropy_buffer + *collected, entropy_block, 16); *collected += 16; sequence_counter++; } else { // No key available, add some timing entropy clock_gettime(CLOCK_MONOTONIC, ×tamp); if (*collected + 12 < max_size) { memcpy(entropy_buffer + *collected, ×tamp, 12); *collected += 12; } usleep(1000); // 1ms delay } } return 0; } int hkdf_expand(const unsigned char* prk, size_t prk_len, const unsigned char* info, size_t info_len, unsigned char* okm, size_t okm_len) { EVP_MD_CTX* ctx = EVP_MD_CTX_new(); if (!ctx) return 1; unsigned char t[32]; // SHA-256 output size unsigned char counter = 1; size_t t_len = 32; size_t pos = 0; while (pos < okm_len) { if (EVP_DigestInit_ex(ctx, EVP_sha256(), NULL) != 1) { EVP_MD_CTX_free(ctx); return 1; } if (pos > 0) { EVP_DigestUpdate(ctx, t, t_len); } EVP_DigestUpdate(ctx, prk, prk_len); if (info && info_len > 0) { EVP_DigestUpdate(ctx, info, info_len); } EVP_DigestUpdate(ctx, &counter, 1); unsigned int hash_len; if (EVP_DigestFinal_ex(ctx, t, &hash_len) != 1) { EVP_MD_CTX_free(ctx); return 1; } size_t copy_len = (okm_len - pos < hash_len) ? okm_len - pos : hash_len; memcpy(okm + pos, t, copy_len); pos += copy_len; counter++; } EVP_MD_CTX_free(ctx); return 0; } // Directory management functions int ensure_pads_directory(void) { struct stat st = {0}; if (stat(PADS_DIR, &st) == -1) { if (mkdir(PADS_DIR, 0755) != 0) { return 1; } } return 0; } void get_pad_path(const char* hash, char* pad_path, char* state_path) { snprintf(pad_path, MAX_HASH_LENGTH + 20, "%s/%s.pad", PADS_DIR, hash); snprintf(state_path, MAX_HASH_LENGTH + 20, "%s/%s.state", PADS_DIR, hash); } char* base64_encode(const unsigned char* input, int length) { BIO *bio, *b64; BUF_MEM *buffer_ptr; b64 = BIO_new(BIO_f_base64()); bio = BIO_new(BIO_s_mem()); bio = BIO_push(b64, bio); BIO_set_flags(bio, BIO_FLAGS_BASE64_NO_NL); BIO_write(bio, input, length); BIO_flush(bio); BIO_get_mem_ptr(bio, &buffer_ptr); char* result = malloc(buffer_ptr->length + 1); memcpy(result, buffer_ptr->data, buffer_ptr->length); result[buffer_ptr->length] = '\0'; BIO_free_all(bio); return result; } unsigned char* base64_decode(const char* input, int* output_length) { BIO *bio, *b64; int decode_len = strlen(input); unsigned char* buffer = malloc(decode_len); bio = BIO_new_mem_buf(input, -1); b64 = BIO_new(BIO_f_base64()); bio = BIO_push(b64, bio); BIO_set_flags(bio, BIO_FLAGS_BASE64_NO_NL); *output_length = BIO_read(bio, buffer, decode_len); BIO_free_all(bio); if (*output_length <= 0) { free(buffer); return NULL; } return buffer; } void print_usage(const char* program_name) { printf("OTP Cipher - One Time Pad Implementation %s\n", get_version()); printf("%s\n", get_build_info()); printf("Usage:\n"); printf(" %s - Interactive mode\n", program_name); printf(" %s generate - Generate new pad\n", program_name); printf(" %s encrypt - Encrypt text\n", program_name); printf(" %s decrypt - Decrypt message\n", program_name); printf(" %s list - List available pads\n", program_name); printf("\nSize examples: 1GB, 5TB, 512MB, 2048 (bytes)\n"); printf("Pad selection: Full hash, prefix, or number from list\n"); }