create daemon

This commit is contained in:
Your Name
2025-09-29 07:21:46 -04:00
parent 955090b079
commit 69514943a9
1341 changed files with 181418 additions and 0 deletions

View File

@@ -0,0 +1,103 @@
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
/**
* BLS (Barreto-Lynn-Scott) family of pairing-friendly curves.
* Implements BLS (Boneh-Lynn-Shacham) signatures.
* Consists of two curves: G1 and G2:
* - G1 is a subgroup of (x, y) E(Fq) over y² = x³ + 4.
* - G2 is a subgroup of ((x₁, x₂+i), (y₁, y₂+i)) E(Fq²) over y² = x³ + 4(1 + i) where i is √-1
* - Gt, created by bilinear (ate) pairing e(G1, G2), consists of p-th roots of unity in
* Fq^k where k is embedding degree. Only degree 12 is currently supported, 24 is not.
* Pairing is used to aggregate and verify signatures.
* We are using Fp for private keys (shorter) and Fp₂ for signatures (longer).
* Some projects may prefer to swap this relation, it is not supported for now.
*/
import { AffinePoint } from './curve.js';
import { IField } from './modular.js';
import { Hex, PrivKey, CHash } from './utils.js';
import * as htf from './hash-to-curve.js';
import { CurvePointsType, ProjPointType as ProjPointType, CurvePointsRes } from './weierstrass.js';
type Fp = bigint;
export type SignatureCoder<Fp2> = {
fromHex(hex: Hex): ProjPointType<Fp2>;
toRawBytes(point: ProjPointType<Fp2>): Uint8Array;
toHex(point: ProjPointType<Fp2>): string;
};
export type CurveType<Fp, Fp2, Fp6, Fp12> = {
G1: Omit<CurvePointsType<Fp>, 'n'> & {
mapToCurve: htf.MapToCurve<Fp>;
htfDefaults: htf.Opts;
};
G2: Omit<CurvePointsType<Fp2>, 'n'> & {
Signature: SignatureCoder<Fp2>;
mapToCurve: htf.MapToCurve<Fp2>;
htfDefaults: htf.Opts;
};
fields: {
Fp: IField<Fp>;
Fr: IField<bigint>;
Fp2: IField<Fp2> & {
reim: (num: Fp2) => {
re: bigint;
im: bigint;
};
multiplyByB: (num: Fp2) => Fp2;
frobeniusMap(num: Fp2, power: number): Fp2;
};
Fp6: IField<Fp6>;
Fp12: IField<Fp12> & {
frobeniusMap(num: Fp12, power: number): Fp12;
multiplyBy014(num: Fp12, o0: Fp2, o1: Fp2, o4: Fp2): Fp12;
conjugate(num: Fp12): Fp12;
finalExponentiate(num: Fp12): Fp12;
};
};
params: {
x: bigint;
r: bigint;
};
htfDefaults: htf.Opts;
hash: CHash;
randomBytes: (bytesLength?: number) => Uint8Array;
};
export type CurveFn<Fp, Fp2, Fp6, Fp12> = {
getPublicKey: (privateKey: PrivKey) => Uint8Array;
sign: {
(message: Hex, privateKey: PrivKey): Uint8Array;
(message: ProjPointType<Fp2>, privateKey: PrivKey): ProjPointType<Fp2>;
};
verify: (signature: Hex | ProjPointType<Fp2>, message: Hex | ProjPointType<Fp2>, publicKey: Hex | ProjPointType<Fp>) => boolean;
verifyBatch: (signature: Hex | ProjPointType<Fp2>, messages: (Hex | ProjPointType<Fp2>)[], publicKeys: (Hex | ProjPointType<Fp>)[]) => boolean;
aggregatePublicKeys: {
(publicKeys: Hex[]): Uint8Array;
(publicKeys: ProjPointType<Fp>[]): ProjPointType<Fp>;
};
aggregateSignatures: {
(signatures: Hex[]): Uint8Array;
(signatures: ProjPointType<Fp2>[]): ProjPointType<Fp2>;
};
millerLoop: (ell: [Fp2, Fp2, Fp2][], g1: [Fp, Fp]) => Fp12;
pairing: (P: ProjPointType<Fp>, Q: ProjPointType<Fp2>, withFinalExponent?: boolean) => Fp12;
G1: CurvePointsRes<Fp> & ReturnType<typeof htf.createHasher<Fp>>;
G2: CurvePointsRes<Fp2> & ReturnType<typeof htf.createHasher<Fp2>>;
Signature: SignatureCoder<Fp2>;
params: {
x: bigint;
r: bigint;
G1b: bigint;
G2b: Fp2;
};
fields: {
Fp: IField<Fp>;
Fp2: IField<Fp2>;
Fp6: IField<Fp6>;
Fp12: IField<Fp12>;
Fr: IField<bigint>;
};
utils: {
randomPrivateKey: () => Uint8Array;
calcPairingPrecomputes: (p: AffinePoint<Fp2>) => [Fp2, Fp2, Fp2][];
};
};
export declare function bls<Fp2, Fp6, Fp12>(CURVE: CurveType<Fp, Fp2, Fp6, Fp12>): CurveFn<Fp, Fp2, Fp6, Fp12>;
export {};
//# sourceMappingURL=bls.d.ts.map

View File

@@ -0,0 +1 @@
{"version":3,"file":"bls.d.ts","sourceRoot":"","sources":["../src/abstract/bls.ts"],"names":[],"mappings":"AAAA,sEAAsE;AACtE;;;;;;;;;;;GAWG;AACH,OAAO,EAAE,WAAW,EAAE,MAAM,YAAY,CAAC;AACzC,OAAO,EAAE,MAAM,EAAoC,MAAM,cAAc,CAAC;AACxE,OAAO,EAAE,GAAG,EAAE,OAAO,EAAE,KAAK,EAA+B,MAAM,YAAY,CAAC;AAC9E,OAAO,KAAK,GAAG,MAAM,oBAAoB,CAAC;AAC1C,OAAO,EACL,eAAe,EACf,aAAa,IAAI,aAAa,EAC9B,cAAc,EAEf,MAAM,kBAAkB,CAAC;AAE1B,KAAK,EAAE,GAAG,MAAM,CAAC;AAKjB,MAAM,MAAM,cAAc,CAAC,GAAG,IAAI;IAChC,OAAO,CAAC,GAAG,EAAE,GAAG,GAAG,aAAa,CAAC,GAAG,CAAC,CAAC;IACtC,UAAU,CAAC,KAAK,EAAE,aAAa,CAAC,GAAG,CAAC,GAAG,UAAU,CAAC;IAClD,KAAK,CAAC,KAAK,EAAE,aAAa,CAAC,GAAG,CAAC,GAAG,MAAM,CAAC;CAC1C,CAAC;AAEF,MAAM,MAAM,SAAS,CAAC,EAAE,EAAE,GAAG,EAAE,GAAG,EAAE,IAAI,IAAI;IAC1C,EAAE,EAAE,IAAI,CAAC,eAAe,CAAC,EAAE,CAAC,EAAE,GAAG,CAAC,GAAG;QACnC,UAAU,EAAE,GAAG,CAAC,UAAU,CAAC,EAAE,CAAC,CAAC;QAC/B,WAAW,EAAE,GAAG,CAAC,IAAI,CAAC;KACvB,CAAC;IACF,EAAE,EAAE,IAAI,CAAC,eAAe,CAAC,GAAG,CAAC,EAAE,GAAG,CAAC,GAAG;QACpC,SAAS,EAAE,cAAc,CAAC,GAAG,CAAC,CAAC;QAC/B,UAAU,EAAE,GAAG,CAAC,UAAU,CAAC,GAAG,CAAC,CAAC;QAChC,WAAW,EAAE,GAAG,CAAC,IAAI,CAAC;KACvB,CAAC;IACF,MAAM,EAAE;QACN,EAAE,EAAE,MAAM,CAAC,EAAE,CAAC,CAAC;QACf,EAAE,EAAE,MAAM,CAAC,MAAM,CAAC,CAAC;QACnB,GAAG,EAAE,MAAM,CAAC,GAAG,CAAC,GAAG;YACjB,IAAI,EAAE,CAAC,GAAG,EAAE,GAAG,KAAK;gBAAE,EAAE,EAAE,MAAM,CAAC;gBAAC,EAAE,EAAE,MAAM,CAAA;aAAE,CAAC;YAC/C,WAAW,EAAE,CAAC,GAAG,EAAE,GAAG,KAAK,GAAG,CAAC;YAC/B,YAAY,CAAC,GAAG,EAAE,GAAG,EAAE,KAAK,EAAE,MAAM,GAAG,GAAG,CAAC;SAC5C,CAAC;QACF,GAAG,EAAE,MAAM,CAAC,GAAG,CAAC,CAAC;QACjB,IAAI,EAAE,MAAM,CAAC,IAAI,CAAC,GAAG;YACnB,YAAY,CAAC,GAAG,EAAE,IAAI,EAAE,KAAK,EAAE,MAAM,GAAG,IAAI,CAAC;YAC7C,aAAa,CAAC,GAAG,EAAE,IAAI,EAAE,EAAE,EAAE,GAAG,EAAE,EAAE,EAAE,GAAG,EAAE,EAAE,EAAE,GAAG,GAAG,IAAI,CAAC;YAC1D,SAAS,CAAC,GAAG,EAAE,IAAI,GAAG,IAAI,CAAC;YAC3B,iBAAiB,CAAC,GAAG,EAAE,IAAI,GAAG,IAAI,CAAC;SACpC,CAAC;KACH,CAAC;IACF,MAAM,EAAE;QACN,CAAC,EAAE,MAAM,CAAC;QACV,CAAC,EAAE,MAAM,CAAC;KACX,CAAC;IACF,WAAW,EAAE,GAAG,CAAC,IAAI,CAAC;IACtB,IAAI,EAAE,KAAK,CAAC;IACZ,WAAW,EAAE,CAAC,WAAW,CAAC,EAAE,MAAM,KAAK,UAAU,CAAC;CACnD,CAAC;AAEF,MAAM,MAAM,OAAO,CAAC,EAAE,EAAE,GAAG,EAAE,GAAG,EAAE,IAAI,IAAI;IACxC,YAAY,EAAE,CAAC,UAAU,EAAE,OAAO,KAAK,UAAU,CAAC;IAClD,IAAI,EAAE;QACJ,CAAC,OAAO,EAAE,GAAG,EAAE,UAAU,EAAE,OAAO,GAAG,UAAU,CAAC;QAChD,CAAC,OAAO,EAAE,aAAa,CAAC,GAAG,CAAC,EAAE,UAAU,EAAE,OAAO,GAAG,aAAa,CAAC,GAAG,CAAC,CAAC;KACxE,CAAC;IACF,MAAM,EAAE,CACN,SAAS,EAAE,GAAG,GAAG,aAAa,CAAC,GAAG,CAAC,EACnC,OAAO,EAAE,GAAG,GAAG,aAAa,CAAC,GAAG,CAAC,EACjC,SAAS,EAAE,GAAG,GAAG,aAAa,CAAC,EAAE,CAAC,KAC/B,OAAO,CAAC;IACb,WAAW,EAAE,CACX,SAAS,EAAE,GAAG,GAAG,aAAa,CAAC,GAAG,CAAC,EACnC,QAAQ,EAAE,CAAC,GAAG,GAAG,aAAa,CAAC,GAAG,CAAC,CAAC,EAAE,EACtC,UAAU,EAAE,CAAC,GAAG,GAAG,aAAa,CAAC,EAAE,CAAC,CAAC,EAAE,KACpC,OAAO,CAAC;IACb,mBAAmB,EAAE;QACnB,CAAC,UAAU,EAAE,GAAG,EAAE,GAAG,UAAU,CAAC;QAChC,CAAC,UAAU,EAAE,aAAa,CAAC,EAAE,CAAC,EAAE,GAAG,aAAa,CAAC,EAAE,CAAC,CAAC;KACtD,CAAC;IACF,mBAAmB,EAAE;QACnB,CAAC,UAAU,EAAE,GAAG,EAAE,GAAG,UAAU,CAAC;QAChC,CAAC,UAAU,EAAE,aAAa,CAAC,GAAG,CAAC,EAAE,GAAG,aAAa,CAAC,GAAG,CAAC,CAAC;KACxD,CAAC;IACF,UAAU,EAAE,CAAC,GAAG,EAAE,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,EAAE,EAAE,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,KAAK,IAAI,CAAC;IAC3D,OAAO,EAAE,CAAC,CAAC,EAAE,aAAa,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,aAAa,CAAC,GAAG,CAAC,EAAE,iBAAiB,CAAC,EAAE,OAAO,KAAK,IAAI,CAAC;IAC5F,EAAE,EAAE,cAAc,CAAC,EAAE,CAAC,GAAG,UAAU,CAAC,OAAO,GAAG,CAAC,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC;IACjE,EAAE,EAAE,cAAc,CAAC,GAAG,CAAC,GAAG,UAAU,CAAC,OAAO,GAAG,CAAC,YAAY,CAAC,GAAG,CAAC,CAAC,CAAC;IACnE,SAAS,EAAE,cAAc,CAAC,GAAG,CAAC,CAAC;IAC/B,MAAM,EAAE;QACN,CAAC,EAAE,MAAM,CAAC;QACV,CAAC,EAAE,MAAM,CAAC;QACV,GAAG,EAAE,MAAM,CAAC;QACZ,GAAG,EAAE,GAAG,CAAC;KACV,CAAC;IACF,MAAM,EAAE;QACN,EAAE,EAAE,MAAM,CAAC,EAAE,CAAC,CAAC;QACf,GAAG,EAAE,MAAM,CAAC,GAAG,CAAC,CAAC;QACjB,GAAG,EAAE,MAAM,CAAC,GAAG,CAAC,CAAC;QACjB,IAAI,EAAE,MAAM,CAAC,IAAI,CAAC,CAAC;QACnB,EAAE,EAAE,MAAM,CAAC,MAAM,CAAC,CAAC;KACpB,CAAC;IACF,KAAK,EAAE;QACL,gBAAgB,EAAE,MAAM,UAAU,CAAC;QACnC,sBAAsB,EAAE,CAAC,CAAC,EAAE,WAAW,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,EAAE,CAAC;KACpE,CAAC;CACH,CAAC;AAEF,wBAAgB,GAAG,CAAC,GAAG,EAAE,GAAG,EAAE,IAAI,EAChC,KAAK,EAAE,SAAS,CAAC,EAAE,EAAE,GAAG,EAAE,GAAG,EAAE,IAAI,CAAC,GACnC,OAAO,CAAC,EAAE,EAAE,GAAG,EAAE,GAAG,EAAE,IAAI,CAAC,CAqR7B"}

View File

@@ -0,0 +1,239 @@
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.bls = void 0;
const modular_js_1 = require("./modular.js");
const utils_js_1 = require("./utils.js");
const htf = require("./hash-to-curve.js");
const weierstrass_js_1 = require("./weierstrass.js");
// prettier-ignore
const _2n = BigInt(2), _3n = BigInt(3);
function bls(CURVE) {
// Fields are specific for curve, so for now we'll need to pass them with opts
const { Fp, Fr, Fp2, Fp6, Fp12 } = CURVE.fields;
const BLS_X_LEN = (0, utils_js_1.bitLen)(CURVE.params.x);
// Pre-compute coefficients for sparse multiplication
// Point addition and point double calculations is reused for coefficients
function calcPairingPrecomputes(p) {
const { x, y } = p;
// prettier-ignore
const Qx = x, Qy = y, Qz = Fp2.ONE;
// prettier-ignore
let Rx = Qx, Ry = Qy, Rz = Qz;
let ell_coeff = [];
for (let i = BLS_X_LEN - 2; i >= 0; i--) {
// Double
let t0 = Fp2.sqr(Ry); // Ry²
let t1 = Fp2.sqr(Rz); // Rz²
let t2 = Fp2.multiplyByB(Fp2.mul(t1, _3n)); // 3 * T1 * B
let t3 = Fp2.mul(t2, _3n); // 3 * T2
let t4 = Fp2.sub(Fp2.sub(Fp2.sqr(Fp2.add(Ry, Rz)), t1), t0); // (Ry + Rz)² - T1 - T0
ell_coeff.push([
Fp2.sub(t2, t0),
Fp2.mul(Fp2.sqr(Rx), _3n),
Fp2.neg(t4), // -T4
]);
Rx = Fp2.div(Fp2.mul(Fp2.mul(Fp2.sub(t0, t3), Rx), Ry), _2n); // ((T0 - T3) * Rx * Ry) / 2
Ry = Fp2.sub(Fp2.sqr(Fp2.div(Fp2.add(t0, t3), _2n)), Fp2.mul(Fp2.sqr(t2), _3n)); // ((T0 + T3) / 2)² - 3 * T2²
Rz = Fp2.mul(t0, t4); // T0 * T4
if ((0, utils_js_1.bitGet)(CURVE.params.x, i)) {
// Addition
let t0 = Fp2.sub(Ry, Fp2.mul(Qy, Rz)); // Ry - Qy * Rz
let t1 = Fp2.sub(Rx, Fp2.mul(Qx, Rz)); // Rx - Qx * Rz
ell_coeff.push([
Fp2.sub(Fp2.mul(t0, Qx), Fp2.mul(t1, Qy)),
Fp2.neg(t0),
t1, // T1
]);
let t2 = Fp2.sqr(t1); // T1²
let t3 = Fp2.mul(t2, t1); // T2 * T1
let t4 = Fp2.mul(t2, Rx); // T2 * Rx
let t5 = Fp2.add(Fp2.sub(t3, Fp2.mul(t4, _2n)), Fp2.mul(Fp2.sqr(t0), Rz)); // T3 - 2 * T4 + T0² * Rz
Rx = Fp2.mul(t1, t5); // T1 * T5
Ry = Fp2.sub(Fp2.mul(Fp2.sub(t4, t5), t0), Fp2.mul(t3, Ry)); // (T4 - T5) * T0 - T3 * Ry
Rz = Fp2.mul(Rz, t3); // Rz * T3
}
}
return ell_coeff;
}
function millerLoop(ell, g1) {
const { x } = CURVE.params;
const Px = g1[0];
const Py = g1[1];
let f12 = Fp12.ONE;
for (let j = 0, i = BLS_X_LEN - 2; i >= 0; i--, j++) {
const E = ell[j];
f12 = Fp12.multiplyBy014(f12, E[0], Fp2.mul(E[1], Px), Fp2.mul(E[2], Py));
if ((0, utils_js_1.bitGet)(x, i)) {
j += 1;
const F = ell[j];
f12 = Fp12.multiplyBy014(f12, F[0], Fp2.mul(F[1], Px), Fp2.mul(F[2], Py));
}
if (i !== 0)
f12 = Fp12.sqr(f12);
}
return Fp12.conjugate(f12);
}
const utils = {
randomPrivateKey: () => {
const length = (0, modular_js_1.getMinHashLength)(Fr.ORDER);
return (0, modular_js_1.mapHashToField)(CURVE.randomBytes(length), Fr.ORDER);
},
calcPairingPrecomputes,
};
// Point on G1 curve: (x, y)
const G1_ = (0, weierstrass_js_1.weierstrassPoints)({ n: Fr.ORDER, ...CURVE.G1 });
const G1 = Object.assign(G1_, htf.createHasher(G1_.ProjectivePoint, CURVE.G1.mapToCurve, {
...CURVE.htfDefaults,
...CURVE.G1.htfDefaults,
}));
function pairingPrecomputes(point) {
const p = point;
if (p._PPRECOMPUTES)
return p._PPRECOMPUTES;
p._PPRECOMPUTES = calcPairingPrecomputes(point.toAffine());
return p._PPRECOMPUTES;
}
// TODO: export
// function clearPairingPrecomputes(point: G2) {
// const p = point as G2 & withPairingPrecomputes;
// p._PPRECOMPUTES = undefined;
// }
// Point on G2 curve (complex numbers): (x₁, x₂+i), (y₁, y₂+i)
const G2_ = (0, weierstrass_js_1.weierstrassPoints)({ n: Fr.ORDER, ...CURVE.G2 });
const G2 = Object.assign(G2_, htf.createHasher(G2_.ProjectivePoint, CURVE.G2.mapToCurve, {
...CURVE.htfDefaults,
...CURVE.G2.htfDefaults,
}));
const { Signature } = CURVE.G2;
// Calculates bilinear pairing
function pairing(Q, P, withFinalExponent = true) {
if (Q.equals(G1.ProjectivePoint.ZERO) || P.equals(G2.ProjectivePoint.ZERO))
throw new Error('pairing is not available for ZERO point');
Q.assertValidity();
P.assertValidity();
// Performance: 9ms for millerLoop and ~14ms for exp.
const Qa = Q.toAffine();
const looped = millerLoop(pairingPrecomputes(P), [Qa.x, Qa.y]);
return withFinalExponent ? Fp12.finalExponentiate(looped) : looped;
}
function normP1(point) {
return point instanceof G1.ProjectivePoint ? point : G1.ProjectivePoint.fromHex(point);
}
function normP2(point) {
return point instanceof G2.ProjectivePoint ? point : Signature.fromHex(point);
}
function normP2Hash(point, htfOpts) {
return point instanceof G2.ProjectivePoint
? point
: G2.hashToCurve((0, utils_js_1.ensureBytes)('point', point), htfOpts);
}
// Multiplies generator by private key.
// P = pk x G
function getPublicKey(privateKey) {
return G1.ProjectivePoint.fromPrivateKey(privateKey).toRawBytes(true);
}
function sign(message, privateKey, htfOpts) {
const msgPoint = normP2Hash(message, htfOpts);
msgPoint.assertValidity();
const sigPoint = msgPoint.multiply(G1.normPrivateKeyToScalar(privateKey));
if (message instanceof G2.ProjectivePoint)
return sigPoint;
return Signature.toRawBytes(sigPoint);
}
// Checks if pairing of public key & hash is equal to pairing of generator & signature.
// e(P, H(m)) == e(G, S)
function verify(signature, message, publicKey, htfOpts) {
const P = normP1(publicKey);
const Hm = normP2Hash(message, htfOpts);
const G = G1.ProjectivePoint.BASE;
const S = normP2(signature);
// Instead of doing 2 exponentiations, we use property of billinear maps
// and do one exp after multiplying 2 points.
const ePHm = pairing(P.negate(), Hm, false);
const eGS = pairing(G, S, false);
const exp = Fp12.finalExponentiate(Fp12.mul(eGS, ePHm));
return Fp12.eql(exp, Fp12.ONE);
}
function aggregatePublicKeys(publicKeys) {
if (!publicKeys.length)
throw new Error('Expected non-empty array');
const agg = publicKeys.map(normP1).reduce((sum, p) => sum.add(p), G1.ProjectivePoint.ZERO);
const aggAffine = agg; //.toAffine();
if (publicKeys[0] instanceof G1.ProjectivePoint) {
aggAffine.assertValidity();
return aggAffine;
}
// toRawBytes ensures point validity
return aggAffine.toRawBytes(true);
}
function aggregateSignatures(signatures) {
if (!signatures.length)
throw new Error('Expected non-empty array');
const agg = signatures.map(normP2).reduce((sum, s) => sum.add(s), G2.ProjectivePoint.ZERO);
const aggAffine = agg; //.toAffine();
if (signatures[0] instanceof G2.ProjectivePoint) {
aggAffine.assertValidity();
return aggAffine;
}
return Signature.toRawBytes(aggAffine);
}
// https://ethresear.ch/t/fast-verification-of-multiple-bls-signatures/5407
// e(G, S) = e(G, SUM(n)(Si)) = MUL(n)(e(G, Si))
function verifyBatch(signature, messages, publicKeys, htfOpts) {
// @ts-ignore
// console.log('verifyBatch', bytesToHex(signature as any), messages, publicKeys.map(bytesToHex));
if (!messages.length)
throw new Error('Expected non-empty messages array');
if (publicKeys.length !== messages.length)
throw new Error('Pubkey count should equal msg count');
const sig = normP2(signature);
const nMessages = messages.map((i) => normP2Hash(i, htfOpts));
const nPublicKeys = publicKeys.map(normP1);
try {
const paired = [];
for (const message of new Set(nMessages)) {
const groupPublicKey = nMessages.reduce((groupPublicKey, subMessage, i) => subMessage === message ? groupPublicKey.add(nPublicKeys[i]) : groupPublicKey, G1.ProjectivePoint.ZERO);
// const msg = message instanceof PointG2 ? message : await PointG2.hashToCurve(message);
// Possible to batch pairing for same msg with different groupPublicKey here
paired.push(pairing(groupPublicKey, message, false));
}
paired.push(pairing(G1.ProjectivePoint.BASE.negate(), sig, false));
const product = paired.reduce((a, b) => Fp12.mul(a, b), Fp12.ONE);
const exp = Fp12.finalExponentiate(product);
return Fp12.eql(exp, Fp12.ONE);
}
catch {
return false;
}
}
G1.ProjectivePoint.BASE._setWindowSize(4);
return {
getPublicKey,
sign,
verify,
verifyBatch,
aggregatePublicKeys,
aggregateSignatures,
millerLoop,
pairing,
G1,
G2,
Signature,
fields: {
Fr,
Fp,
Fp2,
Fp6,
Fp12,
},
params: {
x: CURVE.params.x,
r: CURVE.params.r,
G1b: CURVE.G1.b,
G2b: CURVE.G2.b,
},
utils,
};
}
exports.bls = bls;
//# sourceMappingURL=bls.js.map

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,70 @@
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
import { IField } from './modular.js';
export type AffinePoint<T> = {
x: T;
y: T;
} & {
z?: never;
t?: never;
};
export interface Group<T extends Group<T>> {
double(): T;
negate(): T;
add(other: T): T;
subtract(other: T): T;
equals(other: T): boolean;
multiply(scalar: bigint): T;
}
export type GroupConstructor<T> = {
BASE: T;
ZERO: T;
};
export type Mapper<T> = (i: T[]) => T[];
export declare function wNAF<T extends Group<T>>(c: GroupConstructor<T>, bits: number): {
constTimeNegate: (condition: boolean, item: T) => T;
unsafeLadder(elm: T, n: bigint): T;
/**
* Creates a wNAF precomputation window. Used for caching.
* Default window size is set by `utils.precompute()` and is equal to 8.
* Number of precomputed points depends on the curve size:
* 2^(𝑊1) * (Math.ceil(𝑛 / 𝑊) + 1), where:
* - 𝑊 is the window size
* - 𝑛 is the bitlength of the curve order.
* For a 256-bit curve and window size 8, the number of precomputed points is 128 * 33 = 4224.
* @returns precomputed point tables flattened to a single array
*/
precomputeWindow(elm: T, W: number): Group<T>[];
/**
* Implements ec multiplication using precomputed tables and w-ary non-adjacent form.
* @param W window size
* @param precomputes precomputed tables
* @param n scalar (we don't check here, but should be less than curve order)
* @returns real and fake (for const-time) points
*/
wNAF(W: number, precomputes: T[], n: bigint): {
p: T;
f: T;
};
wNAFCached(P: T, precomputesMap: Map<T, T[]>, n: bigint, transform: Mapper<T>): {
p: T;
f: T;
};
};
export type BasicCurve<T> = {
Fp: IField<T>;
n: bigint;
nBitLength?: number;
nByteLength?: number;
h: bigint;
hEff?: bigint;
Gx: T;
Gy: T;
allowInfinityPoint?: boolean;
};
export declare function validateBasic<FP, T>(curve: BasicCurve<FP> & T): Readonly<{
readonly nBitLength: number;
readonly nByteLength: number;
} & BasicCurve<FP> & T & {
p: bigint;
}>;
//# sourceMappingURL=curve.d.ts.map

View File

@@ -0,0 +1 @@
{"version":3,"file":"curve.d.ts","sourceRoot":"","sources":["../src/abstract/curve.ts"],"names":[],"mappings":"AAAA,sEAAsE;AAEtE,OAAO,EAAE,MAAM,EAA0B,MAAM,cAAc,CAAC;AAK9D,MAAM,MAAM,WAAW,CAAC,CAAC,IAAI;IAC3B,CAAC,EAAE,CAAC,CAAC;IACL,CAAC,EAAE,CAAC,CAAC;CACN,GAAG;IAAE,CAAC,CAAC,EAAE,KAAK,CAAC;IAAC,CAAC,CAAC,EAAE,KAAK,CAAA;CAAE,CAAC;AAE7B,MAAM,WAAW,KAAK,CAAC,CAAC,SAAS,KAAK,CAAC,CAAC,CAAC;IACvC,MAAM,IAAI,CAAC,CAAC;IACZ,MAAM,IAAI,CAAC,CAAC;IACZ,GAAG,CAAC,KAAK,EAAE,CAAC,GAAG,CAAC,CAAC;IACjB,QAAQ,CAAC,KAAK,EAAE,CAAC,GAAG,CAAC,CAAC;IACtB,MAAM,CAAC,KAAK,EAAE,CAAC,GAAG,OAAO,CAAC;IAC1B,QAAQ,CAAC,MAAM,EAAE,MAAM,GAAG,CAAC,CAAC;CAC7B;AAED,MAAM,MAAM,gBAAgB,CAAC,CAAC,IAAI;IAChC,IAAI,EAAE,CAAC,CAAC;IACR,IAAI,EAAE,CAAC,CAAC;CACT,CAAC;AACF,MAAM,MAAM,MAAM,CAAC,CAAC,IAAI,CAAC,CAAC,EAAE,CAAC,EAAE,KAAK,CAAC,EAAE,CAAC;AAaxC,wBAAgB,IAAI,CAAC,CAAC,SAAS,KAAK,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,gBAAgB,CAAC,CAAC,CAAC,EAAE,IAAI,EAAE,MAAM;iCACvC,OAAO,QAAQ,CAAC,KAAG,CAAC;sBAYpC,CAAC,KAAK,MAAM;IAW9B;;;;;;;;;OASG;0BACmB,CAAC,KAAK,MAAM,GAAG,MAAM,CAAC,CAAC,EAAE;IAkB/C;;;;;;OAMG;YACK,MAAM,eAAe,CAAC,EAAE,KAAK,MAAM;WAAQ,CAAC;WAAK,CAAC;;kBAsD5C,CAAC,kBAAkB,IAAI,CAAC,EAAE,CAAC,EAAE,CAAC,KAAK,MAAM,aAAa,OAAO,CAAC,CAAC,GAAG;QAAE,CAAC,EAAE,CAAC,CAAC;QAAC,CAAC,EAAE,CAAC,CAAA;KAAE;EAcjG;AAID,MAAM,MAAM,UAAU,CAAC,CAAC,IAAI;IAC1B,EAAE,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC;IACd,CAAC,EAAE,MAAM,CAAC;IACV,UAAU,CAAC,EAAE,MAAM,CAAC;IACpB,WAAW,CAAC,EAAE,MAAM,CAAC;IACrB,CAAC,EAAE,MAAM,CAAC;IACV,IAAI,CAAC,EAAE,MAAM,CAAC;IACd,EAAE,EAAE,CAAC,CAAC;IACN,EAAE,EAAE,CAAC,CAAC;IACN,kBAAkB,CAAC,EAAE,OAAO,CAAC;CAC9B,CAAC;AAEF,wBAAgB,aAAa,CAAC,EAAE,EAAE,CAAC,EAAE,KAAK,EAAE,UAAU,CAAC,EAAE,CAAC,GAAG,CAAC;;;;;GAqB7D"}

View File

@@ -0,0 +1,161 @@
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.validateBasic = exports.wNAF = void 0;
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
// Abelian group utilities
const modular_js_1 = require("./modular.js");
const utils_js_1 = require("./utils.js");
const _0n = BigInt(0);
const _1n = BigInt(1);
// Elliptic curve multiplication of Point by scalar. Fragile.
// Scalars should always be less than curve order: this should be checked inside of a curve itself.
// Creates precomputation tables for fast multiplication:
// - private scalar is split by fixed size windows of W bits
// - every window point is collected from window's table & added to accumulator
// - since windows are different, same point inside tables won't be accessed more than once per calc
// - each multiplication is 'Math.ceil(CURVE_ORDER / 𝑊) + 1' point additions (fixed for any scalar)
// - +1 window is neccessary for wNAF
// - wNAF reduces table size: 2x less memory + 2x faster generation, but 10% slower multiplication
// TODO: Research returning 2d JS array of windows, instead of a single window. This would allow
// windows to be in different memory locations
function wNAF(c, bits) {
const constTimeNegate = (condition, item) => {
const neg = item.negate();
return condition ? neg : item;
};
const opts = (W) => {
const windows = Math.ceil(bits / W) + 1; // +1, because
const windowSize = 2 ** (W - 1); // -1 because we skip zero
return { windows, windowSize };
};
return {
constTimeNegate,
// non-const time multiplication ladder
unsafeLadder(elm, n) {
let p = c.ZERO;
let d = elm;
while (n > _0n) {
if (n & _1n)
p = p.add(d);
d = d.double();
n >>= _1n;
}
return p;
},
/**
* Creates a wNAF precomputation window. Used for caching.
* Default window size is set by `utils.precompute()` and is equal to 8.
* Number of precomputed points depends on the curve size:
* 2^(𝑊1) * (Math.ceil(𝑛 / 𝑊) + 1), where:
* - 𝑊 is the window size
* - 𝑛 is the bitlength of the curve order.
* For a 256-bit curve and window size 8, the number of precomputed points is 128 * 33 = 4224.
* @returns precomputed point tables flattened to a single array
*/
precomputeWindow(elm, W) {
const { windows, windowSize } = opts(W);
const points = [];
let p = elm;
let base = p;
for (let window = 0; window < windows; window++) {
base = p;
points.push(base);
// =1, because we skip zero
for (let i = 1; i < windowSize; i++) {
base = base.add(p);
points.push(base);
}
p = base.double();
}
return points;
},
/**
* Implements ec multiplication using precomputed tables and w-ary non-adjacent form.
* @param W window size
* @param precomputes precomputed tables
* @param n scalar (we don't check here, but should be less than curve order)
* @returns real and fake (for const-time) points
*/
wNAF(W, precomputes, n) {
// TODO: maybe check that scalar is less than group order? wNAF behavious is undefined otherwise
// But need to carefully remove other checks before wNAF. ORDER == bits here
const { windows, windowSize } = opts(W);
let p = c.ZERO;
let f = c.BASE;
const mask = BigInt(2 ** W - 1); // Create mask with W ones: 0b1111 for W=4 etc.
const maxNumber = 2 ** W;
const shiftBy = BigInt(W);
for (let window = 0; window < windows; window++) {
const offset = window * windowSize;
// Extract W bits.
let wbits = Number(n & mask);
// Shift number by W bits.
n >>= shiftBy;
// If the bits are bigger than max size, we'll split those.
// +224 => 256 - 32
if (wbits > windowSize) {
wbits -= maxNumber;
n += _1n;
}
// This code was first written with assumption that 'f' and 'p' will never be infinity point:
// since each addition is multiplied by 2 ** W, it cannot cancel each other. However,
// there is negate now: it is possible that negated element from low value
// would be the same as high element, which will create carry into next window.
// It's not obvious how this can fail, but still worth investigating later.
// Check if we're onto Zero point.
// Add random point inside current window to f.
const offset1 = offset;
const offset2 = offset + Math.abs(wbits) - 1; // -1 because we skip zero
const cond1 = window % 2 !== 0;
const cond2 = wbits < 0;
if (wbits === 0) {
// The most important part for const-time getPublicKey
f = f.add(constTimeNegate(cond1, precomputes[offset1]));
}
else {
p = p.add(constTimeNegate(cond2, precomputes[offset2]));
}
}
// JIT-compiler should not eliminate f here, since it will later be used in normalizeZ()
// Even if the variable is still unused, there are some checks which will
// throw an exception, so compiler needs to prove they won't happen, which is hard.
// At this point there is a way to F be infinity-point even if p is not,
// which makes it less const-time: around 1 bigint multiply.
return { p, f };
},
wNAFCached(P, precomputesMap, n, transform) {
// @ts-ignore
const W = P._WINDOW_SIZE || 1;
// Calculate precomputes on a first run, reuse them after
let comp = precomputesMap.get(P);
if (!comp) {
comp = this.precomputeWindow(P, W);
if (W !== 1) {
precomputesMap.set(P, transform(comp));
}
}
return this.wNAF(W, comp, n);
},
};
}
exports.wNAF = wNAF;
function validateBasic(curve) {
(0, modular_js_1.validateField)(curve.Fp);
(0, utils_js_1.validateObject)(curve, {
n: 'bigint',
h: 'bigint',
Gx: 'field',
Gy: 'field',
}, {
nBitLength: 'isSafeInteger',
nByteLength: 'isSafeInteger',
});
// Set defaults
return Object.freeze({
...(0, modular_js_1.nLength)(curve.n, curve.nBitLength),
...curve,
...{ p: curve.Fp.ORDER },
});
}
exports.validateBasic = validateBasic;
//# sourceMappingURL=curve.js.map

View File

@@ -0,0 +1 @@
{"version":3,"file":"curve.js","sourceRoot":"","sources":["../src/abstract/curve.ts"],"names":[],"mappings":";;;AAAA,sEAAsE;AACtE,0BAA0B;AAC1B,6CAA8D;AAC9D,yCAA4C;AAC5C,MAAM,GAAG,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC;AACtB,MAAM,GAAG,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC;AAsBtB,6DAA6D;AAC7D,mGAAmG;AACnG,yDAAyD;AACzD,4DAA4D;AAC5D,+EAA+E;AAC/E,oGAAoG;AACpG,oGAAoG;AACpG,qCAAqC;AACrC,kGAAkG;AAClG,gGAAgG;AAChG,8CAA8C;AAC9C,SAAgB,IAAI,CAAqB,CAAsB,EAAE,IAAY;IAC3E,MAAM,eAAe,GAAG,CAAC,SAAkB,EAAE,IAAO,EAAK,EAAE;QACzD,MAAM,GAAG,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC;QAC1B,OAAO,SAAS,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,IAAI,CAAC;IAChC,CAAC,CAAC;IACF,MAAM,IAAI,GAAG,CAAC,CAAS,EAAE,EAAE;QACzB,MAAM,OAAO,GAAG,IAAI,CAAC,IAAI,CAAC,IAAI,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,cAAc;QACvD,MAAM,UAAU,GAAG,CAAC,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,0BAA0B;QAC3D,OAAO,EAAE,OAAO,EAAE,UAAU,EAAE,CAAC;IACjC,CAAC,CAAC;IACF,OAAO;QACL,eAAe;QACf,uCAAuC;QACvC,YAAY,CAAC,GAAM,EAAE,CAAS;YAC5B,IAAI,CAAC,GAAG,CAAC,CAAC,IAAI,CAAC;YACf,IAAI,CAAC,GAAM,GAAG,CAAC;YACf,OAAO,CAAC,GAAG,GAAG,EAAE;gBACd,IAAI,CAAC,GAAG,GAAG;oBAAE,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;gBAC1B,CAAC,GAAG,CAAC,CAAC,MAAM,EAAE,CAAC;gBACf,CAAC,KAAK,GAAG,CAAC;aACX;YACD,OAAO,CAAC,CAAC;QACX,CAAC;QAED;;;;;;;;;WASG;QACH,gBAAgB,CAAC,GAAM,EAAE,CAAS;YAChC,MAAM,EAAE,OAAO,EAAE,UAAU,EAAE,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;YACxC,MAAM,MAAM,GAAQ,EAAE,CAAC;YACvB,IAAI,CAAC,GAAM,GAAG,CAAC;YACf,IAAI,IAAI,GAAG,CAAC,CAAC;YACb,KAAK,IAAI,MAAM,GAAG,CAAC,EAAE,MAAM,GAAG,OAAO,EAAE,MAAM,EAAE,EAAE;gBAC/C,IAAI,GAAG,CAAC,CAAC;gBACT,MAAM,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC;gBAClB,2BAA2B;gBAC3B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,UAAU,EAAE,CAAC,EAAE,EAAE;oBACnC,IAAI,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;oBACnB,MAAM,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC;iBACnB;gBACD,CAAC,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC;aACnB;YACD,OAAO,MAAM,CAAC;QAChB,CAAC;QAED;;;;;;WAMG;QACH,IAAI,CAAC,CAAS,EAAE,WAAgB,EAAE,CAAS;YACzC,gGAAgG;YAChG,4EAA4E;YAC5E,MAAM,EAAE,OAAO,EAAE,UAAU,EAAE,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;YAExC,IAAI,CAAC,GAAG,CAAC,CAAC,IAAI,CAAC;YACf,IAAI,CAAC,GAAG,CAAC,CAAC,IAAI,CAAC;YAEf,MAAM,IAAI,GAAG,MAAM,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,+CAA+C;YAChF,MAAM,SAAS,GAAG,CAAC,IAAI,CAAC,CAAC;YACzB,MAAM,OAAO,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC;YAE1B,KAAK,IAAI,MAAM,GAAG,CAAC,EAAE,MAAM,GAAG,OAAO,EAAE,MAAM,EAAE,EAAE;gBAC/C,MAAM,MAAM,GAAG,MAAM,GAAG,UAAU,CAAC;gBACnC,kBAAkB;gBAClB,IAAI,KAAK,GAAG,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC;gBAE7B,0BAA0B;gBAC1B,CAAC,KAAK,OAAO,CAAC;gBAEd,2DAA2D;gBAC3D,mBAAmB;gBACnB,IAAI,KAAK,GAAG,UAAU,EAAE;oBACtB,KAAK,IAAI,SAAS,CAAC;oBACnB,CAAC,IAAI,GAAG,CAAC;iBACV;gBAED,6FAA6F;gBAC7F,qFAAqF;gBACrF,0EAA0E;gBAC1E,+EAA+E;gBAC/E,2EAA2E;gBAE3E,kCAAkC;gBAClC,+CAA+C;gBAC/C,MAAM,OAAO,GAAG,MAAM,CAAC;gBACvB,MAAM,OAAO,GAAG,MAAM,GAAG,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC,0BAA0B;gBACxE,MAAM,KAAK,GAAG,MAAM,GAAG,CAAC,KAAK,CAAC,CAAC;gBAC/B,MAAM,KAAK,GAAG,KAAK,GAAG,CAAC,CAAC;gBACxB,IAAI,KAAK,KAAK,CAAC,EAAE;oBACf,sDAAsD;oBACtD,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,eAAe,CAAC,KAAK,EAAE,WAAW,CAAC,OAAO,CAAC,CAAC,CAAC,CAAC;iBACzD;qBAAM;oBACL,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,eAAe,CAAC,KAAK,EAAE,WAAW,CAAC,OAAO,CAAC,CAAC,CAAC,CAAC;iBACzD;aACF;YACD,wFAAwF;YACxF,yEAAyE;YACzE,mFAAmF;YACnF,wEAAwE;YACxE,4DAA4D;YAC5D,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC;QAClB,CAAC;QAED,UAAU,CAAC,CAAI,EAAE,cAA2B,EAAE,CAAS,EAAE,SAAoB;YAC3E,aAAa;YACb,MAAM,CAAC,GAAW,CAAC,CAAC,YAAY,IAAI,CAAC,CAAC;YACtC,yDAAyD;YACzD,IAAI,IAAI,GAAG,cAAc,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;YACjC,IAAI,CAAC,IAAI,EAAE;gBACT,IAAI,GAAG,IAAI,CAAC,gBAAgB,CAAC,CAAC,EAAE,CAAC,CAAQ,CAAC;gBAC1C,IAAI,CAAC,KAAK,CAAC,EAAE;oBACX,cAAc,CAAC,GAAG,CAAC,CAAC,EAAE,SAAS,CAAC,IAAI,CAAC,CAAC,CAAC;iBACxC;aACF;YACD,OAAO,IAAI,CAAC,IAAI,CAAC,CAAC,EAAE,IAAI,EAAE,CAAC,CAAC,CAAC;QAC/B,CAAC;KACF,CAAC;AACJ,CAAC;AA/HD,oBA+HC;AAgBD,SAAgB,aAAa,CAAQ,KAAyB;IAC5D,IAAA,0BAAa,EAAC,KAAK,CAAC,EAAE,CAAC,CAAC;IACxB,IAAA,yBAAc,EACZ,KAAK,EACL;QACE,CAAC,EAAE,QAAQ;QACX,CAAC,EAAE,QAAQ;QACX,EAAE,EAAE,OAAO;QACX,EAAE,EAAE,OAAO;KACZ,EACD;QACE,UAAU,EAAE,eAAe;QAC3B,WAAW,EAAE,eAAe;KAC7B,CACF,CAAC;IACF,eAAe;IACf,OAAO,MAAM,CAAC,MAAM,CAAC;QACnB,GAAG,IAAA,oBAAO,EAAC,KAAK,CAAC,CAAC,EAAE,KAAK,CAAC,UAAU,CAAC;QACrC,GAAG,KAAK;QACR,GAAG,EAAE,CAAC,EAAE,KAAK,CAAC,EAAE,CAAC,KAAK,EAAE;KAChB,CAAC,CAAC;AACd,CAAC;AArBD,sCAqBC"}

View File

@@ -0,0 +1,89 @@
import * as ut from './utils.js';
import { FHash, Hex } from './utils.js';
import { Group, GroupConstructor, BasicCurve, AffinePoint } from './curve.js';
export type CurveType = BasicCurve<bigint> & {
a: bigint;
d: bigint;
hash: FHash;
randomBytes: (bytesLength?: number) => Uint8Array;
adjustScalarBytes?: (bytes: Uint8Array) => Uint8Array;
domain?: (data: Uint8Array, ctx: Uint8Array, phflag: boolean) => Uint8Array;
uvRatio?: (u: bigint, v: bigint) => {
isValid: boolean;
value: bigint;
};
prehash?: FHash;
mapToCurve?: (scalar: bigint[]) => AffinePoint<bigint>;
};
declare function validateOpts(curve: CurveType): Readonly<{
readonly nBitLength: number;
readonly nByteLength: number;
readonly Fp: import("./modular.js").IField<bigint>;
readonly n: bigint;
readonly h: bigint;
readonly hEff?: bigint | undefined;
readonly Gx: bigint;
readonly Gy: bigint;
readonly allowInfinityPoint?: boolean | undefined;
readonly a: bigint;
readonly d: bigint;
readonly hash: ut.FHash;
readonly randomBytes: (bytesLength?: number | undefined) => Uint8Array;
readonly adjustScalarBytes?: ((bytes: Uint8Array) => Uint8Array) | undefined;
readonly domain?: ((data: Uint8Array, ctx: Uint8Array, phflag: boolean) => Uint8Array) | undefined;
readonly uvRatio?: ((u: bigint, v: bigint) => {
isValid: boolean;
value: bigint;
}) | undefined;
readonly prehash?: ut.FHash | undefined;
readonly mapToCurve?: ((scalar: bigint[]) => AffinePoint<bigint>) | undefined;
readonly p: bigint;
}>;
export interface ExtPointType extends Group<ExtPointType> {
readonly ex: bigint;
readonly ey: bigint;
readonly ez: bigint;
readonly et: bigint;
get x(): bigint;
get y(): bigint;
assertValidity(): void;
multiply(scalar: bigint): ExtPointType;
multiplyUnsafe(scalar: bigint): ExtPointType;
isSmallOrder(): boolean;
isTorsionFree(): boolean;
clearCofactor(): ExtPointType;
toAffine(iz?: bigint): AffinePoint<bigint>;
toRawBytes(isCompressed?: boolean): Uint8Array;
toHex(isCompressed?: boolean): string;
}
export interface ExtPointConstructor extends GroupConstructor<ExtPointType> {
new (x: bigint, y: bigint, z: bigint, t: bigint): ExtPointType;
fromAffine(p: AffinePoint<bigint>): ExtPointType;
fromHex(hex: Hex): ExtPointType;
fromPrivateKey(privateKey: Hex): ExtPointType;
}
export type CurveFn = {
CURVE: ReturnType<typeof validateOpts>;
getPublicKey: (privateKey: Hex) => Uint8Array;
sign: (message: Hex, privateKey: Hex, options?: {
context?: Hex;
}) => Uint8Array;
verify: (sig: Hex, message: Hex, publicKey: Hex, options?: {
context?: Hex;
zip215: boolean;
}) => boolean;
ExtendedPoint: ExtPointConstructor;
utils: {
randomPrivateKey: () => Uint8Array;
getExtendedPublicKey: (key: Hex) => {
head: Uint8Array;
prefix: Uint8Array;
scalar: bigint;
point: ExtPointType;
pointBytes: Uint8Array;
};
};
};
export declare function twistedEdwards(curveDef: CurveType): CurveFn;
export {};
//# sourceMappingURL=edwards.d.ts.map

View File

@@ -0,0 +1 @@
{"version":3,"file":"edwards.d.ts","sourceRoot":"","sources":["../src/abstract/edwards.ts"],"names":[],"mappings":"AAGA,OAAO,KAAK,EAAE,MAAM,YAAY,CAAC;AACjC,OAAO,EAAe,KAAK,EAAE,GAAG,EAAE,MAAM,YAAY,CAAC;AACrD,OAAO,EAAE,KAAK,EAAE,gBAAgB,EAAQ,UAAU,EAAiB,WAAW,EAAE,MAAM,YAAY,CAAC;AAOnG,MAAM,MAAM,SAAS,GAAG,UAAU,CAAC,MAAM,CAAC,GAAG;IAC3C,CAAC,EAAE,MAAM,CAAC;IACV,CAAC,EAAE,MAAM,CAAC;IACV,IAAI,EAAE,KAAK,CAAC;IACZ,WAAW,EAAE,CAAC,WAAW,CAAC,EAAE,MAAM,KAAK,UAAU,CAAC;IAClD,iBAAiB,CAAC,EAAE,CAAC,KAAK,EAAE,UAAU,KAAK,UAAU,CAAC;IACtD,MAAM,CAAC,EAAE,CAAC,IAAI,EAAE,UAAU,EAAE,GAAG,EAAE,UAAU,EAAE,MAAM,EAAE,OAAO,KAAK,UAAU,CAAC;IAC5E,OAAO,CAAC,EAAE,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,KAAK;QAAE,OAAO,EAAE,OAAO,CAAC;QAAC,KAAK,EAAE,MAAM,CAAA;KAAE,CAAC;IACxE,OAAO,CAAC,EAAE,KAAK,CAAC;IAChB,UAAU,CAAC,EAAE,CAAC,MAAM,EAAE,MAAM,EAAE,KAAK,WAAW,CAAC,MAAM,CAAC,CAAC;CACxD,CAAC;AAKF,iBAAS,YAAY,CAAC,KAAK,EAAE,SAAS;;;;;;;;;;;;;;;;;;;;;;;GAmBrC;AAGD,MAAM,WAAW,YAAa,SAAQ,KAAK,CAAC,YAAY,CAAC;IACvD,QAAQ,CAAC,EAAE,EAAE,MAAM,CAAC;IACpB,QAAQ,CAAC,EAAE,EAAE,MAAM,CAAC;IACpB,QAAQ,CAAC,EAAE,EAAE,MAAM,CAAC;IACpB,QAAQ,CAAC,EAAE,EAAE,MAAM,CAAC;IACpB,IAAI,CAAC,IAAI,MAAM,CAAC;IAChB,IAAI,CAAC,IAAI,MAAM,CAAC;IAChB,cAAc,IAAI,IAAI,CAAC;IACvB,QAAQ,CAAC,MAAM,EAAE,MAAM,GAAG,YAAY,CAAC;IACvC,cAAc,CAAC,MAAM,EAAE,MAAM,GAAG,YAAY,CAAC;IAC7C,YAAY,IAAI,OAAO,CAAC;IACxB,aAAa,IAAI,OAAO,CAAC;IACzB,aAAa,IAAI,YAAY,CAAC;IAC9B,QAAQ,CAAC,EAAE,CAAC,EAAE,MAAM,GAAG,WAAW,CAAC,MAAM,CAAC,CAAC;IAC3C,UAAU,CAAC,YAAY,CAAC,EAAE,OAAO,GAAG,UAAU,CAAC;IAC/C,KAAK,CAAC,YAAY,CAAC,EAAE,OAAO,GAAG,MAAM,CAAC;CACvC;AAED,MAAM,WAAW,mBAAoB,SAAQ,gBAAgB,CAAC,YAAY,CAAC;IACzE,KAAK,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,GAAG,YAAY,CAAC;IAC/D,UAAU,CAAC,CAAC,EAAE,WAAW,CAAC,MAAM,CAAC,GAAG,YAAY,CAAC;IACjD,OAAO,CAAC,GAAG,EAAE,GAAG,GAAG,YAAY,CAAC;IAChC,cAAc,CAAC,UAAU,EAAE,GAAG,GAAG,YAAY,CAAC;CAC/C;AAED,MAAM,MAAM,OAAO,GAAG;IACpB,KAAK,EAAE,UAAU,CAAC,OAAO,YAAY,CAAC,CAAC;IACvC,YAAY,EAAE,CAAC,UAAU,EAAE,GAAG,KAAK,UAAU,CAAC;IAC9C,IAAI,EAAE,CAAC,OAAO,EAAE,GAAG,EAAE,UAAU,EAAE,GAAG,EAAE,OAAO,CAAC,EAAE;QAAE,OAAO,CAAC,EAAE,GAAG,CAAA;KAAE,KAAK,UAAU,CAAC;IACjF,MAAM,EAAE,CACN,GAAG,EAAE,GAAG,EACR,OAAO,EAAE,GAAG,EACZ,SAAS,EAAE,GAAG,EACd,OAAO,CAAC,EAAE;QAAE,OAAO,CAAC,EAAE,GAAG,CAAC;QAAC,MAAM,EAAE,OAAO,CAAA;KAAE,KACzC,OAAO,CAAC;IACb,aAAa,EAAE,mBAAmB,CAAC;IACnC,KAAK,EAAE;QACL,gBAAgB,EAAE,MAAM,UAAU,CAAC;QACnC,oBAAoB,EAAE,CAAC,GAAG,EAAE,GAAG,KAAK;YAClC,IAAI,EAAE,UAAU,CAAC;YACjB,MAAM,EAAE,UAAU,CAAC;YACnB,MAAM,EAAE,MAAM,CAAC;YACf,KAAK,EAAE,YAAY,CAAC;YACpB,UAAU,EAAE,UAAU,CAAC;SACxB,CAAC;KACH,CAAC;CACH,CAAC;AAGF,wBAAgB,cAAc,CAAC,QAAQ,EAAE,SAAS,GAAG,OAAO,CA8Z3D"}

View File

@@ -0,0 +1,429 @@
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.twistedEdwards = void 0;
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
// Twisted Edwards curve. The formula is: ax² + y² = 1 + dx²y²
const modular_js_1 = require("./modular.js");
const ut = require("./utils.js");
const utils_js_1 = require("./utils.js");
const curve_js_1 = require("./curve.js");
// Be friendly to bad ECMAScript parsers by not using bigint literals
// prettier-ignore
const _0n = BigInt(0), _1n = BigInt(1), _2n = BigInt(2), _8n = BigInt(8);
// verification rule is either zip215 or rfc8032 / nist186-5. Consult fromHex:
const VERIFY_DEFAULT = { zip215: true };
function validateOpts(curve) {
const opts = (0, curve_js_1.validateBasic)(curve);
ut.validateObject(curve, {
hash: 'function',
a: 'bigint',
d: 'bigint',
randomBytes: 'function',
}, {
adjustScalarBytes: 'function',
domain: 'function',
uvRatio: 'function',
mapToCurve: 'function',
});
// Set defaults
return Object.freeze({ ...opts });
}
// It is not generic twisted curve for now, but ed25519/ed448 generic implementation
function twistedEdwards(curveDef) {
const CURVE = validateOpts(curveDef);
const { Fp, n: CURVE_ORDER, prehash: prehash, hash: cHash, randomBytes, nByteLength, h: cofactor, } = CURVE;
const MASK = _2n << (BigInt(nByteLength * 8) - _1n);
const modP = Fp.create; // Function overrides
// sqrt(u/v)
const uvRatio = CURVE.uvRatio ||
((u, v) => {
try {
return { isValid: true, value: Fp.sqrt(u * Fp.inv(v)) };
}
catch (e) {
return { isValid: false, value: _0n };
}
});
const adjustScalarBytes = CURVE.adjustScalarBytes || ((bytes) => bytes); // NOOP
const domain = CURVE.domain ||
((data, ctx, phflag) => {
if (ctx.length || phflag)
throw new Error('Contexts/pre-hash are not supported');
return data;
}); // NOOP
const inBig = (n) => typeof n === 'bigint' && _0n < n; // n in [1..]
const inRange = (n, max) => inBig(n) && inBig(max) && n < max; // n in [1..max-1]
const in0MaskRange = (n) => n === _0n || inRange(n, MASK); // n in [0..MASK-1]
function assertInRange(n, max) {
// n in [1..max-1]
if (inRange(n, max))
return n;
throw new Error(`Expected valid scalar < ${max}, got ${typeof n} ${n}`);
}
function assertGE0(n) {
// n in [0..CURVE_ORDER-1]
return n === _0n ? n : assertInRange(n, CURVE_ORDER); // GE = prime subgroup, not full group
}
const pointPrecomputes = new Map();
function isPoint(other) {
if (!(other instanceof Point))
throw new Error('ExtendedPoint expected');
}
// Extended Point works in extended coordinates: (x, y, z, t) ∋ (x=x/z, y=y/z, t=xy).
// https://en.wikipedia.org/wiki/Twisted_Edwards_curve#Extended_coordinates
class Point {
constructor(ex, ey, ez, et) {
this.ex = ex;
this.ey = ey;
this.ez = ez;
this.et = et;
if (!in0MaskRange(ex))
throw new Error('x required');
if (!in0MaskRange(ey))
throw new Error('y required');
if (!in0MaskRange(ez))
throw new Error('z required');
if (!in0MaskRange(et))
throw new Error('t required');
}
get x() {
return this.toAffine().x;
}
get y() {
return this.toAffine().y;
}
static fromAffine(p) {
if (p instanceof Point)
throw new Error('extended point not allowed');
const { x, y } = p || {};
if (!in0MaskRange(x) || !in0MaskRange(y))
throw new Error('invalid affine point');
return new Point(x, y, _1n, modP(x * y));
}
static normalizeZ(points) {
const toInv = Fp.invertBatch(points.map((p) => p.ez));
return points.map((p, i) => p.toAffine(toInv[i])).map(Point.fromAffine);
}
// "Private method", don't use it directly
_setWindowSize(windowSize) {
this._WINDOW_SIZE = windowSize;
pointPrecomputes.delete(this);
}
// Not required for fromHex(), which always creates valid points.
// Could be useful for fromAffine().
assertValidity() {
const { a, d } = CURVE;
if (this.is0())
throw new Error('bad point: ZERO'); // TODO: optimize, with vars below?
// Equation in affine coordinates: ax² + y² = 1 + dx²y²
// Equation in projective coordinates (X/Z, Y/Z, Z): (aX² + Y²)Z² = Z⁴ + dX²Y²
const { ex: X, ey: Y, ez: Z, et: T } = this;
const X2 = modP(X * X); // X²
const Y2 = modP(Y * Y); // Y²
const Z2 = modP(Z * Z); // Z²
const Z4 = modP(Z2 * Z2); // Z⁴
const aX2 = modP(X2 * a); // aX²
const left = modP(Z2 * modP(aX2 + Y2)); // (aX² + Y²)Z²
const right = modP(Z4 + modP(d * modP(X2 * Y2))); // Z⁴ + dX²Y²
if (left !== right)
throw new Error('bad point: equation left != right (1)');
// In Extended coordinates we also have T, which is x*y=T/Z: check X*Y == Z*T
const XY = modP(X * Y);
const ZT = modP(Z * T);
if (XY !== ZT)
throw new Error('bad point: equation left != right (2)');
}
// Compare one point to another.
equals(other) {
isPoint(other);
const { ex: X1, ey: Y1, ez: Z1 } = this;
const { ex: X2, ey: Y2, ez: Z2 } = other;
const X1Z2 = modP(X1 * Z2);
const X2Z1 = modP(X2 * Z1);
const Y1Z2 = modP(Y1 * Z2);
const Y2Z1 = modP(Y2 * Z1);
return X1Z2 === X2Z1 && Y1Z2 === Y2Z1;
}
is0() {
return this.equals(Point.ZERO);
}
negate() {
// Flips point sign to a negative one (-x, y in affine coords)
return new Point(modP(-this.ex), this.ey, this.ez, modP(-this.et));
}
// Fast algo for doubling Extended Point.
// https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html#doubling-dbl-2008-hwcd
// Cost: 4M + 4S + 1*a + 6add + 1*2.
double() {
const { a } = CURVE;
const { ex: X1, ey: Y1, ez: Z1 } = this;
const A = modP(X1 * X1); // A = X12
const B = modP(Y1 * Y1); // B = Y12
const C = modP(_2n * modP(Z1 * Z1)); // C = 2*Z12
const D = modP(a * A); // D = a*A
const x1y1 = X1 + Y1;
const E = modP(modP(x1y1 * x1y1) - A - B); // E = (X1+Y1)2-A-B
const G = D + B; // G = D+B
const F = G - C; // F = G-C
const H = D - B; // H = D-B
const X3 = modP(E * F); // X3 = E*F
const Y3 = modP(G * H); // Y3 = G*H
const T3 = modP(E * H); // T3 = E*H
const Z3 = modP(F * G); // Z3 = F*G
return new Point(X3, Y3, Z3, T3);
}
// Fast algo for adding 2 Extended Points.
// https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html#addition-add-2008-hwcd
// Cost: 9M + 1*a + 1*d + 7add.
add(other) {
isPoint(other);
const { a, d } = CURVE;
const { ex: X1, ey: Y1, ez: Z1, et: T1 } = this;
const { ex: X2, ey: Y2, ez: Z2, et: T2 } = other;
// Faster algo for adding 2 Extended Points when curve's a=-1.
// http://hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#addition-add-2008-hwcd-4
// Cost: 8M + 8add + 2*2.
// Note: It does not check whether the `other` point is valid.
if (a === BigInt(-1)) {
const A = modP((Y1 - X1) * (Y2 + X2));
const B = modP((Y1 + X1) * (Y2 - X2));
const F = modP(B - A);
if (F === _0n)
return this.double(); // Same point. Tests say it doesn't affect timing
const C = modP(Z1 * _2n * T2);
const D = modP(T1 * _2n * Z2);
const E = D + C;
const G = B + A;
const H = D - C;
const X3 = modP(E * F);
const Y3 = modP(G * H);
const T3 = modP(E * H);
const Z3 = modP(F * G);
return new Point(X3, Y3, Z3, T3);
}
const A = modP(X1 * X2); // A = X1*X2
const B = modP(Y1 * Y2); // B = Y1*Y2
const C = modP(T1 * d * T2); // C = T1*d*T2
const D = modP(Z1 * Z2); // D = Z1*Z2
const E = modP((X1 + Y1) * (X2 + Y2) - A - B); // E = (X1+Y1)*(X2+Y2)-A-B
const F = D - C; // F = D-C
const G = D + C; // G = D+C
const H = modP(B - a * A); // H = B-a*A
const X3 = modP(E * F); // X3 = E*F
const Y3 = modP(G * H); // Y3 = G*H
const T3 = modP(E * H); // T3 = E*H
const Z3 = modP(F * G); // Z3 = F*G
return new Point(X3, Y3, Z3, T3);
}
subtract(other) {
return this.add(other.negate());
}
wNAF(n) {
return wnaf.wNAFCached(this, pointPrecomputes, n, Point.normalizeZ);
}
// Constant-time multiplication.
multiply(scalar) {
const { p, f } = this.wNAF(assertInRange(scalar, CURVE_ORDER));
return Point.normalizeZ([p, f])[0];
}
// Non-constant-time multiplication. Uses double-and-add algorithm.
// It's faster, but should only be used when you don't care about
// an exposed private key e.g. sig verification.
// Does NOT allow scalars higher than CURVE.n.
multiplyUnsafe(scalar) {
let n = assertGE0(scalar); // 0 <= scalar < CURVE.n
if (n === _0n)
return I;
if (this.equals(I) || n === _1n)
return this;
if (this.equals(G))
return this.wNAF(n).p;
return wnaf.unsafeLadder(this, n);
}
// Checks if point is of small order.
// If you add something to small order point, you will have "dirty"
// point with torsion component.
// Multiplies point by cofactor and checks if the result is 0.
isSmallOrder() {
return this.multiplyUnsafe(cofactor).is0();
}
// Multiplies point by curve order and checks if the result is 0.
// Returns `false` is the point is dirty.
isTorsionFree() {
return wnaf.unsafeLadder(this, CURVE_ORDER).is0();
}
// Converts Extended point to default (x, y) coordinates.
// Can accept precomputed Z^-1 - for example, from invertBatch.
toAffine(iz) {
const { ex: x, ey: y, ez: z } = this;
const is0 = this.is0();
if (iz == null)
iz = is0 ? _8n : Fp.inv(z); // 8 was chosen arbitrarily
const ax = modP(x * iz);
const ay = modP(y * iz);
const zz = modP(z * iz);
if (is0)
return { x: _0n, y: _1n };
if (zz !== _1n)
throw new Error('invZ was invalid');
return { x: ax, y: ay };
}
clearCofactor() {
const { h: cofactor } = CURVE;
if (cofactor === _1n)
return this;
return this.multiplyUnsafe(cofactor);
}
// Converts hash string or Uint8Array to Point.
// Uses algo from RFC8032 5.1.3.
static fromHex(hex, zip215 = false) {
const { d, a } = CURVE;
const len = Fp.BYTES;
hex = (0, utils_js_1.ensureBytes)('pointHex', hex, len); // copy hex to a new array
const normed = hex.slice(); // copy again, we'll manipulate it
const lastByte = hex[len - 1]; // select last byte
normed[len - 1] = lastByte & ~0x80; // clear last bit
const y = ut.bytesToNumberLE(normed);
if (y === _0n) {
// y=0 is allowed
}
else {
// RFC8032 prohibits >= p, but ZIP215 doesn't
if (zip215)
assertInRange(y, MASK); // zip215=true [1..P-1] (2^255-19-1 for ed25519)
else
assertInRange(y, Fp.ORDER); // zip215=false [1..MASK-1] (2^256-1 for ed25519)
}
// Ed25519: x² = (y²-1)/(dy²+1) mod p. Ed448: x² = (y²-1)/(dy²-1) mod p. Generic case:
// ax²+y²=1+dx²y² => y²-1=dx²y²-ax² => y²-1=x²(dy²-a) => x²=(y²-1)/(dy²-a)
const y2 = modP(y * y); // denominator is always non-0 mod p.
const u = modP(y2 - _1n); // u = y² - 1
const v = modP(d * y2 - a); // v = d y² + 1.
let { isValid, value: x } = uvRatio(u, v); // √(u/v)
if (!isValid)
throw new Error('Point.fromHex: invalid y coordinate');
const isXOdd = (x & _1n) === _1n; // There are 2 square roots. Use x_0 bit to select proper
const isLastByteOdd = (lastByte & 0x80) !== 0; // x_0, last bit
if (!zip215 && x === _0n && isLastByteOdd)
// if x=0 and x_0 = 1, fail
throw new Error('Point.fromHex: x=0 and x_0=1');
if (isLastByteOdd !== isXOdd)
x = modP(-x); // if x_0 != x mod 2, set x = p-x
return Point.fromAffine({ x, y });
}
static fromPrivateKey(privKey) {
return getExtendedPublicKey(privKey).point;
}
toRawBytes() {
const { x, y } = this.toAffine();
const bytes = ut.numberToBytesLE(y, Fp.BYTES); // each y has 2 x values (x, -y)
bytes[bytes.length - 1] |= x & _1n ? 0x80 : 0; // when compressing, it's enough to store y
return bytes; // and use the last byte to encode sign of x
}
toHex() {
return ut.bytesToHex(this.toRawBytes()); // Same as toRawBytes, but returns string.
}
}
Point.BASE = new Point(CURVE.Gx, CURVE.Gy, _1n, modP(CURVE.Gx * CURVE.Gy));
Point.ZERO = new Point(_0n, _1n, _1n, _0n); // 0, 1, 1, 0
const { BASE: G, ZERO: I } = Point;
const wnaf = (0, curve_js_1.wNAF)(Point, nByteLength * 8);
function modN(a) {
return (0, modular_js_1.mod)(a, CURVE_ORDER);
}
// Little-endian SHA512 with modulo n
function modN_LE(hash) {
return modN(ut.bytesToNumberLE(hash));
}
/** Convenience method that creates public key and other stuff. RFC8032 5.1.5 */
function getExtendedPublicKey(key) {
const len = nByteLength;
key = (0, utils_js_1.ensureBytes)('private key', key, len);
// Hash private key with curve's hash function to produce uniformingly random input
// Check byte lengths: ensure(64, h(ensure(32, key)))
const hashed = (0, utils_js_1.ensureBytes)('hashed private key', cHash(key), 2 * len);
const head = adjustScalarBytes(hashed.slice(0, len)); // clear first half bits, produce FE
const prefix = hashed.slice(len, 2 * len); // second half is called key prefix (5.1.6)
const scalar = modN_LE(head); // The actual private scalar
const point = G.multiply(scalar); // Point on Edwards curve aka public key
const pointBytes = point.toRawBytes(); // Uint8Array representation
return { head, prefix, scalar, point, pointBytes };
}
// Calculates EdDSA pub key. RFC8032 5.1.5. Privkey is hashed. Use first half with 3 bits cleared
function getPublicKey(privKey) {
return getExtendedPublicKey(privKey).pointBytes;
}
// int('LE', SHA512(dom2(F, C) || msgs)) mod N
function hashDomainToScalar(context = new Uint8Array(), ...msgs) {
const msg = ut.concatBytes(...msgs);
return modN_LE(cHash(domain(msg, (0, utils_js_1.ensureBytes)('context', context), !!prehash)));
}
/** Signs message with privateKey. RFC8032 5.1.6 */
function sign(msg, privKey, options = {}) {
msg = (0, utils_js_1.ensureBytes)('message', msg);
if (prehash)
msg = prehash(msg); // for ed25519ph etc.
const { prefix, scalar, pointBytes } = getExtendedPublicKey(privKey);
const r = hashDomainToScalar(options.context, prefix, msg); // r = dom2(F, C) || prefix || PH(M)
const R = G.multiply(r).toRawBytes(); // R = rG
const k = hashDomainToScalar(options.context, R, pointBytes, msg); // R || A || PH(M)
const s = modN(r + k * scalar); // S = (r + k * s) mod L
assertGE0(s); // 0 <= s < l
const res = ut.concatBytes(R, ut.numberToBytesLE(s, Fp.BYTES));
return (0, utils_js_1.ensureBytes)('result', res, nByteLength * 2); // 64-byte signature
}
const verifyOpts = VERIFY_DEFAULT;
function verify(sig, msg, publicKey, options = verifyOpts) {
const { context, zip215 } = options;
const len = Fp.BYTES; // Verifies EdDSA signature against message and public key. RFC8032 5.1.7.
sig = (0, utils_js_1.ensureBytes)('signature', sig, 2 * len); // An extended group equation is checked.
msg = (0, utils_js_1.ensureBytes)('message', msg);
if (prehash)
msg = prehash(msg); // for ed25519ph, etc
const s = ut.bytesToNumberLE(sig.slice(len, 2 * len));
// zip215: true is good for consensus-critical apps and allows points < 2^256
// zip215: false follows RFC8032 / NIST186-5 and restricts points to CURVE.p
let A, R, SB;
try {
A = Point.fromHex(publicKey, zip215);
R = Point.fromHex(sig.slice(0, len), zip215);
SB = G.multiplyUnsafe(s); // 0 <= s < l is done inside
}
catch (error) {
return false;
}
if (!zip215 && A.isSmallOrder())
return false;
const k = hashDomainToScalar(context, R.toRawBytes(), A.toRawBytes(), msg);
const RkA = R.add(A.multiplyUnsafe(k));
// [8][S]B = [8]R + [8][k]A'
return RkA.subtract(SB).clearCofactor().equals(Point.ZERO);
}
G._setWindowSize(8); // Enable precomputes. Slows down first publicKey computation by 20ms.
const utils = {
getExtendedPublicKey,
// ed25519 private keys are uniform 32b. No need to check for modulo bias, like in secp256k1.
randomPrivateKey: () => randomBytes(Fp.BYTES),
/**
* We're doing scalar multiplication (used in getPublicKey etc) with precomputed BASE_POINT
* values. This slows down first getPublicKey() by milliseconds (see Speed section),
* but allows to speed-up subsequent getPublicKey() calls up to 20x.
* @param windowSize 2, 4, 8, 16
*/
precompute(windowSize = 8, point = Point.BASE) {
point._setWindowSize(windowSize);
point.multiply(BigInt(3));
return point;
},
};
return {
CURVE,
getPublicKey,
sign,
verify,
ExtendedPoint: Point,
utils,
};
}
exports.twistedEdwards = twistedEdwards;
//# sourceMappingURL=edwards.js.map

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,57 @@
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
import type { Group, GroupConstructor, AffinePoint } from './curve.js';
import { IField } from './modular.js';
import { CHash } from './utils.js';
/**
* * `DST` is a domain separation tag, defined in section 2.2.5
* * `p` characteristic of F, where F is a finite field of characteristic p and order q = p^m
* * `m` is extension degree (1 for prime fields)
* * `k` is the target security target in bits (e.g. 128), from section 5.1
* * `expand` is `xmd` (SHA2, SHA3, BLAKE) or `xof` (SHAKE, BLAKE-XOF)
* * `hash` conforming to `utils.CHash` interface, with `outputLen` / `blockLen` props
*/
type UnicodeOrBytes = string | Uint8Array;
export type Opts = {
DST: UnicodeOrBytes;
p: bigint;
m: number;
k: number;
expand: 'xmd' | 'xof';
hash: CHash;
};
export declare function expand_message_xmd(msg: Uint8Array, DST: Uint8Array, lenInBytes: number, H: CHash): Uint8Array;
export declare function expand_message_xof(msg: Uint8Array, DST: Uint8Array, lenInBytes: number, k: number, H: CHash): Uint8Array;
/**
* Hashes arbitrary-length byte strings to a list of one or more elements of a finite field F
* https://www.rfc-editor.org/rfc/rfc9380#section-5.2
* @param msg a byte string containing the message to hash
* @param count the number of elements of F to output
* @param options `{DST: string, p: bigint, m: number, k: number, expand: 'xmd' | 'xof', hash: H}`, see above
* @returns [u_0, ..., u_(count - 1)], a list of field elements.
*/
export declare function hash_to_field(msg: Uint8Array, count: number, options: Opts): bigint[][];
export declare function isogenyMap<T, F extends IField<T>>(field: F, map: [T[], T[], T[], T[]]): (x: T, y: T) => {
x: T;
y: T;
};
export interface H2CPoint<T> extends Group<H2CPoint<T>> {
add(rhs: H2CPoint<T>): H2CPoint<T>;
toAffine(iz?: bigint): AffinePoint<T>;
clearCofactor(): H2CPoint<T>;
assertValidity(): void;
}
export interface H2CPointConstructor<T> extends GroupConstructor<H2CPoint<T>> {
fromAffine(ap: AffinePoint<T>): H2CPoint<T>;
}
export type MapToCurve<T> = (scalar: bigint[]) => AffinePoint<T>;
export type htfBasicOpts = {
DST: UnicodeOrBytes;
};
export declare function createHasher<T>(Point: H2CPointConstructor<T>, mapToCurve: MapToCurve<T>, def: Opts & {
encodeDST?: UnicodeOrBytes;
}): {
hashToCurve(msg: Uint8Array, options?: htfBasicOpts): H2CPoint<T>;
encodeToCurve(msg: Uint8Array, options?: htfBasicOpts): H2CPoint<T>;
};
export {};
//# sourceMappingURL=hash-to-curve.d.ts.map

View File

@@ -0,0 +1 @@
{"version":3,"file":"hash-to-curve.d.ts","sourceRoot":"","sources":["../src/abstract/hash-to-curve.ts"],"names":[],"mappings":"AAAA,sEAAsE;AACtE,OAAO,KAAK,EAAE,KAAK,EAAE,gBAAgB,EAAE,WAAW,EAAE,MAAM,YAAY,CAAC;AACvE,OAAO,EAAO,MAAM,EAAE,MAAM,cAAc,CAAC;AAC3C,OAAO,EAAmB,KAAK,EAA4C,MAAM,YAAY,CAAC;AAE9F;;;;;;;GAOG;AACH,KAAK,cAAc,GAAG,MAAM,GAAG,UAAU,CAAC;AAC1C,MAAM,MAAM,IAAI,GAAG;IACjB,GAAG,EAAE,cAAc,CAAC;IACpB,CAAC,EAAE,MAAM,CAAC;IACV,CAAC,EAAE,MAAM,CAAC;IACV,CAAC,EAAE,MAAM,CAAC;IACV,MAAM,EAAE,KAAK,GAAG,KAAK,CAAC;IACtB,IAAI,EAAE,KAAK,CAAC;CACb,CAAC;AAyCF,wBAAgB,kBAAkB,CAChC,GAAG,EAAE,UAAU,EACf,GAAG,EAAE,UAAU,EACf,UAAU,EAAE,MAAM,EAClB,CAAC,EAAE,KAAK,GACP,UAAU,CAqBZ;AAOD,wBAAgB,kBAAkB,CAChC,GAAG,EAAE,UAAU,EACf,GAAG,EAAE,UAAU,EACf,UAAU,EAAE,MAAM,EAClB,CAAC,EAAE,MAAM,EACT,CAAC,EAAE,KAAK,GACP,UAAU,CAqBZ;AAED;;;;;;;GAOG;AACH,wBAAgB,aAAa,CAAC,GAAG,EAAE,UAAU,EAAE,KAAK,EAAE,MAAM,EAAE,OAAO,EAAE,IAAI,GAAG,MAAM,EAAE,EAAE,CAqCvF;AAED,wBAAgB,UAAU,CAAC,CAAC,EAAE,CAAC,SAAS,MAAM,CAAC,CAAC,CAAC,EAAE,KAAK,EAAE,CAAC,EAAE,GAAG,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,CAAC,OAGzE,CAAC,KAAK,CAAC;;;EAQnB;AAED,MAAM,WAAW,QAAQ,CAAC,CAAC,CAAE,SAAQ,KAAK,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC;IACrD,GAAG,CAAC,GAAG,EAAE,QAAQ,CAAC,CAAC,CAAC,GAAG,QAAQ,CAAC,CAAC,CAAC,CAAC;IACnC,QAAQ,CAAC,EAAE,CAAC,EAAE,MAAM,GAAG,WAAW,CAAC,CAAC,CAAC,CAAC;IACtC,aAAa,IAAI,QAAQ,CAAC,CAAC,CAAC,CAAC;IAC7B,cAAc,IAAI,IAAI,CAAC;CACxB;AAED,MAAM,WAAW,mBAAmB,CAAC,CAAC,CAAE,SAAQ,gBAAgB,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC;IAC3E,UAAU,CAAC,EAAE,EAAE,WAAW,CAAC,CAAC,CAAC,GAAG,QAAQ,CAAC,CAAC,CAAC,CAAC;CAC7C;AAED,MAAM,MAAM,UAAU,CAAC,CAAC,IAAI,CAAC,MAAM,EAAE,MAAM,EAAE,KAAK,WAAW,CAAC,CAAC,CAAC,CAAC;AAIjE,MAAM,MAAM,YAAY,GAAG;IAAE,GAAG,EAAE,cAAc,CAAA;CAAE,CAAC;AAEnD,wBAAgB,YAAY,CAAC,CAAC,EAC5B,KAAK,EAAE,mBAAmB,CAAC,CAAC,CAAC,EAC7B,UAAU,EAAE,UAAU,CAAC,CAAC,CAAC,EACzB,GAAG,EAAE,IAAI,GAAG;IAAE,SAAS,CAAC,EAAE,cAAc,CAAA;CAAE;qBAMvB,UAAU,YAAY,YAAY;uBAWhC,UAAU,YAAY,YAAY;EAOxD"}

View File

@@ -0,0 +1,181 @@
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.createHasher = exports.isogenyMap = exports.hash_to_field = exports.expand_message_xof = exports.expand_message_xmd = void 0;
const modular_js_1 = require("./modular.js");
const utils_js_1 = require("./utils.js");
function validateDST(dst) {
if (dst instanceof Uint8Array)
return dst;
if (typeof dst === 'string')
return (0, utils_js_1.utf8ToBytes)(dst);
throw new Error('DST must be Uint8Array or string');
}
// Octet Stream to Integer. "spec" implementation of os2ip is 2.5x slower vs bytesToNumberBE.
const os2ip = utils_js_1.bytesToNumberBE;
// Integer to Octet Stream (numberToBytesBE)
function i2osp(value, length) {
if (value < 0 || value >= 1 << (8 * length)) {
throw new Error(`bad I2OSP call: value=${value} length=${length}`);
}
const res = Array.from({ length }).fill(0);
for (let i = length - 1; i >= 0; i--) {
res[i] = value & 0xff;
value >>>= 8;
}
return new Uint8Array(res);
}
function strxor(a, b) {
const arr = new Uint8Array(a.length);
for (let i = 0; i < a.length; i++) {
arr[i] = a[i] ^ b[i];
}
return arr;
}
function isBytes(item) {
if (!(item instanceof Uint8Array))
throw new Error('Uint8Array expected');
}
function isNum(item) {
if (!Number.isSafeInteger(item))
throw new Error('number expected');
}
// Produces a uniformly random byte string using a cryptographic hash function H that outputs b bits
// https://www.rfc-editor.org/rfc/rfc9380#section-5.3.1
function expand_message_xmd(msg, DST, lenInBytes, H) {
isBytes(msg);
isBytes(DST);
isNum(lenInBytes);
// https://www.rfc-editor.org/rfc/rfc9380#section-5.3.3
if (DST.length > 255)
DST = H((0, utils_js_1.concatBytes)((0, utils_js_1.utf8ToBytes)('H2C-OVERSIZE-DST-'), DST));
const { outputLen: b_in_bytes, blockLen: r_in_bytes } = H;
const ell = Math.ceil(lenInBytes / b_in_bytes);
if (ell > 255)
throw new Error('Invalid xmd length');
const DST_prime = (0, utils_js_1.concatBytes)(DST, i2osp(DST.length, 1));
const Z_pad = i2osp(0, r_in_bytes);
const l_i_b_str = i2osp(lenInBytes, 2); // len_in_bytes_str
const b = new Array(ell);
const b_0 = H((0, utils_js_1.concatBytes)(Z_pad, msg, l_i_b_str, i2osp(0, 1), DST_prime));
b[0] = H((0, utils_js_1.concatBytes)(b_0, i2osp(1, 1), DST_prime));
for (let i = 1; i <= ell; i++) {
const args = [strxor(b_0, b[i - 1]), i2osp(i + 1, 1), DST_prime];
b[i] = H((0, utils_js_1.concatBytes)(...args));
}
const pseudo_random_bytes = (0, utils_js_1.concatBytes)(...b);
return pseudo_random_bytes.slice(0, lenInBytes);
}
exports.expand_message_xmd = expand_message_xmd;
// Produces a uniformly random byte string using an extendable-output function (XOF) H.
// 1. The collision resistance of H MUST be at least k bits.
// 2. H MUST be an XOF that has been proved indifferentiable from
// a random oracle under a reasonable cryptographic assumption.
// https://www.rfc-editor.org/rfc/rfc9380#section-5.3.2
function expand_message_xof(msg, DST, lenInBytes, k, H) {
isBytes(msg);
isBytes(DST);
isNum(lenInBytes);
// https://www.rfc-editor.org/rfc/rfc9380#section-5.3.3
// DST = H('H2C-OVERSIZE-DST-' || a_very_long_DST, Math.ceil((lenInBytes * k) / 8));
if (DST.length > 255) {
const dkLen = Math.ceil((2 * k) / 8);
DST = H.create({ dkLen }).update((0, utils_js_1.utf8ToBytes)('H2C-OVERSIZE-DST-')).update(DST).digest();
}
if (lenInBytes > 65535 || DST.length > 255)
throw new Error('expand_message_xof: invalid lenInBytes');
return (H.create({ dkLen: lenInBytes })
.update(msg)
.update(i2osp(lenInBytes, 2))
// 2. DST_prime = DST || I2OSP(len(DST), 1)
.update(DST)
.update(i2osp(DST.length, 1))
.digest());
}
exports.expand_message_xof = expand_message_xof;
/**
* Hashes arbitrary-length byte strings to a list of one or more elements of a finite field F
* https://www.rfc-editor.org/rfc/rfc9380#section-5.2
* @param msg a byte string containing the message to hash
* @param count the number of elements of F to output
* @param options `{DST: string, p: bigint, m: number, k: number, expand: 'xmd' | 'xof', hash: H}`, see above
* @returns [u_0, ..., u_(count - 1)], a list of field elements.
*/
function hash_to_field(msg, count, options) {
(0, utils_js_1.validateObject)(options, {
DST: 'stringOrUint8Array',
p: 'bigint',
m: 'isSafeInteger',
k: 'isSafeInteger',
hash: 'hash',
});
const { p, k, m, hash, expand, DST: _DST } = options;
isBytes(msg);
isNum(count);
const DST = validateDST(_DST);
const log2p = p.toString(2).length;
const L = Math.ceil((log2p + k) / 8); // section 5.1 of ietf draft link above
const len_in_bytes = count * m * L;
let prb; // pseudo_random_bytes
if (expand === 'xmd') {
prb = expand_message_xmd(msg, DST, len_in_bytes, hash);
}
else if (expand === 'xof') {
prb = expand_message_xof(msg, DST, len_in_bytes, k, hash);
}
else if (expand === '_internal_pass') {
// for internal tests only
prb = msg;
}
else {
throw new Error('expand must be "xmd" or "xof"');
}
const u = new Array(count);
for (let i = 0; i < count; i++) {
const e = new Array(m);
for (let j = 0; j < m; j++) {
const elm_offset = L * (j + i * m);
const tv = prb.subarray(elm_offset, elm_offset + L);
e[j] = (0, modular_js_1.mod)(os2ip(tv), p);
}
u[i] = e;
}
return u;
}
exports.hash_to_field = hash_to_field;
function isogenyMap(field, map) {
// Make same order as in spec
const COEFF = map.map((i) => Array.from(i).reverse());
return (x, y) => {
const [xNum, xDen, yNum, yDen] = COEFF.map((val) => val.reduce((acc, i) => field.add(field.mul(acc, x), i)));
x = field.div(xNum, xDen); // xNum / xDen
y = field.mul(y, field.div(yNum, yDen)); // y * (yNum / yDev)
return { x, y };
};
}
exports.isogenyMap = isogenyMap;
function createHasher(Point, mapToCurve, def) {
if (typeof mapToCurve !== 'function')
throw new Error('mapToCurve() must be defined');
return {
// Encodes byte string to elliptic curve.
// hash_to_curve from https://www.rfc-editor.org/rfc/rfc9380#section-3
hashToCurve(msg, options) {
const u = hash_to_field(msg, 2, { ...def, DST: def.DST, ...options });
const u0 = Point.fromAffine(mapToCurve(u[0]));
const u1 = Point.fromAffine(mapToCurve(u[1]));
const P = u0.add(u1).clearCofactor();
P.assertValidity();
return P;
},
// Encodes byte string to elliptic curve.
// encode_to_curve from https://www.rfc-editor.org/rfc/rfc9380#section-3
encodeToCurve(msg, options) {
const u = hash_to_field(msg, 1, { ...def, DST: def.encodeDST, ...options });
const P = Point.fromAffine(mapToCurve(u[0])).clearCofactor();
P.assertValidity();
return P;
},
};
}
exports.createHasher = createHasher;
//# sourceMappingURL=hash-to-curve.js.map

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,123 @@
export declare function mod(a: bigint, b: bigint): bigint;
/**
* Efficiently raise num to power and do modular division.
* Unsafe in some contexts: uses ladder, so can expose bigint bits.
* @example
* pow(2n, 6n, 11n) // 64n % 11n == 9n
*/
export declare function pow(num: bigint, power: bigint, modulo: bigint): bigint;
export declare function pow2(x: bigint, power: bigint, modulo: bigint): bigint;
export declare function invert(number: bigint, modulo: bigint): bigint;
/**
* Tonelli-Shanks square root search algorithm.
* 1. https://eprint.iacr.org/2012/685.pdf (page 12)
* 2. Square Roots from 1; 24, 51, 10 to Dan Shanks
* Will start an infinite loop if field order P is not prime.
* @param P field order
* @returns function that takes field Fp (created from P) and number n
*/
export declare function tonelliShanks(P: bigint): <T>(Fp: IField<T>, n: T) => T;
export declare function FpSqrt(P: bigint): <T>(Fp: IField<T>, n: T) => T;
export declare const isNegativeLE: (num: bigint, modulo: bigint) => boolean;
export interface IField<T> {
ORDER: bigint;
BYTES: number;
BITS: number;
MASK: bigint;
ZERO: T;
ONE: T;
create: (num: T) => T;
isValid: (num: T) => boolean;
is0: (num: T) => boolean;
neg(num: T): T;
inv(num: T): T;
sqrt(num: T): T;
sqr(num: T): T;
eql(lhs: T, rhs: T): boolean;
add(lhs: T, rhs: T): T;
sub(lhs: T, rhs: T): T;
mul(lhs: T, rhs: T | bigint): T;
pow(lhs: T, power: bigint): T;
div(lhs: T, rhs: T | bigint): T;
addN(lhs: T, rhs: T): T;
subN(lhs: T, rhs: T): T;
mulN(lhs: T, rhs: T | bigint): T;
sqrN(num: T): T;
isOdd?(num: T): boolean;
pow(lhs: T, power: bigint): T;
invertBatch: (lst: T[]) => T[];
toBytes(num: T): Uint8Array;
fromBytes(bytes: Uint8Array): T;
cmov(a: T, b: T, c: boolean): T;
}
export declare function validateField<T>(field: IField<T>): IField<T>;
/**
* Same as `pow` but for Fp: non-constant-time.
* Unsafe in some contexts: uses ladder, so can expose bigint bits.
*/
export declare function FpPow<T>(f: IField<T>, num: T, power: bigint): T;
/**
* Efficiently invert an array of Field elements.
* `inv(0)` will return `undefined` here: make sure to throw an error.
*/
export declare function FpInvertBatch<T>(f: IField<T>, nums: T[]): T[];
export declare function FpDiv<T>(f: IField<T>, lhs: T, rhs: T | bigint): T;
export declare function FpIsSquare<T>(f: IField<T>): (x: T) => boolean;
export declare function nLength(n: bigint, nBitLength?: number): {
nBitLength: number;
nByteLength: number;
};
type FpField = IField<bigint> & Required<Pick<IField<bigint>, 'isOdd'>>;
/**
* Initializes a finite field over prime. **Non-primes are not supported.**
* Do not init in loop: slow. Very fragile: always run a benchmark on a change.
* Major performance optimizations:
* * a) denormalized operations like mulN instead of mul
* * b) same object shape: never add or remove keys
* * c) Object.freeze
* @param ORDER prime positive bigint
* @param bitLen how many bits the field consumes
* @param isLE (def: false) if encoding / decoding should be in little-endian
* @param redef optional faster redefinitions of sqrt and other methods
*/
export declare function Field(ORDER: bigint, bitLen?: number, isLE?: boolean, redef?: Partial<IField<bigint>>): Readonly<FpField>;
export declare function FpSqrtOdd<T>(Fp: IField<T>, elm: T): T;
export declare function FpSqrtEven<T>(Fp: IField<T>, elm: T): T;
/**
* "Constant-time" private key generation utility.
* Same as mapKeyToField, but accepts less bytes (40 instead of 48 for 32-byte field).
* Which makes it slightly more biased, less secure.
* @deprecated use mapKeyToField instead
*/
export declare function hashToPrivateScalar(hash: string | Uint8Array, groupOrder: bigint, isLE?: boolean): bigint;
/**
* Returns total number of bytes consumed by the field element.
* For example, 32 bytes for usual 256-bit weierstrass curve.
* @param fieldOrder number of field elements, usually CURVE.n
* @returns byte length of field
*/
export declare function getFieldBytesLength(fieldOrder: bigint): number;
/**
* Returns minimal amount of bytes that can be safely reduced
* by field order.
* Should be 2^-128 for 128-bit curve such as P256.
* @param fieldOrder number of field elements, usually CURVE.n
* @returns byte length of target hash
*/
export declare function getMinHashLength(fieldOrder: bigint): number;
/**
* "Constant-time" private key generation utility.
* Can take (n + n/2) or more bytes of uniform input e.g. from CSPRNG or KDF
* and convert them into private scalar, with the modulo bias being negligible.
* Needs at least 48 bytes of input for 32-byte private key.
* https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/
* FIPS 186-5, A.2 https://csrc.nist.gov/publications/detail/fips/186/5/final
* RFC 9380, https://www.rfc-editor.org/rfc/rfc9380#section-5
* @param hash hash output from SHA3 or a similar function
* @param groupOrder size of subgroup - (e.g. secp256k1.CURVE.n)
* @param isLE interpret hash bytes as LE num
* @returns valid private scalar
*/
export declare function mapHashToField(key: Uint8Array, fieldOrder: bigint, isLE?: boolean): Uint8Array;
export {};
//# sourceMappingURL=modular.d.ts.map

View File

@@ -0,0 +1 @@
{"version":3,"file":"modular.d.ts","sourceRoot":"","sources":["../src/abstract/modular.ts"],"names":[],"mappings":"AAmBA,wBAAgB,GAAG,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,GAAG,MAAM,CAGhD;AACD;;;;;GAKG;AAEH,wBAAgB,GAAG,CAAC,GAAG,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,GAAG,MAAM,CAUtE;AAGD,wBAAgB,IAAI,CAAC,CAAC,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,GAAG,MAAM,CAOrE;AAGD,wBAAgB,MAAM,CAAC,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,GAAG,MAAM,CAsB7D;AAED;;;;;;;GAOG;AACH,wBAAgB,aAAa,CAAC,CAAC,EAAE,MAAM,iCAsDtC;AAED,wBAAgB,MAAM,CAAC,CAAC,EAAE,MAAM,iCA2D/B;AAGD,eAAO,MAAM,YAAY,QAAS,MAAM,UAAU,MAAM,YAAqC,CAAC;AAG9F,MAAM,WAAW,MAAM,CAAC,CAAC;IACvB,KAAK,EAAE,MAAM,CAAC;IACd,KAAK,EAAE,MAAM,CAAC;IACd,IAAI,EAAE,MAAM,CAAC;IACb,IAAI,EAAE,MAAM,CAAC;IACb,IAAI,EAAE,CAAC,CAAC;IACR,GAAG,EAAE,CAAC,CAAC;IAEP,MAAM,EAAE,CAAC,GAAG,EAAE,CAAC,KAAK,CAAC,CAAC;IACtB,OAAO,EAAE,CAAC,GAAG,EAAE,CAAC,KAAK,OAAO,CAAC;IAC7B,GAAG,EAAE,CAAC,GAAG,EAAE,CAAC,KAAK,OAAO,CAAC;IACzB,GAAG,CAAC,GAAG,EAAE,CAAC,GAAG,CAAC,CAAC;IACf,GAAG,CAAC,GAAG,EAAE,CAAC,GAAG,CAAC,CAAC;IACf,IAAI,CAAC,GAAG,EAAE,CAAC,GAAG,CAAC,CAAC;IAChB,GAAG,CAAC,GAAG,EAAE,CAAC,GAAG,CAAC,CAAC;IAEf,GAAG,CAAC,GAAG,EAAE,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,OAAO,CAAC;IAC7B,GAAG,CAAC,GAAG,EAAE,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,CAAC,CAAC;IACvB,GAAG,CAAC,GAAG,EAAE,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,CAAC,CAAC;IACvB,GAAG,CAAC,GAAG,EAAE,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,MAAM,GAAG,CAAC,CAAC;IAChC,GAAG,CAAC,GAAG,EAAE,CAAC,EAAE,KAAK,EAAE,MAAM,GAAG,CAAC,CAAC;IAC9B,GAAG,CAAC,GAAG,EAAE,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,MAAM,GAAG,CAAC,CAAC;IAEhC,IAAI,CAAC,GAAG,EAAE,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,CAAC,CAAC;IACxB,IAAI,CAAC,GAAG,EAAE,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,CAAC,CAAC;IACxB,IAAI,CAAC,GAAG,EAAE,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,MAAM,GAAG,CAAC,CAAC;IACjC,IAAI,CAAC,GAAG,EAAE,CAAC,GAAG,CAAC,CAAC;IAMhB,KAAK,CAAC,CAAC,GAAG,EAAE,CAAC,GAAG,OAAO,CAAC;IAExB,GAAG,CAAC,GAAG,EAAE,CAAC,EAAE,KAAK,EAAE,MAAM,GAAG,CAAC,CAAC;IAC9B,WAAW,EAAE,CAAC,GAAG,EAAE,CAAC,EAAE,KAAK,CAAC,EAAE,CAAC;IAC/B,OAAO,CAAC,GAAG,EAAE,CAAC,GAAG,UAAU,CAAC;IAC5B,SAAS,CAAC,KAAK,EAAE,UAAU,GAAG,CAAC,CAAC;IAEhC,IAAI,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,OAAO,GAAG,CAAC,CAAC;CACjC;AAOD,wBAAgB,aAAa,CAAC,CAAC,EAAE,KAAK,EAAE,MAAM,CAAC,CAAC,CAAC,aAYhD;AAID;;;GAGG;AACH,wBAAgB,KAAK,CAAC,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,KAAK,EAAE,MAAM,GAAG,CAAC,CAc/D;AAED;;;GAGG;AACH,wBAAgB,aAAa,CAAC,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,GAAG,CAAC,EAAE,CAiB7D;AAED,wBAAgB,KAAK,CAAC,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,MAAM,GAAG,CAAC,CAEjE;AAGD,wBAAgB,UAAU,CAAC,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,OAE7B,CAAC,KAAG,OAAO,CAIvB;AAGD,wBAAgB,OAAO,CAAC,CAAC,EAAE,MAAM,EAAE,UAAU,CAAC,EAAE,MAAM;;;EAKrD;AAED,KAAK,OAAO,GAAG,MAAM,CAAC,MAAM,CAAC,GAAG,QAAQ,CAAC,IAAI,CAAC,MAAM,CAAC,MAAM,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC;AACxE;;;;;;;;;;;GAWG;AACH,wBAAgB,KAAK,CACnB,KAAK,EAAE,MAAM,EACb,MAAM,CAAC,EAAE,MAAM,EACf,IAAI,UAAQ,EACZ,KAAK,GAAE,OAAO,CAAC,MAAM,CAAC,MAAM,CAAC,CAAM,GAClC,QAAQ,CAAC,OAAO,CAAC,CAkDnB;AAED,wBAAgB,SAAS,CAAC,CAAC,EAAE,EAAE,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,GAAG,EAAE,CAAC,KAIjD;AAED,wBAAgB,UAAU,CAAC,CAAC,EAAE,EAAE,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,GAAG,EAAE,CAAC,KAIlD;AAED;;;;;GAKG;AACH,wBAAgB,mBAAmB,CACjC,IAAI,EAAE,MAAM,GAAG,UAAU,EACzB,UAAU,EAAE,MAAM,EAClB,IAAI,UAAQ,GACX,MAAM,CAQR;AAED;;;;;GAKG;AACH,wBAAgB,mBAAmB,CAAC,UAAU,EAAE,MAAM,GAAG,MAAM,CAI9D;AAED;;;;;;GAMG;AACH,wBAAgB,gBAAgB,CAAC,UAAU,EAAE,MAAM,GAAG,MAAM,CAG3D;AAED;;;;;;;;;;;;GAYG;AACH,wBAAgB,cAAc,CAAC,GAAG,EAAE,UAAU,EAAE,UAAU,EAAE,MAAM,EAAE,IAAI,UAAQ,GAAG,UAAU,CAW5F"}

View File

@@ -0,0 +1,439 @@
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.mapHashToField = exports.getMinHashLength = exports.getFieldBytesLength = exports.hashToPrivateScalar = exports.FpSqrtEven = exports.FpSqrtOdd = exports.Field = exports.nLength = exports.FpIsSquare = exports.FpDiv = exports.FpInvertBatch = exports.FpPow = exports.validateField = exports.isNegativeLE = exports.FpSqrt = exports.tonelliShanks = exports.invert = exports.pow2 = exports.pow = exports.mod = void 0;
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
// Utilities for modular arithmetics and finite fields
const utils_js_1 = require("./utils.js");
// prettier-ignore
const _0n = BigInt(0), _1n = BigInt(1), _2n = BigInt(2), _3n = BigInt(3);
// prettier-ignore
const _4n = BigInt(4), _5n = BigInt(5), _8n = BigInt(8);
// prettier-ignore
const _9n = BigInt(9), _16n = BigInt(16);
// Calculates a modulo b
function mod(a, b) {
const result = a % b;
return result >= _0n ? result : b + result;
}
exports.mod = mod;
/**
* Efficiently raise num to power and do modular division.
* Unsafe in some contexts: uses ladder, so can expose bigint bits.
* @example
* pow(2n, 6n, 11n) // 64n % 11n == 9n
*/
// TODO: use field version && remove
function pow(num, power, modulo) {
if (modulo <= _0n || power < _0n)
throw new Error('Expected power/modulo > 0');
if (modulo === _1n)
return _0n;
let res = _1n;
while (power > _0n) {
if (power & _1n)
res = (res * num) % modulo;
num = (num * num) % modulo;
power >>= _1n;
}
return res;
}
exports.pow = pow;
// Does x ^ (2 ^ power) mod p. pow2(30, 4) == 30 ^ (2 ^ 4)
function pow2(x, power, modulo) {
let res = x;
while (power-- > _0n) {
res *= res;
res %= modulo;
}
return res;
}
exports.pow2 = pow2;
// Inverses number over modulo
function invert(number, modulo) {
if (number === _0n || modulo <= _0n) {
throw new Error(`invert: expected positive integers, got n=${number} mod=${modulo}`);
}
// Euclidean GCD https://brilliant.org/wiki/extended-euclidean-algorithm/
// Fermat's little theorem "CT-like" version inv(n) = n^(m-2) mod m is 30x slower.
let a = mod(number, modulo);
let b = modulo;
// prettier-ignore
let x = _0n, y = _1n, u = _1n, v = _0n;
while (a !== _0n) {
// JIT applies optimization if those two lines follow each other
const q = b / a;
const r = b % a;
const m = x - u * q;
const n = y - v * q;
// prettier-ignore
b = a, a = r, x = u, y = v, u = m, v = n;
}
const gcd = b;
if (gcd !== _1n)
throw new Error('invert: does not exist');
return mod(x, modulo);
}
exports.invert = invert;
/**
* Tonelli-Shanks square root search algorithm.
* 1. https://eprint.iacr.org/2012/685.pdf (page 12)
* 2. Square Roots from 1; 24, 51, 10 to Dan Shanks
* Will start an infinite loop if field order P is not prime.
* @param P field order
* @returns function that takes field Fp (created from P) and number n
*/
function tonelliShanks(P) {
// Legendre constant: used to calculate Legendre symbol (a | p),
// which denotes the value of a^((p-1)/2) (mod p).
// (a | p) ≡ 1 if a is a square (mod p)
// (a | p) ≡ -1 if a is not a square (mod p)
// (a | p) ≡ 0 if a ≡ 0 (mod p)
const legendreC = (P - _1n) / _2n;
let Q, S, Z;
// Step 1: By factoring out powers of 2 from p - 1,
// find q and s such that p - 1 = q*(2^s) with q odd
for (Q = P - _1n, S = 0; Q % _2n === _0n; Q /= _2n, S++)
;
// Step 2: Select a non-square z such that (z | p) ≡ -1 and set c ≡ zq
for (Z = _2n; Z < P && pow(Z, legendreC, P) !== P - _1n; Z++)
;
// Fast-path
if (S === 1) {
const p1div4 = (P + _1n) / _4n;
return function tonelliFast(Fp, n) {
const root = Fp.pow(n, p1div4);
if (!Fp.eql(Fp.sqr(root), n))
throw new Error('Cannot find square root');
return root;
};
}
// Slow-path
const Q1div2 = (Q + _1n) / _2n;
return function tonelliSlow(Fp, n) {
// Step 0: Check that n is indeed a square: (n | p) should not be ≡ -1
if (Fp.pow(n, legendreC) === Fp.neg(Fp.ONE))
throw new Error('Cannot find square root');
let r = S;
// TODO: will fail at Fp2/etc
let g = Fp.pow(Fp.mul(Fp.ONE, Z), Q); // will update both x and b
let x = Fp.pow(n, Q1div2); // first guess at the square root
let b = Fp.pow(n, Q); // first guess at the fudge factor
while (!Fp.eql(b, Fp.ONE)) {
if (Fp.eql(b, Fp.ZERO))
return Fp.ZERO; // https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm (4. If t = 0, return r = 0)
// Find m such b^(2^m)==1
let m = 1;
for (let t2 = Fp.sqr(b); m < r; m++) {
if (Fp.eql(t2, Fp.ONE))
break;
t2 = Fp.sqr(t2); // t2 *= t2
}
// NOTE: r-m-1 can be bigger than 32, need to convert to bigint before shift, otherwise there will be overflow
const ge = Fp.pow(g, _1n << BigInt(r - m - 1)); // ge = 2^(r-m-1)
g = Fp.sqr(ge); // g = ge * ge
x = Fp.mul(x, ge); // x *= ge
b = Fp.mul(b, g); // b *= g
r = m;
}
return x;
};
}
exports.tonelliShanks = tonelliShanks;
function FpSqrt(P) {
// NOTE: different algorithms can give different roots, it is up to user to decide which one they want.
// For example there is FpSqrtOdd/FpSqrtEven to choice root based on oddness (used for hash-to-curve).
// P ≡ 3 (mod 4)
// √n = n^((P+1)/4)
if (P % _4n === _3n) {
// Not all roots possible!
// const ORDER =
// 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaabn;
// const NUM = 72057594037927816n;
const p1div4 = (P + _1n) / _4n;
return function sqrt3mod4(Fp, n) {
const root = Fp.pow(n, p1div4);
// Throw if root**2 != n
if (!Fp.eql(Fp.sqr(root), n))
throw new Error('Cannot find square root');
return root;
};
}
// Atkin algorithm for q ≡ 5 (mod 8), https://eprint.iacr.org/2012/685.pdf (page 10)
if (P % _8n === _5n) {
const c1 = (P - _5n) / _8n;
return function sqrt5mod8(Fp, n) {
const n2 = Fp.mul(n, _2n);
const v = Fp.pow(n2, c1);
const nv = Fp.mul(n, v);
const i = Fp.mul(Fp.mul(nv, _2n), v);
const root = Fp.mul(nv, Fp.sub(i, Fp.ONE));
if (!Fp.eql(Fp.sqr(root), n))
throw new Error('Cannot find square root');
return root;
};
}
// P ≡ 9 (mod 16)
if (P % _16n === _9n) {
// NOTE: tonelli is too slow for bls-Fp2 calculations even on start
// Means we cannot use sqrt for constants at all!
//
// const c1 = Fp.sqrt(Fp.negate(Fp.ONE)); // 1. c1 = sqrt(-1) in F, i.e., (c1^2) == -1 in F
// const c2 = Fp.sqrt(c1); // 2. c2 = sqrt(c1) in F, i.e., (c2^2) == c1 in F
// const c3 = Fp.sqrt(Fp.negate(c1)); // 3. c3 = sqrt(-c1) in F, i.e., (c3^2) == -c1 in F
// const c4 = (P + _7n) / _16n; // 4. c4 = (q + 7) / 16 # Integer arithmetic
// sqrt = (x) => {
// let tv1 = Fp.pow(x, c4); // 1. tv1 = x^c4
// let tv2 = Fp.mul(c1, tv1); // 2. tv2 = c1 * tv1
// const tv3 = Fp.mul(c2, tv1); // 3. tv3 = c2 * tv1
// let tv4 = Fp.mul(c3, tv1); // 4. tv4 = c3 * tv1
// const e1 = Fp.equals(Fp.square(tv2), x); // 5. e1 = (tv2^2) == x
// const e2 = Fp.equals(Fp.square(tv3), x); // 6. e2 = (tv3^2) == x
// tv1 = Fp.cmov(tv1, tv2, e1); // 7. tv1 = CMOV(tv1, tv2, e1) # Select tv2 if (tv2^2) == x
// tv2 = Fp.cmov(tv4, tv3, e2); // 8. tv2 = CMOV(tv4, tv3, e2) # Select tv3 if (tv3^2) == x
// const e3 = Fp.equals(Fp.square(tv2), x); // 9. e3 = (tv2^2) == x
// return Fp.cmov(tv1, tv2, e3); // 10. z = CMOV(tv1, tv2, e3) # Select the sqrt from tv1 and tv2
// }
}
// Other cases: Tonelli-Shanks algorithm
return tonelliShanks(P);
}
exports.FpSqrt = FpSqrt;
// Little-endian check for first LE bit (last BE bit);
const isNegativeLE = (num, modulo) => (mod(num, modulo) & _1n) === _1n;
exports.isNegativeLE = isNegativeLE;
// prettier-ignore
const FIELD_FIELDS = [
'create', 'isValid', 'is0', 'neg', 'inv', 'sqrt', 'sqr',
'eql', 'add', 'sub', 'mul', 'pow', 'div',
'addN', 'subN', 'mulN', 'sqrN'
];
function validateField(field) {
const initial = {
ORDER: 'bigint',
MASK: 'bigint',
BYTES: 'isSafeInteger',
BITS: 'isSafeInteger',
};
const opts = FIELD_FIELDS.reduce((map, val) => {
map[val] = 'function';
return map;
}, initial);
return (0, utils_js_1.validateObject)(field, opts);
}
exports.validateField = validateField;
// Generic field functions
/**
* Same as `pow` but for Fp: non-constant-time.
* Unsafe in some contexts: uses ladder, so can expose bigint bits.
*/
function FpPow(f, num, power) {
// Should have same speed as pow for bigints
// TODO: benchmark!
if (power < _0n)
throw new Error('Expected power > 0');
if (power === _0n)
return f.ONE;
if (power === _1n)
return num;
let p = f.ONE;
let d = num;
while (power > _0n) {
if (power & _1n)
p = f.mul(p, d);
d = f.sqr(d);
power >>= _1n;
}
return p;
}
exports.FpPow = FpPow;
/**
* Efficiently invert an array of Field elements.
* `inv(0)` will return `undefined` here: make sure to throw an error.
*/
function FpInvertBatch(f, nums) {
const tmp = new Array(nums.length);
// Walk from first to last, multiply them by each other MOD p
const lastMultiplied = nums.reduce((acc, num, i) => {
if (f.is0(num))
return acc;
tmp[i] = acc;
return f.mul(acc, num);
}, f.ONE);
// Invert last element
const inverted = f.inv(lastMultiplied);
// Walk from last to first, multiply them by inverted each other MOD p
nums.reduceRight((acc, num, i) => {
if (f.is0(num))
return acc;
tmp[i] = f.mul(acc, tmp[i]);
return f.mul(acc, num);
}, inverted);
return tmp;
}
exports.FpInvertBatch = FpInvertBatch;
function FpDiv(f, lhs, rhs) {
return f.mul(lhs, typeof rhs === 'bigint' ? invert(rhs, f.ORDER) : f.inv(rhs));
}
exports.FpDiv = FpDiv;
// This function returns True whenever the value x is a square in the field F.
function FpIsSquare(f) {
const legendreConst = (f.ORDER - _1n) / _2n; // Integer arithmetic
return (x) => {
const p = f.pow(x, legendreConst);
return f.eql(p, f.ZERO) || f.eql(p, f.ONE);
};
}
exports.FpIsSquare = FpIsSquare;
// CURVE.n lengths
function nLength(n, nBitLength) {
// Bit size, byte size of CURVE.n
const _nBitLength = nBitLength !== undefined ? nBitLength : n.toString(2).length;
const nByteLength = Math.ceil(_nBitLength / 8);
return { nBitLength: _nBitLength, nByteLength };
}
exports.nLength = nLength;
/**
* Initializes a finite field over prime. **Non-primes are not supported.**
* Do not init in loop: slow. Very fragile: always run a benchmark on a change.
* Major performance optimizations:
* * a) denormalized operations like mulN instead of mul
* * b) same object shape: never add or remove keys
* * c) Object.freeze
* @param ORDER prime positive bigint
* @param bitLen how many bits the field consumes
* @param isLE (def: false) if encoding / decoding should be in little-endian
* @param redef optional faster redefinitions of sqrt and other methods
*/
function Field(ORDER, bitLen, isLE = false, redef = {}) {
if (ORDER <= _0n)
throw new Error(`Expected Field ORDER > 0, got ${ORDER}`);
const { nBitLength: BITS, nByteLength: BYTES } = nLength(ORDER, bitLen);
if (BYTES > 2048)
throw new Error('Field lengths over 2048 bytes are not supported');
const sqrtP = FpSqrt(ORDER);
const f = Object.freeze({
ORDER,
BITS,
BYTES,
MASK: (0, utils_js_1.bitMask)(BITS),
ZERO: _0n,
ONE: _1n,
create: (num) => mod(num, ORDER),
isValid: (num) => {
if (typeof num !== 'bigint')
throw new Error(`Invalid field element: expected bigint, got ${typeof num}`);
return _0n <= num && num < ORDER; // 0 is valid element, but it's not invertible
},
is0: (num) => num === _0n,
isOdd: (num) => (num & _1n) === _1n,
neg: (num) => mod(-num, ORDER),
eql: (lhs, rhs) => lhs === rhs,
sqr: (num) => mod(num * num, ORDER),
add: (lhs, rhs) => mod(lhs + rhs, ORDER),
sub: (lhs, rhs) => mod(lhs - rhs, ORDER),
mul: (lhs, rhs) => mod(lhs * rhs, ORDER),
pow: (num, power) => FpPow(f, num, power),
div: (lhs, rhs) => mod(lhs * invert(rhs, ORDER), ORDER),
// Same as above, but doesn't normalize
sqrN: (num) => num * num,
addN: (lhs, rhs) => lhs + rhs,
subN: (lhs, rhs) => lhs - rhs,
mulN: (lhs, rhs) => lhs * rhs,
inv: (num) => invert(num, ORDER),
sqrt: redef.sqrt || ((n) => sqrtP(f, n)),
invertBatch: (lst) => FpInvertBatch(f, lst),
// TODO: do we really need constant cmov?
// We don't have const-time bigints anyway, so probably will be not very useful
cmov: (a, b, c) => (c ? b : a),
toBytes: (num) => (isLE ? (0, utils_js_1.numberToBytesLE)(num, BYTES) : (0, utils_js_1.numberToBytesBE)(num, BYTES)),
fromBytes: (bytes) => {
if (bytes.length !== BYTES)
throw new Error(`Fp.fromBytes: expected ${BYTES}, got ${bytes.length}`);
return isLE ? (0, utils_js_1.bytesToNumberLE)(bytes) : (0, utils_js_1.bytesToNumberBE)(bytes);
},
});
return Object.freeze(f);
}
exports.Field = Field;
function FpSqrtOdd(Fp, elm) {
if (!Fp.isOdd)
throw new Error(`Field doesn't have isOdd`);
const root = Fp.sqrt(elm);
return Fp.isOdd(root) ? root : Fp.neg(root);
}
exports.FpSqrtOdd = FpSqrtOdd;
function FpSqrtEven(Fp, elm) {
if (!Fp.isOdd)
throw new Error(`Field doesn't have isOdd`);
const root = Fp.sqrt(elm);
return Fp.isOdd(root) ? Fp.neg(root) : root;
}
exports.FpSqrtEven = FpSqrtEven;
/**
* "Constant-time" private key generation utility.
* Same as mapKeyToField, but accepts less bytes (40 instead of 48 for 32-byte field).
* Which makes it slightly more biased, less secure.
* @deprecated use mapKeyToField instead
*/
function hashToPrivateScalar(hash, groupOrder, isLE = false) {
hash = (0, utils_js_1.ensureBytes)('privateHash', hash);
const hashLen = hash.length;
const minLen = nLength(groupOrder).nByteLength + 8;
if (minLen < 24 || hashLen < minLen || hashLen > 1024)
throw new Error(`hashToPrivateScalar: expected ${minLen}-1024 bytes of input, got ${hashLen}`);
const num = isLE ? (0, utils_js_1.bytesToNumberLE)(hash) : (0, utils_js_1.bytesToNumberBE)(hash);
return mod(num, groupOrder - _1n) + _1n;
}
exports.hashToPrivateScalar = hashToPrivateScalar;
/**
* Returns total number of bytes consumed by the field element.
* For example, 32 bytes for usual 256-bit weierstrass curve.
* @param fieldOrder number of field elements, usually CURVE.n
* @returns byte length of field
*/
function getFieldBytesLength(fieldOrder) {
if (typeof fieldOrder !== 'bigint')
throw new Error('field order must be bigint');
const bitLength = fieldOrder.toString(2).length;
return Math.ceil(bitLength / 8);
}
exports.getFieldBytesLength = getFieldBytesLength;
/**
* Returns minimal amount of bytes that can be safely reduced
* by field order.
* Should be 2^-128 for 128-bit curve such as P256.
* @param fieldOrder number of field elements, usually CURVE.n
* @returns byte length of target hash
*/
function getMinHashLength(fieldOrder) {
const length = getFieldBytesLength(fieldOrder);
return length + Math.ceil(length / 2);
}
exports.getMinHashLength = getMinHashLength;
/**
* "Constant-time" private key generation utility.
* Can take (n + n/2) or more bytes of uniform input e.g. from CSPRNG or KDF
* and convert them into private scalar, with the modulo bias being negligible.
* Needs at least 48 bytes of input for 32-byte private key.
* https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/
* FIPS 186-5, A.2 https://csrc.nist.gov/publications/detail/fips/186/5/final
* RFC 9380, https://www.rfc-editor.org/rfc/rfc9380#section-5
* @param hash hash output from SHA3 or a similar function
* @param groupOrder size of subgroup - (e.g. secp256k1.CURVE.n)
* @param isLE interpret hash bytes as LE num
* @returns valid private scalar
*/
function mapHashToField(key, fieldOrder, isLE = false) {
const len = key.length;
const fieldLen = getFieldBytesLength(fieldOrder);
const minLen = getMinHashLength(fieldOrder);
// No small numbers: need to understand bias story. No huge numbers: easier to detect JS timings.
if (len < 16 || len < minLen || len > 1024)
throw new Error(`expected ${minLen}-1024 bytes of input, got ${len}`);
const num = isLE ? (0, utils_js_1.bytesToNumberBE)(key) : (0, utils_js_1.bytesToNumberLE)(key);
// `mod(x, 11)` can sometimes produce 0. `mod(x, 10) + 1` is the same, but no 0
const reduced = mod(num, fieldOrder - _1n) + _1n;
return isLE ? (0, utils_js_1.numberToBytesLE)(reduced, fieldLen) : (0, utils_js_1.numberToBytesBE)(reduced, fieldLen);
}
exports.mapHashToField = mapHashToField;
//# sourceMappingURL=modular.js.map

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,26 @@
type Hex = string | Uint8Array;
export type CurveType = {
P: bigint;
nByteLength: number;
adjustScalarBytes?: (bytes: Uint8Array) => Uint8Array;
domain?: (data: Uint8Array, ctx: Uint8Array, phflag: boolean) => Uint8Array;
a: bigint;
montgomeryBits: number;
powPminus2?: (x: bigint) => bigint;
xyToU?: (x: bigint, y: bigint) => bigint;
Gu: bigint;
randomBytes?: (bytesLength?: number) => Uint8Array;
};
export type CurveFn = {
scalarMult: (scalar: Hex, u: Hex) => Uint8Array;
scalarMultBase: (scalar: Hex) => Uint8Array;
getSharedSecret: (privateKeyA: Hex, publicKeyB: Hex) => Uint8Array;
getPublicKey: (privateKey: Hex) => Uint8Array;
utils: {
randomPrivateKey: () => Uint8Array;
};
GuBytes: Uint8Array;
};
export declare function montgomery(curveDef: CurveType): CurveFn;
export {};
//# sourceMappingURL=montgomery.d.ts.map

View File

@@ -0,0 +1 @@
{"version":3,"file":"montgomery.d.ts","sourceRoot":"","sources":["../src/abstract/montgomery.ts"],"names":[],"mappings":"AAMA,KAAK,GAAG,GAAG,MAAM,GAAG,UAAU,CAAC;AAE/B,MAAM,MAAM,SAAS,GAAG;IACtB,CAAC,EAAE,MAAM,CAAC;IACV,WAAW,EAAE,MAAM,CAAC;IACpB,iBAAiB,CAAC,EAAE,CAAC,KAAK,EAAE,UAAU,KAAK,UAAU,CAAC;IACtD,MAAM,CAAC,EAAE,CAAC,IAAI,EAAE,UAAU,EAAE,GAAG,EAAE,UAAU,EAAE,MAAM,EAAE,OAAO,KAAK,UAAU,CAAC;IAC5E,CAAC,EAAE,MAAM,CAAC;IACV,cAAc,EAAE,MAAM,CAAC;IACvB,UAAU,CAAC,EAAE,CAAC,CAAC,EAAE,MAAM,KAAK,MAAM,CAAC;IACnC,KAAK,CAAC,EAAE,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,KAAK,MAAM,CAAC;IACzC,EAAE,EAAE,MAAM,CAAC;IACX,WAAW,CAAC,EAAE,CAAC,WAAW,CAAC,EAAE,MAAM,KAAK,UAAU,CAAC;CACpD,CAAC;AACF,MAAM,MAAM,OAAO,GAAG;IACpB,UAAU,EAAE,CAAC,MAAM,EAAE,GAAG,EAAE,CAAC,EAAE,GAAG,KAAK,UAAU,CAAC;IAChD,cAAc,EAAE,CAAC,MAAM,EAAE,GAAG,KAAK,UAAU,CAAC;IAC5C,eAAe,EAAE,CAAC,WAAW,EAAE,GAAG,EAAE,UAAU,EAAE,GAAG,KAAK,UAAU,CAAC;IACnE,YAAY,EAAE,CAAC,UAAU,EAAE,GAAG,KAAK,UAAU,CAAC;IAC9C,KAAK,EAAE;QAAE,gBAAgB,EAAE,MAAM,UAAU,CAAA;KAAE,CAAC;IAC9C,OAAO,EAAE,UAAU,CAAC;CACrB,CAAC;AAuBF,wBAAgB,UAAU,CAAC,QAAQ,EAAE,SAAS,GAAG,OAAO,CA0IvD"}

View File

@@ -0,0 +1,161 @@
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.montgomery = void 0;
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
const modular_js_1 = require("./modular.js");
const utils_js_1 = require("./utils.js");
const _0n = BigInt(0);
const _1n = BigInt(1);
function validateOpts(curve) {
(0, utils_js_1.validateObject)(curve, {
a: 'bigint',
}, {
montgomeryBits: 'isSafeInteger',
nByteLength: 'isSafeInteger',
adjustScalarBytes: 'function',
domain: 'function',
powPminus2: 'function',
Gu: 'bigint',
});
// Set defaults
return Object.freeze({ ...curve });
}
// NOTE: not really montgomery curve, just bunch of very specific methods for X25519/X448 (RFC 7748, https://www.rfc-editor.org/rfc/rfc7748)
// Uses only one coordinate instead of two
function montgomery(curveDef) {
const CURVE = validateOpts(curveDef);
const { P } = CURVE;
const modP = (n) => (0, modular_js_1.mod)(n, P);
const montgomeryBits = CURVE.montgomeryBits;
const montgomeryBytes = Math.ceil(montgomeryBits / 8);
const fieldLen = CURVE.nByteLength;
const adjustScalarBytes = CURVE.adjustScalarBytes || ((bytes) => bytes);
const powPminus2 = CURVE.powPminus2 || ((x) => (0, modular_js_1.pow)(x, P - BigInt(2), P));
// cswap from RFC7748. But it is not from RFC7748!
/*
cswap(swap, x_2, x_3):
dummy = mask(swap) AND (x_2 XOR x_3)
x_2 = x_2 XOR dummy
x_3 = x_3 XOR dummy
Return (x_2, x_3)
Where mask(swap) is the all-1 or all-0 word of the same length as x_2
and x_3, computed, e.g., as mask(swap) = 0 - swap.
*/
function cswap(swap, x_2, x_3) {
const dummy = modP(swap * (x_2 - x_3));
x_2 = modP(x_2 - dummy);
x_3 = modP(x_3 + dummy);
return [x_2, x_3];
}
// Accepts 0 as well
function assertFieldElement(n) {
if (typeof n === 'bigint' && _0n <= n && n < P)
return n;
throw new Error('Expected valid scalar 0 < scalar < CURVE.P');
}
// x25519 from 4
// The constant a24 is (486662 - 2) / 4 = 121665 for curve25519/X25519
const a24 = (CURVE.a - BigInt(2)) / BigInt(4);
/**
*
* @param pointU u coordinate (x) on Montgomery Curve 25519
* @param scalar by which the point would be multiplied
* @returns new Point on Montgomery curve
*/
function montgomeryLadder(pointU, scalar) {
const u = assertFieldElement(pointU);
// Section 5: Implementations MUST accept non-canonical values and process them as
// if they had been reduced modulo the field prime.
const k = assertFieldElement(scalar);
const x_1 = u;
let x_2 = _1n;
let z_2 = _0n;
let x_3 = u;
let z_3 = _1n;
let swap = _0n;
let sw;
for (let t = BigInt(montgomeryBits - 1); t >= _0n; t--) {
const k_t = (k >> t) & _1n;
swap ^= k_t;
sw = cswap(swap, x_2, x_3);
x_2 = sw[0];
x_3 = sw[1];
sw = cswap(swap, z_2, z_3);
z_2 = sw[0];
z_3 = sw[1];
swap = k_t;
const A = x_2 + z_2;
const AA = modP(A * A);
const B = x_2 - z_2;
const BB = modP(B * B);
const E = AA - BB;
const C = x_3 + z_3;
const D = x_3 - z_3;
const DA = modP(D * A);
const CB = modP(C * B);
const dacb = DA + CB;
const da_cb = DA - CB;
x_3 = modP(dacb * dacb);
z_3 = modP(x_1 * modP(da_cb * da_cb));
x_2 = modP(AA * BB);
z_2 = modP(E * (AA + modP(a24 * E)));
}
// (x_2, x_3) = cswap(swap, x_2, x_3)
sw = cswap(swap, x_2, x_3);
x_2 = sw[0];
x_3 = sw[1];
// (z_2, z_3) = cswap(swap, z_2, z_3)
sw = cswap(swap, z_2, z_3);
z_2 = sw[0];
z_3 = sw[1];
// z_2^(p - 2)
const z2 = powPminus2(z_2);
// Return x_2 * (z_2^(p - 2))
return modP(x_2 * z2);
}
function encodeUCoordinate(u) {
return (0, utils_js_1.numberToBytesLE)(modP(u), montgomeryBytes);
}
function decodeUCoordinate(uEnc) {
// Section 5: When receiving such an array, implementations of X25519
// MUST mask the most significant bit in the final byte.
// This is very ugly way, but it works because fieldLen-1 is outside of bounds for X448, so this becomes NOOP
// fieldLen - scalaryBytes = 1 for X448 and = 0 for X25519
const u = (0, utils_js_1.ensureBytes)('u coordinate', uEnc, montgomeryBytes);
// u[fieldLen-1] crashes QuickJS (TypeError: out-of-bound numeric index)
if (fieldLen === montgomeryBytes)
u[fieldLen - 1] &= 127; // 0b0111_1111
return (0, utils_js_1.bytesToNumberLE)(u);
}
function decodeScalar(n) {
const bytes = (0, utils_js_1.ensureBytes)('scalar', n);
if (bytes.length !== montgomeryBytes && bytes.length !== fieldLen)
throw new Error(`Expected ${montgomeryBytes} or ${fieldLen} bytes, got ${bytes.length}`);
return (0, utils_js_1.bytesToNumberLE)(adjustScalarBytes(bytes));
}
function scalarMult(scalar, u) {
const pointU = decodeUCoordinate(u);
const _scalar = decodeScalar(scalar);
const pu = montgomeryLadder(pointU, _scalar);
// The result was not contributory
// https://cr.yp.to/ecdh.html#validate
if (pu === _0n)
throw new Error('Invalid private or public key received');
return encodeUCoordinate(pu);
}
// Computes public key from private. By doing scalar multiplication of base point.
const GuBytes = encodeUCoordinate(CURVE.Gu);
function scalarMultBase(scalar) {
return scalarMult(scalar, GuBytes);
}
return {
scalarMult,
scalarMultBase,
getSharedSecret: (privateKey, publicKey) => scalarMult(privateKey, publicKey),
getPublicKey: (privateKey) => scalarMultBase(privateKey),
utils: { randomPrivateKey: () => CURVE.randomBytes(CURVE.nByteLength) },
GuBytes: GuBytes,
};
}
exports.montgomery = montgomery;
//# sourceMappingURL=montgomery.js.map

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,30 @@
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
import { IField } from './modular.js';
export type PoseidonOpts = {
Fp: IField<bigint>;
t: number;
roundsFull: number;
roundsPartial: number;
sboxPower?: number;
reversePartialPowIdx?: boolean;
mds: bigint[][];
roundConstants: bigint[][];
};
export declare function validateOpts(opts: PoseidonOpts): Readonly<{
rounds: number;
sboxFn: (n: bigint) => bigint;
roundConstants: bigint[][];
mds: bigint[][];
Fp: IField<bigint>;
t: number;
roundsFull: number;
roundsPartial: number;
sboxPower?: number | undefined;
reversePartialPowIdx?: boolean | undefined;
}>;
export declare function splitConstants(rc: bigint[], t: number): bigint[][];
export declare function poseidon(opts: PoseidonOpts): {
(values: bigint[]): bigint[];
roundConstants: bigint[][];
};
//# sourceMappingURL=poseidon.d.ts.map

View File

@@ -0,0 +1 @@
{"version":3,"file":"poseidon.d.ts","sourceRoot":"","sources":["../src/abstract/poseidon.ts"],"names":[],"mappings":"AAAA,sEAAsE;AAEtE,OAAO,EAAE,MAAM,EAAwB,MAAM,cAAc,CAAC;AAG5D,MAAM,MAAM,YAAY,GAAG;IACzB,EAAE,EAAE,MAAM,CAAC,MAAM,CAAC,CAAC;IACnB,CAAC,EAAE,MAAM,CAAC;IACV,UAAU,EAAE,MAAM,CAAC;IACnB,aAAa,EAAE,MAAM,CAAC;IACtB,SAAS,CAAC,EAAE,MAAM,CAAC;IACnB,oBAAoB,CAAC,EAAE,OAAO,CAAC;IAC/B,GAAG,EAAE,MAAM,EAAE,EAAE,CAAC;IAChB,cAAc,EAAE,MAAM,EAAE,EAAE,CAAC;CAC5B,CAAC;AAEF,wBAAgB,YAAY,CAAC,IAAI,EAAE,YAAY;;gBA0C5B,MAAM;;;;;;;;;GAMxB;AAED,wBAAgB,cAAc,CAAC,EAAE,EAAE,MAAM,EAAE,EAAE,CAAC,EAAE,MAAM,cAarD;AAED,wBAAgB,QAAQ,CAAC,IAAI,EAAE,YAAY;aAcU,MAAM,EAAE;;EAsB5D"}

View File

@@ -0,0 +1,114 @@
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.poseidon = exports.splitConstants = exports.validateOpts = void 0;
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
// Poseidon Hash: https://eprint.iacr.org/2019/458.pdf, https://www.poseidon-hash.info
const modular_js_1 = require("./modular.js");
function validateOpts(opts) {
const { Fp, mds, reversePartialPowIdx: rev, roundConstants: rc } = opts;
const { roundsFull, roundsPartial, sboxPower, t } = opts;
(0, modular_js_1.validateField)(Fp);
for (const i of ['t', 'roundsFull', 'roundsPartial']) {
if (typeof opts[i] !== 'number' || !Number.isSafeInteger(opts[i]))
throw new Error(`Poseidon: invalid param ${i}=${opts[i]} (${typeof opts[i]})`);
}
// MDS is TxT matrix
if (!Array.isArray(mds) || mds.length !== t)
throw new Error('Poseidon: wrong MDS matrix');
const _mds = mds.map((mdsRow) => {
if (!Array.isArray(mdsRow) || mdsRow.length !== t)
throw new Error(`Poseidon MDS matrix row: ${mdsRow}`);
return mdsRow.map((i) => {
if (typeof i !== 'bigint')
throw new Error(`Poseidon MDS matrix value=${i}`);
return Fp.create(i);
});
});
if (rev !== undefined && typeof rev !== 'boolean')
throw new Error(`Poseidon: invalid param reversePartialPowIdx=${rev}`);
if (roundsFull % 2 !== 0)
throw new Error(`Poseidon roundsFull is not even: ${roundsFull}`);
const rounds = roundsFull + roundsPartial;
if (!Array.isArray(rc) || rc.length !== rounds)
throw new Error('Poseidon: wrong round constants');
const roundConstants = rc.map((rc) => {
if (!Array.isArray(rc) || rc.length !== t)
throw new Error(`Poseidon wrong round constants: ${rc}`);
return rc.map((i) => {
if (typeof i !== 'bigint' || !Fp.isValid(i))
throw new Error(`Poseidon wrong round constant=${i}`);
return Fp.create(i);
});
});
if (!sboxPower || ![3, 5, 7].includes(sboxPower))
throw new Error(`Poseidon wrong sboxPower=${sboxPower}`);
const _sboxPower = BigInt(sboxPower);
let sboxFn = (n) => (0, modular_js_1.FpPow)(Fp, n, _sboxPower);
// Unwrapped sbox power for common cases (195->142μs)
if (sboxPower === 3)
sboxFn = (n) => Fp.mul(Fp.sqrN(n), n);
else if (sboxPower === 5)
sboxFn = (n) => Fp.mul(Fp.sqrN(Fp.sqrN(n)), n);
return Object.freeze({ ...opts, rounds, sboxFn, roundConstants, mds: _mds });
}
exports.validateOpts = validateOpts;
function splitConstants(rc, t) {
if (typeof t !== 'number')
throw new Error('poseidonSplitConstants: wrong t');
if (!Array.isArray(rc) || rc.length % t)
throw new Error('poseidonSplitConstants: wrong rc');
const res = [];
let tmp = [];
for (let i = 0; i < rc.length; i++) {
tmp.push(rc[i]);
if (tmp.length === t) {
res.push(tmp);
tmp = [];
}
}
return res;
}
exports.splitConstants = splitConstants;
function poseidon(opts) {
const _opts = validateOpts(opts);
const { Fp, mds, roundConstants, rounds, roundsPartial, sboxFn, t } = _opts;
const halfRoundsFull = _opts.roundsFull / 2;
const partialIdx = _opts.reversePartialPowIdx ? t - 1 : 0;
const poseidonRound = (values, isFull, idx) => {
values = values.map((i, j) => Fp.add(i, roundConstants[idx][j]));
if (isFull)
values = values.map((i) => sboxFn(i));
else
values[partialIdx] = sboxFn(values[partialIdx]);
// Matrix multiplication
values = mds.map((i) => i.reduce((acc, i, j) => Fp.add(acc, Fp.mulN(i, values[j])), Fp.ZERO));
return values;
};
const poseidonHash = function poseidonHash(values) {
if (!Array.isArray(values) || values.length !== t)
throw new Error(`Poseidon: wrong values (expected array of bigints with length ${t})`);
values = values.map((i) => {
if (typeof i !== 'bigint')
throw new Error(`Poseidon: wrong value=${i} (${typeof i})`);
return Fp.create(i);
});
let round = 0;
// Apply r_f/2 full rounds.
for (let i = 0; i < halfRoundsFull; i++)
values = poseidonRound(values, true, round++);
// Apply r_p partial rounds.
for (let i = 0; i < roundsPartial; i++)
values = poseidonRound(values, false, round++);
// Apply r_f/2 full rounds.
for (let i = 0; i < halfRoundsFull; i++)
values = poseidonRound(values, true, round++);
if (round !== rounds)
throw new Error(`Poseidon: wrong number of rounds: last round=${round}, total=${rounds}`);
return values;
};
// For verification in tests
poseidonHash.roundConstants = roundConstants;
return poseidonHash;
}
exports.poseidon = poseidon;
//# sourceMappingURL=poseidon.js.map

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,92 @@
export type Hex = Uint8Array | string;
export type PrivKey = Hex | bigint;
export type CHash = {
(message: Uint8Array | string): Uint8Array;
blockLen: number;
outputLen: number;
create(opts?: {
dkLen?: number;
}): any;
};
export type FHash = (message: Uint8Array | string) => Uint8Array;
/**
* @example bytesToHex(Uint8Array.from([0xca, 0xfe, 0x01, 0x23])) // 'cafe0123'
*/
export declare function bytesToHex(bytes: Uint8Array): string;
export declare function numberToHexUnpadded(num: number | bigint): string;
export declare function hexToNumber(hex: string): bigint;
/**
* @example hexToBytes('cafe0123') // Uint8Array.from([0xca, 0xfe, 0x01, 0x23])
*/
export declare function hexToBytes(hex: string): Uint8Array;
export declare function bytesToNumberBE(bytes: Uint8Array): bigint;
export declare function bytesToNumberLE(bytes: Uint8Array): bigint;
export declare function numberToBytesBE(n: number | bigint, len: number): Uint8Array;
export declare function numberToBytesLE(n: number | bigint, len: number): Uint8Array;
export declare function numberToVarBytesBE(n: number | bigint): Uint8Array;
/**
* Takes hex string or Uint8Array, converts to Uint8Array.
* Validates output length.
* Will throw error for other types.
* @param title descriptive title for an error e.g. 'private key'
* @param hex hex string or Uint8Array
* @param expectedLength optional, will compare to result array's length
* @returns
*/
export declare function ensureBytes(title: string, hex: Hex, expectedLength?: number): Uint8Array;
/**
* Copies several Uint8Arrays into one.
*/
export declare function concatBytes(...arrays: Uint8Array[]): Uint8Array;
export declare function equalBytes(b1: Uint8Array, b2: Uint8Array): boolean;
/**
* @example utf8ToBytes('abc') // new Uint8Array([97, 98, 99])
*/
export declare function utf8ToBytes(str: string): Uint8Array;
/**
* Calculates amount of bits in a bigint.
* Same as `n.toString(2).length`
*/
export declare function bitLen(n: bigint): number;
/**
* Gets single bit at position.
* NOTE: first bit position is 0 (same as arrays)
* Same as `!!+Array.from(n.toString(2)).reverse()[pos]`
*/
export declare function bitGet(n: bigint, pos: number): bigint;
/**
* Sets single bit at position.
*/
export declare const bitSet: (n: bigint, pos: number, value: boolean) => bigint;
/**
* Calculate mask for N bits. Not using ** operator with bigints because of old engines.
* Same as BigInt(`0b${Array(i).fill('1').join('')}`)
*/
export declare const bitMask: (n: number) => bigint;
type Pred<T> = (v: Uint8Array) => T | undefined;
/**
* Minimal HMAC-DRBG from NIST 800-90 for RFC6979 sigs.
* @returns function that will call DRBG until 2nd arg returns something meaningful
* @example
* const drbg = createHmacDRBG<Key>(32, 32, hmac);
* drbg(seed, bytesToKey); // bytesToKey must return Key or undefined
*/
export declare function createHmacDrbg<T>(hashLen: number, qByteLen: number, hmacFn: (key: Uint8Array, ...messages: Uint8Array[]) => Uint8Array): (seed: Uint8Array, predicate: Pred<T>) => T;
declare const validatorFns: {
readonly bigint: (val: any) => boolean;
readonly function: (val: any) => boolean;
readonly boolean: (val: any) => boolean;
readonly string: (val: any) => boolean;
readonly stringOrUint8Array: (val: any) => boolean;
readonly isSafeInteger: (val: any) => boolean;
readonly array: (val: any) => boolean;
readonly field: (val: any, object: any) => any;
readonly hash: (val: any) => boolean;
};
type Validator = keyof typeof validatorFns;
type ValMap<T extends Record<string, any>> = {
[K in keyof T]?: Validator;
};
export declare function validateObject<T extends Record<string, any>>(object: T, validators: ValMap<T>, optValidators?: ValMap<T>): T;
export {};
//# sourceMappingURL=utils.d.ts.map

View File

@@ -0,0 +1 @@
{"version":3,"file":"utils.d.ts","sourceRoot":"","sources":["../src/abstract/utils.ts"],"names":[],"mappings":"AASA,MAAM,MAAM,GAAG,GAAG,UAAU,GAAG,MAAM,CAAC;AACtC,MAAM,MAAM,OAAO,GAAG,GAAG,GAAG,MAAM,CAAC;AACnC,MAAM,MAAM,KAAK,GAAG;IAClB,CAAC,OAAO,EAAE,UAAU,GAAG,MAAM,GAAG,UAAU,CAAC;IAC3C,QAAQ,EAAE,MAAM,CAAC;IACjB,SAAS,EAAE,MAAM,CAAC;IAClB,MAAM,CAAC,IAAI,CAAC,EAAE;QAAE,KAAK,CAAC,EAAE,MAAM,CAAA;KAAE,GAAG,GAAG,CAAC;CACxC,CAAC;AACF,MAAM,MAAM,KAAK,GAAG,CAAC,OAAO,EAAE,UAAU,GAAG,MAAM,KAAK,UAAU,CAAC;AAKjE;;GAEG;AACH,wBAAgB,UAAU,CAAC,KAAK,EAAE,UAAU,GAAG,MAAM,CAQpD;AAED,wBAAgB,mBAAmB,CAAC,GAAG,EAAE,MAAM,GAAG,MAAM,GAAG,MAAM,CAGhE;AAED,wBAAgB,WAAW,CAAC,GAAG,EAAE,MAAM,GAAG,MAAM,CAI/C;AAED;;GAEG;AACH,wBAAgB,UAAU,CAAC,GAAG,EAAE,MAAM,GAAG,UAAU,CAalD;AAGD,wBAAgB,eAAe,CAAC,KAAK,EAAE,UAAU,GAAG,MAAM,CAEzD;AACD,wBAAgB,eAAe,CAAC,KAAK,EAAE,UAAU,GAAG,MAAM,CAGzD;AAED,wBAAgB,eAAe,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM,EAAE,GAAG,EAAE,MAAM,GAAG,UAAU,CAE3E;AACD,wBAAgB,eAAe,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM,EAAE,GAAG,EAAE,MAAM,GAAG,UAAU,CAE3E;AAED,wBAAgB,kBAAkB,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM,GAAG,UAAU,CAEjE;AAED;;;;;;;;GAQG;AACH,wBAAgB,WAAW,CAAC,KAAK,EAAE,MAAM,EAAE,GAAG,EAAE,GAAG,EAAE,cAAc,CAAC,EAAE,MAAM,GAAG,UAAU,CAmBxF;AAED;;GAEG;AACH,wBAAgB,WAAW,CAAC,GAAG,MAAM,EAAE,UAAU,EAAE,GAAG,UAAU,CAS/D;AAED,wBAAgB,UAAU,CAAC,EAAE,EAAE,UAAU,EAAE,EAAE,EAAE,UAAU,WAKxD;AAMD;;GAEG;AACH,wBAAgB,WAAW,CAAC,GAAG,EAAE,MAAM,GAAG,UAAU,CAGnD;AAID;;;GAGG;AACH,wBAAgB,MAAM,CAAC,CAAC,EAAE,MAAM,UAI/B;AAED;;;;GAIG;AACH,wBAAgB,MAAM,CAAC,CAAC,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,UAE5C;AAED;;GAEG;AACH,eAAO,MAAM,MAAM,MAAO,MAAM,OAAO,MAAM,SAAS,OAAO,WAE5D,CAAC;AAEF;;;GAGG;AACH,eAAO,MAAM,OAAO,MAAO,MAAM,WAAiC,CAAC;AAMnE,KAAK,IAAI,CAAC,CAAC,IAAI,CAAC,CAAC,EAAE,UAAU,KAAK,CAAC,GAAG,SAAS,CAAC;AAChD;;;;;;GAMG;AACH,wBAAgB,cAAc,CAAC,CAAC,EAC9B,OAAO,EAAE,MAAM,EACf,QAAQ,EAAE,MAAM,EAChB,MAAM,EAAE,CAAC,GAAG,EAAE,UAAU,EAAE,GAAG,QAAQ,EAAE,UAAU,EAAE,KAAK,UAAU,GACjE,CAAC,IAAI,EAAE,UAAU,EAAE,SAAS,EAAE,IAAI,CAAC,CAAC,CAAC,KAAK,CAAC,CA4C7C;AAID,QAAA,MAAM,YAAY;2BACF,GAAG;6BACD,GAAG;4BACJ,GAAG;2BACJ,GAAG;uCACS,GAAG;kCACR,GAAG;0BACX,GAAG;0BACH,GAAG,UAAU,GAAG;yBACjB,GAAG;CACP,CAAC;AACX,KAAK,SAAS,GAAG,MAAM,OAAO,YAAY,CAAC;AAC3C,KAAK,MAAM,CAAC,CAAC,SAAS,MAAM,CAAC,MAAM,EAAE,GAAG,CAAC,IAAI;KAAG,CAAC,IAAI,MAAM,CAAC,CAAC,CAAC,EAAE,SAAS;CAAE,CAAC;AAG5E,wBAAgB,cAAc,CAAC,CAAC,SAAS,MAAM,CAAC,MAAM,EAAE,GAAG,CAAC,EAC1D,MAAM,EAAE,CAAC,EACT,UAAU,EAAE,MAAM,CAAC,CAAC,CAAC,EACrB,aAAa,GAAE,MAAM,CAAC,CAAC,CAAM,KAkB9B"}

View File

@@ -0,0 +1,288 @@
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.validateObject = exports.createHmacDrbg = exports.bitMask = exports.bitSet = exports.bitGet = exports.bitLen = exports.utf8ToBytes = exports.equalBytes = exports.concatBytes = exports.ensureBytes = exports.numberToVarBytesBE = exports.numberToBytesLE = exports.numberToBytesBE = exports.bytesToNumberLE = exports.bytesToNumberBE = exports.hexToBytes = exports.hexToNumber = exports.numberToHexUnpadded = exports.bytesToHex = void 0;
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
// 100 lines of code in the file are duplicated from noble-hashes (utils).
// This is OK: `abstract` directory does not use noble-hashes.
// User may opt-in into using different hashing library. This way, noble-hashes
// won't be included into their bundle.
const _0n = BigInt(0);
const _1n = BigInt(1);
const _2n = BigInt(2);
const u8a = (a) => a instanceof Uint8Array;
const hexes = /* @__PURE__ */ Array.from({ length: 256 }, (_, i) => i.toString(16).padStart(2, '0'));
/**
* @example bytesToHex(Uint8Array.from([0xca, 0xfe, 0x01, 0x23])) // 'cafe0123'
*/
function bytesToHex(bytes) {
if (!u8a(bytes))
throw new Error('Uint8Array expected');
// pre-caching improves the speed 6x
let hex = '';
for (let i = 0; i < bytes.length; i++) {
hex += hexes[bytes[i]];
}
return hex;
}
exports.bytesToHex = bytesToHex;
function numberToHexUnpadded(num) {
const hex = num.toString(16);
return hex.length & 1 ? `0${hex}` : hex;
}
exports.numberToHexUnpadded = numberToHexUnpadded;
function hexToNumber(hex) {
if (typeof hex !== 'string')
throw new Error('hex string expected, got ' + typeof hex);
// Big Endian
return BigInt(hex === '' ? '0' : `0x${hex}`);
}
exports.hexToNumber = hexToNumber;
/**
* @example hexToBytes('cafe0123') // Uint8Array.from([0xca, 0xfe, 0x01, 0x23])
*/
function hexToBytes(hex) {
if (typeof hex !== 'string')
throw new Error('hex string expected, got ' + typeof hex);
const len = hex.length;
if (len % 2)
throw new Error('padded hex string expected, got unpadded hex of length ' + len);
const array = new Uint8Array(len / 2);
for (let i = 0; i < array.length; i++) {
const j = i * 2;
const hexByte = hex.slice(j, j + 2);
const byte = Number.parseInt(hexByte, 16);
if (Number.isNaN(byte) || byte < 0)
throw new Error('Invalid byte sequence');
array[i] = byte;
}
return array;
}
exports.hexToBytes = hexToBytes;
// BE: Big Endian, LE: Little Endian
function bytesToNumberBE(bytes) {
return hexToNumber(bytesToHex(bytes));
}
exports.bytesToNumberBE = bytesToNumberBE;
function bytesToNumberLE(bytes) {
if (!u8a(bytes))
throw new Error('Uint8Array expected');
return hexToNumber(bytesToHex(Uint8Array.from(bytes).reverse()));
}
exports.bytesToNumberLE = bytesToNumberLE;
function numberToBytesBE(n, len) {
return hexToBytes(n.toString(16).padStart(len * 2, '0'));
}
exports.numberToBytesBE = numberToBytesBE;
function numberToBytesLE(n, len) {
return numberToBytesBE(n, len).reverse();
}
exports.numberToBytesLE = numberToBytesLE;
// Unpadded, rarely used
function numberToVarBytesBE(n) {
return hexToBytes(numberToHexUnpadded(n));
}
exports.numberToVarBytesBE = numberToVarBytesBE;
/**
* Takes hex string or Uint8Array, converts to Uint8Array.
* Validates output length.
* Will throw error for other types.
* @param title descriptive title for an error e.g. 'private key'
* @param hex hex string or Uint8Array
* @param expectedLength optional, will compare to result array's length
* @returns
*/
function ensureBytes(title, hex, expectedLength) {
let res;
if (typeof hex === 'string') {
try {
res = hexToBytes(hex);
}
catch (e) {
throw new Error(`${title} must be valid hex string, got "${hex}". Cause: ${e}`);
}
}
else if (u8a(hex)) {
// Uint8Array.from() instead of hash.slice() because node.js Buffer
// is instance of Uint8Array, and its slice() creates **mutable** copy
res = Uint8Array.from(hex);
}
else {
throw new Error(`${title} must be hex string or Uint8Array`);
}
const len = res.length;
if (typeof expectedLength === 'number' && len !== expectedLength)
throw new Error(`${title} expected ${expectedLength} bytes, got ${len}`);
return res;
}
exports.ensureBytes = ensureBytes;
/**
* Copies several Uint8Arrays into one.
*/
function concatBytes(...arrays) {
const r = new Uint8Array(arrays.reduce((sum, a) => sum + a.length, 0));
let pad = 0; // walk through each item, ensure they have proper type
arrays.forEach((a) => {
if (!u8a(a))
throw new Error('Uint8Array expected');
r.set(a, pad);
pad += a.length;
});
return r;
}
exports.concatBytes = concatBytes;
function equalBytes(b1, b2) {
// We don't care about timing attacks here
if (b1.length !== b2.length)
return false;
for (let i = 0; i < b1.length; i++)
if (b1[i] !== b2[i])
return false;
return true;
}
exports.equalBytes = equalBytes;
/**
* @example utf8ToBytes('abc') // new Uint8Array([97, 98, 99])
*/
function utf8ToBytes(str) {
if (typeof str !== 'string')
throw new Error(`utf8ToBytes expected string, got ${typeof str}`);
return new Uint8Array(new TextEncoder().encode(str)); // https://bugzil.la/1681809
}
exports.utf8ToBytes = utf8ToBytes;
// Bit operations
/**
* Calculates amount of bits in a bigint.
* Same as `n.toString(2).length`
*/
function bitLen(n) {
let len;
for (len = 0; n > _0n; n >>= _1n, len += 1)
;
return len;
}
exports.bitLen = bitLen;
/**
* Gets single bit at position.
* NOTE: first bit position is 0 (same as arrays)
* Same as `!!+Array.from(n.toString(2)).reverse()[pos]`
*/
function bitGet(n, pos) {
return (n >> BigInt(pos)) & _1n;
}
exports.bitGet = bitGet;
/**
* Sets single bit at position.
*/
const bitSet = (n, pos, value) => {
return n | ((value ? _1n : _0n) << BigInt(pos));
};
exports.bitSet = bitSet;
/**
* Calculate mask for N bits. Not using ** operator with bigints because of old engines.
* Same as BigInt(`0b${Array(i).fill('1').join('')}`)
*/
const bitMask = (n) => (_2n << BigInt(n - 1)) - _1n;
exports.bitMask = bitMask;
// DRBG
const u8n = (data) => new Uint8Array(data); // creates Uint8Array
const u8fr = (arr) => Uint8Array.from(arr); // another shortcut
/**
* Minimal HMAC-DRBG from NIST 800-90 for RFC6979 sigs.
* @returns function that will call DRBG until 2nd arg returns something meaningful
* @example
* const drbg = createHmacDRBG<Key>(32, 32, hmac);
* drbg(seed, bytesToKey); // bytesToKey must return Key or undefined
*/
function createHmacDrbg(hashLen, qByteLen, hmacFn) {
if (typeof hashLen !== 'number' || hashLen < 2)
throw new Error('hashLen must be a number');
if (typeof qByteLen !== 'number' || qByteLen < 2)
throw new Error('qByteLen must be a number');
if (typeof hmacFn !== 'function')
throw new Error('hmacFn must be a function');
// Step B, Step C: set hashLen to 8*ceil(hlen/8)
let v = u8n(hashLen); // Minimal non-full-spec HMAC-DRBG from NIST 800-90 for RFC6979 sigs.
let k = u8n(hashLen); // Steps B and C of RFC6979 3.2: set hashLen, in our case always same
let i = 0; // Iterations counter, will throw when over 1000
const reset = () => {
v.fill(1);
k.fill(0);
i = 0;
};
const h = (...b) => hmacFn(k, v, ...b); // hmac(k)(v, ...values)
const reseed = (seed = u8n()) => {
// HMAC-DRBG reseed() function. Steps D-G
k = h(u8fr([0x00]), seed); // k = hmac(k || v || 0x00 || seed)
v = h(); // v = hmac(k || v)
if (seed.length === 0)
return;
k = h(u8fr([0x01]), seed); // k = hmac(k || v || 0x01 || seed)
v = h(); // v = hmac(k || v)
};
const gen = () => {
// HMAC-DRBG generate() function
if (i++ >= 1000)
throw new Error('drbg: tried 1000 values');
let len = 0;
const out = [];
while (len < qByteLen) {
v = h();
const sl = v.slice();
out.push(sl);
len += v.length;
}
return concatBytes(...out);
};
const genUntil = (seed, pred) => {
reset();
reseed(seed); // Steps D-G
let res = undefined; // Step H: grind until k is in [1..n-1]
while (!(res = pred(gen())))
reseed();
reset();
return res;
};
return genUntil;
}
exports.createHmacDrbg = createHmacDrbg;
// Validating curves and fields
const validatorFns = {
bigint: (val) => typeof val === 'bigint',
function: (val) => typeof val === 'function',
boolean: (val) => typeof val === 'boolean',
string: (val) => typeof val === 'string',
stringOrUint8Array: (val) => typeof val === 'string' || val instanceof Uint8Array,
isSafeInteger: (val) => Number.isSafeInteger(val),
array: (val) => Array.isArray(val),
field: (val, object) => object.Fp.isValid(val),
hash: (val) => typeof val === 'function' && Number.isSafeInteger(val.outputLen),
};
// type Record<K extends string | number | symbol, T> = { [P in K]: T; }
function validateObject(object, validators, optValidators = {}) {
const checkField = (fieldName, type, isOptional) => {
const checkVal = validatorFns[type];
if (typeof checkVal !== 'function')
throw new Error(`Invalid validator "${type}", expected function`);
const val = object[fieldName];
if (isOptional && val === undefined)
return;
if (!checkVal(val, object)) {
throw new Error(`Invalid param ${String(fieldName)}=${val} (${typeof val}), expected ${type}`);
}
};
for (const [fieldName, type] of Object.entries(validators))
checkField(fieldName, type, false);
for (const [fieldName, type] of Object.entries(optValidators))
checkField(fieldName, type, true);
return object;
}
exports.validateObject = validateObject;
// validate type tests
// const o: { a: number; b: number; c: number } = { a: 1, b: 5, c: 6 };
// const z0 = validateObject(o, { a: 'isSafeInteger' }, { c: 'bigint' }); // Ok!
// // Should fail type-check
// const z1 = validateObject(o, { a: 'tmp' }, { c: 'zz' });
// const z2 = validateObject(o, { a: 'isSafeInteger' }, { c: 'zz' });
// const z3 = validateObject(o, { test: 'boolean', z: 'bug' });
// const z4 = validateObject(o, { a: 'boolean', z: 'bug' });
//# sourceMappingURL=utils.js.map

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,241 @@
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
import * as mod from './modular.js';
import * as ut from './utils.js';
import { CHash, Hex, PrivKey } from './utils.js';
import { Group, GroupConstructor, BasicCurve, AffinePoint } from './curve.js';
export type { AffinePoint };
type HmacFnSync = (key: Uint8Array, ...messages: Uint8Array[]) => Uint8Array;
type EndomorphismOpts = {
beta: bigint;
splitScalar: (k: bigint) => {
k1neg: boolean;
k1: bigint;
k2neg: boolean;
k2: bigint;
};
};
export type BasicWCurve<T> = BasicCurve<T> & {
a: T;
b: T;
allowedPrivateKeyLengths?: readonly number[];
wrapPrivateKey?: boolean;
endo?: EndomorphismOpts;
isTorsionFree?: (c: ProjConstructor<T>, point: ProjPointType<T>) => boolean;
clearCofactor?: (c: ProjConstructor<T>, point: ProjPointType<T>) => ProjPointType<T>;
};
type Entropy = Hex | true;
export type SignOpts = {
lowS?: boolean;
extraEntropy?: Entropy;
prehash?: boolean;
};
export type VerOpts = {
lowS?: boolean;
prehash?: boolean;
};
/**
* ### Design rationale for types
*
* * Interaction between classes from different curves should fail:
* `k256.Point.BASE.add(p256.Point.BASE)`
* * For this purpose we want to use `instanceof` operator, which is fast and works during runtime
* * Different calls of `curve()` would return different classes -
* `curve(params) !== curve(params)`: if somebody decided to monkey-patch their curve,
* it won't affect others
*
* TypeScript can't infer types for classes created inside a function. Classes is one instance of nominative types in TypeScript and interfaces only check for shape, so it's hard to create unique type for every function call.
*
* We can use generic types via some param, like curve opts, but that would:
* 1. Enable interaction between `curve(params)` and `curve(params)` (curves of same params)
* which is hard to debug.
* 2. Params can be generic and we can't enforce them to be constant value:
* if somebody creates curve from non-constant params,
* it would be allowed to interact with other curves with non-constant params
*
* TODO: https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-7.html#unique-symbol
*/
export interface ProjPointType<T> extends Group<ProjPointType<T>> {
readonly px: T;
readonly py: T;
readonly pz: T;
get x(): T;
get y(): T;
multiply(scalar: bigint): ProjPointType<T>;
toAffine(iz?: T): AffinePoint<T>;
isTorsionFree(): boolean;
clearCofactor(): ProjPointType<T>;
assertValidity(): void;
hasEvenY(): boolean;
toRawBytes(isCompressed?: boolean): Uint8Array;
toHex(isCompressed?: boolean): string;
multiplyUnsafe(scalar: bigint): ProjPointType<T>;
multiplyAndAddUnsafe(Q: ProjPointType<T>, a: bigint, b: bigint): ProjPointType<T> | undefined;
_setWindowSize(windowSize: number): void;
}
export interface ProjConstructor<T> extends GroupConstructor<ProjPointType<T>> {
new (x: T, y: T, z: T): ProjPointType<T>;
fromAffine(p: AffinePoint<T>): ProjPointType<T>;
fromHex(hex: Hex): ProjPointType<T>;
fromPrivateKey(privateKey: PrivKey): ProjPointType<T>;
normalizeZ(points: ProjPointType<T>[]): ProjPointType<T>[];
}
export type CurvePointsType<T> = BasicWCurve<T> & {
fromBytes?: (bytes: Uint8Array) => AffinePoint<T>;
toBytes?: (c: ProjConstructor<T>, point: ProjPointType<T>, isCompressed: boolean) => Uint8Array;
};
export type CurvePointsRes<T> = {
ProjectivePoint: ProjConstructor<T>;
normPrivateKeyToScalar: (key: PrivKey) => bigint;
weierstrassEquation: (x: T) => T;
isWithinCurveOrder: (num: bigint) => boolean;
};
export declare const DER: {
Err: {
new (m?: string): {
name: string;
message: string;
stack?: string | undefined;
};
};
_parseInt(data: Uint8Array): {
d: bigint;
l: Uint8Array;
};
toSig(hex: string | Uint8Array): {
r: bigint;
s: bigint;
};
hexFromSig(sig: {
r: bigint;
s: bigint;
}): string;
};
export declare function weierstrassPoints<T>(opts: CurvePointsType<T>): {
CURVE: Readonly<{
readonly nBitLength: number;
readonly nByteLength: number;
readonly Fp: mod.IField<T>;
readonly n: bigint;
readonly h: bigint;
readonly hEff?: bigint | undefined;
readonly Gx: T;
readonly Gy: T;
readonly allowInfinityPoint?: boolean | undefined;
readonly a: T;
readonly b: T;
readonly allowedPrivateKeyLengths?: readonly number[] | undefined;
readonly wrapPrivateKey?: boolean | undefined;
readonly endo?: EndomorphismOpts | undefined;
readonly isTorsionFree?: ((c: ProjConstructor<T>, point: ProjPointType<T>) => boolean) | undefined;
readonly clearCofactor?: ((c: ProjConstructor<T>, point: ProjPointType<T>) => ProjPointType<T>) | undefined;
readonly fromBytes?: ((bytes: Uint8Array) => AffinePoint<T>) | undefined;
readonly toBytes?: ((c: ProjConstructor<T>, point: ProjPointType<T>, isCompressed: boolean) => Uint8Array) | undefined;
readonly p: bigint;
}>;
ProjectivePoint: ProjConstructor<T>;
normPrivateKeyToScalar: (key: PrivKey) => bigint;
weierstrassEquation: (x: T) => T;
isWithinCurveOrder: (num: bigint) => boolean;
};
export interface SignatureType {
readonly r: bigint;
readonly s: bigint;
readonly recovery?: number;
assertValidity(): void;
addRecoveryBit(recovery: number): RecoveredSignatureType;
hasHighS(): boolean;
normalizeS(): SignatureType;
recoverPublicKey(msgHash: Hex): ProjPointType<bigint>;
toCompactRawBytes(): Uint8Array;
toCompactHex(): string;
toDERRawBytes(isCompressed?: boolean): Uint8Array;
toDERHex(isCompressed?: boolean): string;
}
export type RecoveredSignatureType = SignatureType & {
readonly recovery: number;
};
export type SignatureConstructor = {
new (r: bigint, s: bigint): SignatureType;
fromCompact(hex: Hex): SignatureType;
fromDER(hex: Hex): SignatureType;
};
type SignatureLike = {
r: bigint;
s: bigint;
};
export type PubKey = Hex | ProjPointType<bigint>;
export type CurveType = BasicWCurve<bigint> & {
hash: CHash;
hmac: HmacFnSync;
randomBytes: (bytesLength?: number) => Uint8Array;
lowS?: boolean;
bits2int?: (bytes: Uint8Array) => bigint;
bits2int_modN?: (bytes: Uint8Array) => bigint;
};
declare function validateOpts(curve: CurveType): Readonly<{
readonly nBitLength: number;
readonly nByteLength: number;
readonly Fp: mod.IField<bigint>;
readonly n: bigint;
readonly h: bigint;
readonly hEff?: bigint | undefined;
readonly Gx: bigint;
readonly Gy: bigint;
readonly allowInfinityPoint?: boolean | undefined;
readonly a: bigint;
readonly b: bigint;
readonly allowedPrivateKeyLengths?: readonly number[] | undefined;
readonly wrapPrivateKey?: boolean | undefined;
readonly endo?: EndomorphismOpts | undefined;
readonly isTorsionFree?: ((c: ProjConstructor<bigint>, point: ProjPointType<bigint>) => boolean) | undefined;
readonly clearCofactor?: ((c: ProjConstructor<bigint>, point: ProjPointType<bigint>) => ProjPointType<bigint>) | undefined;
readonly hash: ut.CHash;
readonly hmac: HmacFnSync;
readonly randomBytes: (bytesLength?: number | undefined) => Uint8Array;
lowS: boolean;
readonly bits2int?: ((bytes: Uint8Array) => bigint) | undefined;
readonly bits2int_modN?: ((bytes: Uint8Array) => bigint) | undefined;
readonly p: bigint;
}>;
export type CurveFn = {
CURVE: ReturnType<typeof validateOpts>;
getPublicKey: (privateKey: PrivKey, isCompressed?: boolean) => Uint8Array;
getSharedSecret: (privateA: PrivKey, publicB: Hex, isCompressed?: boolean) => Uint8Array;
sign: (msgHash: Hex, privKey: PrivKey, opts?: SignOpts) => RecoveredSignatureType;
verify: (signature: Hex | SignatureLike, msgHash: Hex, publicKey: Hex, opts?: VerOpts) => boolean;
ProjectivePoint: ProjConstructor<bigint>;
Signature: SignatureConstructor;
utils: {
normPrivateKeyToScalar: (key: PrivKey) => bigint;
isValidPrivateKey(privateKey: PrivKey): boolean;
randomPrivateKey: () => Uint8Array;
precompute: (windowSize?: number, point?: ProjPointType<bigint>) => ProjPointType<bigint>;
};
};
export declare function weierstrass(curveDef: CurveType): CurveFn;
/**
* Implementation of the Shallue and van de Woestijne method for any weierstrass curve.
* TODO: check if there is a way to merge this with uvRatio in Edwards; move to modular.
* b = True and y = sqrt(u / v) if (u / v) is square in F, and
* b = False and y = sqrt(Z * (u / v)) otherwise.
* @param Fp
* @param Z
* @returns
*/
export declare function SWUFpSqrtRatio<T>(Fp: mod.IField<T>, Z: T): (u: T, v: T) => {
isValid: boolean;
value: T;
};
/**
* Simplified Shallue-van de Woestijne-Ulas Method
* https://www.rfc-editor.org/rfc/rfc9380#section-6.6.2
*/
export declare function mapToCurveSimpleSWU<T>(Fp: mod.IField<T>, opts: {
A: T;
B: T;
Z: T;
}): (u: T) => {
x: T;
y: T;
};
//# sourceMappingURL=weierstrass.d.ts.map

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long